
Lecture notes: harmonic analysis

Russell Brown
Department of mathematics

University of Kentucky
Lexington, KY 40506-0027

August 14, 2009



ii



Contents

Preface vii

1 The Fourier transform on L1 1

1.1 Definition and symmetry properties . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Fourier inversion theorem . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Tempered distributions 11

2.1 Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Tempered distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Operations on tempered distributions . . . . . . . . . . . . . . . . . . . . 17

2.4 The Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 More distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 The Fourier transform on L2. 25

3.1 Plancherel’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Multiplier operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Interpolation of operators 31

4.1 The Riesz-Thorin theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Interpolation for analytic families of operators . . . . . . . . . . . . . . . 36

4.3 Real methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 The Hardy-Littlewood maximal function 41

5.1 The Lp-inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Differentiation theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

iii



iv CONTENTS

6 Singular integrals 49
6.1 Calderón-Zygmund kernels . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Some multiplier operators . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Littlewood-Paley theory 61
7.1 A square function that characterizes Lp . . . . . . . . . . . . . . . . . . . 61
7.2 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 Fractional integration 65
8.1 The Hardy-Littlewood-Sobolev theorem . . . . . . . . . . . . . . . . . . . 66
8.2 A Sobolev inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9 Singular multipliers 77
9.1 Estimates for an operator with a singular symbol . . . . . . . . . . . . . 77
9.2 A trace theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

10 The Dirichlet problem for elliptic equations. 91
10.1 Domains in Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.2 The weak Dirichlet problem . . . . . . . . . . . . . . . . . . . . . . . . . 99

11 Inverse Problems: Boundary identifiability 103
11.1 The Dirichlet to Neumann map . . . . . . . . . . . . . . . . . . . . . . . 103
11.2 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

12 Inverse problem: Global uniqueness 117
12.1 A Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
12.2 Exponentially growing solutions . . . . . . . . . . . . . . . . . . . . . . . 122

13 Bessel functions 127

14 Restriction to the sphere 129

15 The uniform sobolev inequality 131

16 Inverse problems: potentials in Ln/2 133

17 Scattering for a two-dimensional system 135
17.1 Jost solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
17.2 Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
17.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



CONTENTS v

18 Global existence of Jost solutions 143
18.1 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
18.2 Existence of solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
18.3 Behavior for large z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

19 Differentiability of the Jost solutions 151
19.1 Differentiability of the Jost solution with respect to x. . . . . . . . . . . . 151
19.2 Differentiability with respect to z . . . . . . . . . . . . . . . . . . . . . . 153
19.3 Higher derivatives with respect to z . . . . . . . . . . . . . . . . . . . . . 156

20 Asymptotic expansion of the Jost solutions 159
20.1 Expansion with respect to x . . . . . . . . . . . . . . . . . . . . . . . . . 159
20.2 Expansion in z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
20.3 The inverse of the scattering map. . . . . . . . . . . . . . . . . . . . . . . 163

21 The scattering map and evolution equations 167
21.1 A quadratic identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
21.2 The tangent maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
21.3 The evolution equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A Some functional analysis 175
A.1 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
A.2 Compact operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
A.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176



vi CONTENTS



Preface

These notes are intended for a course in harmonic analysis on Rn which was offered to
graduate students at the University of Kentucky in Spring of 2001. The background for
this course is a course in real analysis which covers measure theory and the basic facts
of life related to Lp spaces. The students who were subjected to this course had studied
from Measure and integral by Wheeden and Zygmund and Real analysis: a modern
introduction, by Folland.

Much of the material in these notes is taken from the books of Stein Singular integrals
and differentiability properties of functions, [19] and Harmonic analysis [20] and the book
of Stein and Weiss, Fourier analysis on Euclidean spaces [21]. The monograph of Loukas
Grafakos, Classical and modern Fourier analysis [8] provides an excellent treatment of
the Fourier analysis in the first half of these notes.

The exercises serve a number of purposes. They illustrate extensions of the main
ideas. They provide a chance to state simple results that will be needed later. They
occasionally give interesting problems.

These notes are at an early stage and far from perfect. Please let me know of any
errors.

Participants in the 2008 version of the course include Jay Hineman, Joel Kilty, Justin
Taylor, Zhongyi Nie, Jun Geng, Michael Shaw and Julie Miker. Their contributions to
improving these notes are greatly appreciated.

Russell Brown, russell.brown@uky.edu
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Chapter 1

The Fourier transform on L1

In this chapter, we define the Fourier transform and give the basic properties of the
Fourier transform of an L1(Rn) function. Recall that L1(Rn) is the space of Lebesgue
measurable functions for which the norm ‖f‖1 =

∫
Rn |f(x)| dx is finite. For 0 < p <

∞, Lp(Rn) denotes the space of Lebesgue measurable functions for which the norm
‖f‖p = (

∫
Rn |f(x)|p dx)1/p is finite. When p = ∞, the space L∞(Rn) is the collection of

measurable functions which are essentially bounded. For 1 ≤ p ≤ ∞, the space Lp(Rn)
is a Banach space. We recall that a vector space V over C with a function ‖ · ‖ is called
a normed vector space if ‖ · ‖ : V → [0,∞) and satisfies

‖f + g‖ ≤ ‖f‖+ ‖g‖, f, g ∈ V
‖λf‖ = |λ|‖f‖, f ∈ v, λ ∈ C

‖f‖ = 0, if and only if f = 0.

A function ‖ · ‖ which satisfies these properties is called a norm. If ‖ · ‖ is a norm, then
‖f − g‖ defines a metric. A normed vector space (V, ‖ · ‖) is called a Banach space if V
is complete in the metric defined using the norm. Throughout these notes, functions are
assumed to be complex valued.

1.1 Definition and symmetry properties

We define the Fourier transform. In this definition, x · ξ is the inner product of two
elements of Rn, x · ξ =

∑n
j=1 xjξj.

Definition 1.1 If f ∈ L1(Rn), then the Fourier transform of f , f̂ , is a function defined

1



2 CHAPTER 1. THE FOURIER TRANSFORM ON L1

on Rn and is given by

f̂(ξ) =
∫
Rn
f(x)e−ix·ξ dx.

The Fourier transform is a continuous map from L1 to the bounded continuous func-
tions on Rn.

Proposition 1.2 If f ∈ L1(Rn), then f̂ is continuous and

‖f̂‖∞ ≤ ‖f‖1.

Proof. The estimate follows since e−ix·ξ is of modulus 1. Let {ξj} be a sequence in Rn

with limj→∞ ξ
j = ξ, then we have limj→∞ e

−ix·ξjf(x) = f(x)e−ix·ξ and |e−ix·ξjf(x)| ≤
|f(x)|. By the Lebesgue dominated convergence theorem, we have limj→∞ f̂(ξj)→ f̂(ξ).

The inequality in the conclusion of Proposition 1.2 is equivalent to the continuity of
the map f → f̂ . This is an application of the conclusion of the following exercise.

Exercise 1.3 A linear map T : V → W between normed vector spaces is continuous if
and only if there exists a constant C so that

‖Tf‖W ≤ C‖f‖V .

In the following proposition, we use A−t = (A−1)t for the transpose of the inverse of
an n× n matrix, A.

Exercise 1.4 Show that if A is an n× n invertible matrix, then (A−1)t = (At)−1.

Exercise 1.5 Show that A is an n× n matrix, then Ax · y = x · Aty.

Proposition 1.6 If A is an n× n invertible matrix, then

̂f ◦ A = | detA|−1f̂ ◦ A−t.

Proof. If we make the change of variables, y = Ax in the integral defining ̂f ◦ A, then
we obtain

̂f ◦ A(ξ) =
∫
Rn
f(Ax)e−ix·ξ dx

= | detA|−1
∫
Rn
f(y)e−iA

−1y·ξ dy

= | detA|−1
∫
Rn
f(y)e−iy·A

−tξ dy.
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If we set fε(x) = ε−nf(x/ε), then a simple application of Proposition 1.6 gives

f̂ε(ξ) = f̂(εξ). (1.7)

Recall that an orthogonal matrix is an n× n-matrix with real entries which satisfies
OtO = In where In is the n×n identity matrix. Such matrices are clearly invertible since
O−1 = Ot. The group of all such matrices is usually denoted by O(n).

Corollary 1.8 If f ∈ L1(Rn) and O is an orthogonal matrix, then f̂ ◦O = ̂f ◦O.

Exercise 1.9 If x ∈ Rn, show that there is an orthogonal matrix O so that Ox =
(|x|, 0, . . . , 0).

Exercise 1.10 Let A be an n× n matrix with real entries. Show that A is orthogonal if
and only if Ax · Ax = x · x for all x ∈ Rn.

We say that function f defined on Rn is radial if there is a function F on [0,∞) so
that f(x) = F (|x|). Equivalently, a function is radial if and only if f(Ox) = f(x) for all
orthogonal matrices O.

Corollary 1.11 Suppose that f is in L1 and f is radial, then f̂ is radial.

Proof. We fix ξ in Rn and choose O so that Oξ = (|ξ|, 0, . . . , 0). Since f ◦ O = f , we

have that f̂(ξ) = ̂f ◦O(ξ) = f̂(Oξ) = f̂(|ξ|, 0, . . . , 0).

We shall see that many operations that commute with translations can be expressed
as multiplication operators using the Fourier transform. One important operation which
commutes with translations is differentiation. Below we shall see how to display this
operation as a multiplication operator. As our first example of this principle, we will
see that the operation of translation by h (which surely commutes with translations)
corresponds to multiplying the Fourier transform by eih·ξ. We will use τh to denote
translation by h ∈ Rn, τhf(x) = f(x+ h).

Exercise 1.12 If f is a differentiable function on Rn, show that

∂

∂xj
τhf = τh

∂

∂xj
f.
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Proposition 1.13 If f is in L1(Rn), then

τ̂hf(ξ) = eih·ξf̂(ξ).

Also,

(eix·hf )̂ = τ−h(f̂). (1.14)

Proof. We change variables y = x+ h in the integral

τ̂hf(ξ) =
∫
f(x+ h)e−ix·ξ dx =

∫
f(y)e−i(y−h)·ξ dy = eih·ξf̂(ξ).

The proof of the second identity is just as easy and is left as an exercise.

Example 1.15 If I = {x : |xj| < 1}, then the Fourier transform of f = χI is easily
computed,

f̂(ξ) =
n∏
j=1

∫ 1

−1
eixjξj dxj =

n∏
j=1

2 sin ξj
ξj

.

In the next exercise, we will need to write integrals in polar coordinates. For our
purposes, this means that we have a Borel measure σ on the sphere, Sn−1 = {x′ ∈ Rn :
|x′| = 1} so that ∫

Rn
f(x) dx =

∫ ∞
0

∫
Sn−1

f(rx′) dσ(x′)rn−1 dr.

Exercise 1.16 If Br(x) = {y : |x − y| < r} and f = χB1(0), compute the Fourier

transform f̂ .
Hints: 1. Since f is radial, it suffices to compute f̂ at (0, . . . , r) for r > 0. 2.

Write the integral over the ball as an iterated integral where we integrate with respect to
x′ = (x1, . . . , xn−1) and then with respect to xn. 3. You will need to know the volume of a
ball, see exercise 1.30 below. 4. At the moment, we should only complete the computation
in 3 dimensions (or odd dimensions, if you are ambitious). In even dimensions, the
answer cannot be expressed in terms of elementary functions. See Chapter 13 for the
answer in even dimensions. One possible answer is

f̂(ξ) =
ωn−2

n− 1

∫ 1

−1
e−it|ξ|(1− t2)(n−1)/2 dt.

Here, ωn−2 is the surface area of the unit ball as defined in Exercise 1.30.
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Theorem 1.17 (Riemann-Lebesgue) If f is in L1(Rn), then

lim
|ξ|→∞

f̂(ξ) = 0.

Proof. We let X ⊂ L1(Rn) be the collection of functions f for which lim|ξ|→∞ f̂(ξ) = 0.
It is easy to see that X is a vector space. Thanks to Proposition 1.2, X is closed in
the L1-norm. According to Example 1.15, Proposition 1.13 and Proposition 1.6 the
characteristic function of every rectangle is in X. Since finite linear combinations of
characteristic functions of rectangles are dense in L1, X = L1(Rn).

Combining the Riemann-Lebesgue Lemma and Proposition 1.2, we can show that the
image of L1(Rn) under the Fourier transform is contained in C0(Rn), the continuous
functions on Rn which vanish at infinity. This containment is strict. We will see that
the Fourier transform of the surface measure on the sphere Sn−1 is in C0(Rn). It is a
difficult and unsolved problem to describe the image of L1 under the Fourier transform.

One of our goals is to relate the properties of f to those of f̂ . There are two general
principles which we will illustrate below. These principles are: If f is smooth, then f̂
decays at infinity and If f decays at infinity, then f̂ is smooth. We have already seen
several examples of these principles. Proposition 1.2 asserts that if f is in L1, which
requires decay at infinity, then f̂ is continuous. The Riemann-Lebesgue lemma tells us
that if f is in L1, and thus is smoother than the distributions to be discussed below,
then f̂ has limit 0 at infinity. The propositions below give further illustrations of these
principles.

Proposition 1.18 If f and xjf are in L1, then f̂ is differentiable and the derivative is
given by

i
∂

∂ξj
f̂ = x̂jf.

Furthermore, we have

‖ ∂f
∂ξj
‖∞ ≤ ‖xjf‖1.

Proof. Let h ∈ R and suppose that ej is the unit vector parallel to the xj-axis. Using
the mean-value theorem from calculus, one obtains that∣∣∣∣∣e−ix·(ξ+hej) − e−ix·ξh

∣∣∣∣∣ ≤ |xj|.
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Our hypothesis that xjf is in L1 allows to use the dominated convergence theorem to
bring the limit inside the integral to compute the partial derivative

∂f̂(ξ)

∂ξj
= lim

h→0

∫ e−ix·(ξ+hej) − e−ix·ξ

h
f(x) dx =

∫
(−ixj)e−ix·ξf(x) dx.

The estimate follows immediately from the formula for the derivative.

Note that the notation in the previous proposition is not ideal since the variable xj
appears multiplying f , but not as the argument for f . One can resolve this problem by
decreeing that the symbol xj stands for the multiplication operator f → xjf and the jth
component of x.

For the next proposition, we need an additional definition. We say f has a partial
derivative with respect to xj in the Lp sense if f is in Lp and there exists a function
∂f/∂xj so that

lim
h→0
‖1

h
(τhejf − f)− ∂f

∂xj
‖p = 0.

Proposition 1.19 If f is differentiable with respect to xj in the L1-sense, then

iξj f̂ =
∂̂f

∂xj
.

Furthermore, we have

‖ξj f̂‖∞ ≤
∥∥∥∥∥ ∂f∂xj

∥∥∥∥∥
1

.

Proof. Let h > 0 and let ej be a unit vector in the direction of the xj - axis. Since the
difference quotient converges in L1, we have∫

Rn
e−ix·ξ

∂f

∂xj
(x) dx = lim

h→0

∫
Rn
e−ix·ξ

f(x+ hej)− f(x)

h
dx.

In the last integral, we can make a change of variables y = x+hej to move the difference
operator to the exponential function∫

Rn

e−i(x−hej)·ξ − e−ix·ξ

h
f(x) dx.

Since the difference quotient of the exponential converges pointwise and boundedly in x
to iξje

−ix·ξ, we can use the dominated convergence theorem to obtain ∂̂f/∂xj = iξj f̂ .
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Finally, our last result on translation invariant operators involves convolution. Recall
that if f and g are measurable functions on Rn, then the convolution is defined by

f ∗ g(x) =
∫
Rn
f(x− y)g(y) dy

provided the integral on the right is defined for a.e. x.
Some of the basic properties of convolutions are given in the following exercises. The

solutions can be found in most real analysis texts.

Exercise 1.20 If f is in L1 and g is in Lp, with 1 ≤ p ≤ ∞, show that f ∗ g(x) is
defined a.e. and

‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

Exercise 1.21 Show that the convolution is commutative. If f ∗ g(x) is given by a
convergent integral, then

f ∗ g(x) = g ∗ f(x).

If f , g and h are in L1, show that convolution is associative

f ∗ (g ∗ h) = (f ∗ g) ∗ h.

Hint: Change variables.

Exercise 1.22 The map f → f ∗ g commutes with translations:

τh(f ∗ g) = (τhf) ∗ g.

Exercise 1.23 (Young’s convolution inequality) If the exponents p, q and s satisfy 1/s =
1/p+ 1/q − 1, then

‖f ∗ g‖s ≤ ‖f‖p‖g‖q.

The following proposition shows that the image of L1 under the Fourier transform
is an algebra under pointwise multiplication. This algebra is usually called the Wiener
algebra.

Proposition 1.24 If f and g are in L1, then

(f ∗ g)̂ = f̂ ĝ.

Proof. The proof is an easy application of Fubini’s theorem.
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We calculate a very important Fourier transform. The function W in the next propo-
sition gives (a multiple of) the Gaussian probability distribution.

Proposition 1.25 Let W (x) be defined by W (x) = exp(−|x|2/4). Then

Ŵ (ξ) = (
√

4π)n exp(−|ξ|2).

Proof. We use Fubini’s theorem to write Ŵ as a product of one-dimensional integrals∫
Rn
e−|x|

2/4e−ix·ξ dx =
n∏
j=1

∫
R
e−x

2
j/4e−ixjξj dxj.

To evaluate the one-dimensional integral, we use complex analysis. We complete the
square in the exponent for the first equality and then use Cauchy’s integral theorem to
shift the contour of integration in the complex plane. This gives∫

R
e−x

2/4e−ixξ dx = e−|ξ|
2
∫
R
e−(x

2
+iξ)2 dx = e−|ξ|

2
∫
R
e−|x|

2/4 dx =
√

4πe−|ξ|
2

.

Exercise 1.26 Carefully justify the shift of contour in the previous proof.

Exercise 1.27 Establish the formula∫
Rn
e−π|x|

2

dx = 1

which was used above. a) First consider n = 2 and write the integral over R2 in polar
coordinates.

b) Deduce the general case from this special case.

Exercise 1.28 In this exercise, we give an alternate proof of Proposition 1.25.
Let φ(ξ) =

∫
R e
−x2/4e−ix·ξ dx. Differentiate under the integral sign and use Proposition

1.19 to show that φ′(ξ) = −2ξφ(ξ). Use exercise 1.27 to compute φ(0). Thus φ is a
solution of the initial value problem{

φ′(ξ) = −2ξφ(ξ)
φ(0) = (4π)n/2

One solution of this initial-value problem is given by (4π)n/2e−ξ
2
.

To establish uniqueness, suppose that ψ is a solution of ψ′(ξ) = −2ξψ(ξ) and differ-
entiate to show that the ψ(ξ)e|ξ|

2
is constant.



1.2. THE FOURIER INVERSION THEOREM 9

In the next exercise, we use the Γ function, defined for Re s > 0 by

Γ(s) =
∫ ∞

0
e−tts

dt

t
.

Exercise 1.29 a) Use exercise 1.27 to find Γ(1/2).
b) Integrate by parts to show that Γ(s + 1) = sΓ(s). Conlude that Γ(n + 1) = n! for

n = 1, 2, 3, . . ..
c) Use the formula Γ(s + 1) = sΓ(s) to extend Γ to the range Re s > −1. Find

Γ(−1/2).

Exercise 1.30 a) Use the result of exercise 1.27 and polar coordinates to compute ωn−1,
the n− 1-dimensional measure of the unit sphere in Rn and show that

ωn−1 = σ(Sn−1) =
2πn/2

Γ(n/2)
.

b) Let m(E) denote the Lebesgue measure of a set in Rn. Use the result of part a)
and polar coordinates to find the volume of the unit ball in Rn. Show that

m(B1(0)) = ωn−1/n.

1.2 The Fourier inversion theorem

In this section, we show how to recover an L1-function from the Fourier transform. A
consequence of this result is that we are able to conclude that the Fourier transform
is injective. The proof we give depends on the Lebesgue differentiation theorem. We
will discuss the Lebesgue differentiation theorem in the chapter on maximal functions,
Chapter 4.

We begin with a simple lemma.

Lemma 1.31 If f and g are in L1(Rn), then∫
Rn
f̂(x)g(x) dx =

∫
Rn
f(x)ĝ(x) dx.

Proof. We consider the integral of f(x)g(y)e−iy·x on R2n. We use Fubini’s theorem to
write this as an iterated integral. If we compute the integral with respect to x first, we
obtain the integral on the left-hand side of the conclusion of this lemma. If we compute
the integral with respect to y first, we obtain the right-hand side.



10 CHAPTER 1. THE FOURIER TRANSFORM ON L1

We are now ready to show how to recover a function in L1 from its Fourier transform.

Theorem 1.32 (Fourier inversion theorem) If f is in L1(Rn) and we define ft for t > 0
by

ft(x) =
1

(2π)n

∫
Rn
e−t|ξ|

2

eix·ξf̂(ξ) dξ,

then
lim
t→0+
‖ft − f‖1 = 0

and
lim
t→0+

ft(x) = f(x), a.e. x.

Proof. We consider the function g(x) = e−t|x|
2+iy·x. By Proposition 1.25, (1.7) and

(1.14), we have that

ĝ(x) = (2π)n(4πt)−n/2 exp(−|y − x|2/4t).

Thus applying Lemma 1.31 above, we obtain that

1

(2π)n

∫
Rn
f̂(ξ)eix·ξe−t|ξ|

2

dξ =
∫
Rn
f(x)(4πt)−n/2 exp(−|y − x|

2

4t
) dx.

Thus, ft(x) is the convolution of f with the Gaussian and it is known that ft → f
in L1. That ft converges to f pointwise is a standard consequence of the Lebesgue
differentiation theorem. A proof will be given in Chapter 5

It is convenient to have a notation for the inverse operation to the Fourier transform.
The most common notation is f̌ . Many properties of the inverse Fourier transform follow
easily from the properties of the Fourier transform and the inversion. The following
simple formulas illustrate the close connection:

f̌(x) =
1

(2π)n
f̂(−x) (1.33)

f̌(x) =
1

(2π)n
¯̂̄
f(x). (1.34)

If f̂ is in L1, then the limit in t in the Fourier inversion theorem can be brought inside
the integral (by the dominated convergence theorem) and we have

f̌(x) =
1

(2π)n

∫
Rn
f(ξ)eix·ξ dξ.

Exercise 1.35 Prove the formulae (1.33) and (1.34) above.



Chapter 2

Tempered distributions

In this chapter, we introduce the Schwartz space. This is a space of well-behaved functions
on which the Fourier transform is invertible. One of the main interests of this space
is that other interesting operations such as differentiation are also continuous on this
space. Then, we are able to extend differentiation and the Fourier transform to act on
the dual space. This dual space is called the space of tempered distributions. The word
tempered means that in a certain sense, the distributions do not grow too rapidly at
infinity. Distributions have a certain local regularity–on a compact set a distribution
can be obtained by differentiating a continuous function finitely many times. Given
the connection between the local regularity of a function and the growth of its Fourier
transform, it seems likely that any space on which the Fourier transform acts should have
some restriction on the growth at infinity.

2.1 Test functions

The main notational complication of this chapter is the use of multi-indices. A multi-
index is an n-tuple of non-negative integers, α = (α1, . . . , αn). For a multi-index α, we
let

xα = xα1
1 . . . xαnn .

We also use this notation for partial derivatives,

∂α

∂xα
=

∂α1

∂xα1
1

. . .
∂αn

∂xαnn
.

Several other related notations are

|α| = α1 + . . .+ αn and α! = α1! . . . αn!.

11
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Note that the definition of the length of α, |α|, appears to conflict with the standard
notation for the Euclidean norm. This inconsistency is firmly embedded in analysis and
I will not try to change it.

Below are a few exercises which illustrate the use of this notation.

Exercise 2.1 The multi-nomial theorem.

(x1 + . . .+ xn)k =
∑
|α|=k

|α|!
α!

xα.

Exercise 2.2 Show that

(x+ y)α =
∑

β+γ=α

α!

β!γ!
xβyγ.

Exercise 2.3 The Leibniz rule. If f and g have continuous derivatives of order up to k
on Rn and α is a multi-index of length k, then

∂α(fg)

∂xα
=

∑
β+γ=α

α!

β!γ!

∂βf

∂xβ
∂γg

∂xγ
. (2.4)

Exercise 2.5 Show for each multi-index α,

∂α

∂xα
xα = α!.

More generally, show that
∂β

∂xβ
xα =

α!

(α− β)!
xα−β.

The right-hand side in this last equation is defined to be zero if any component of α− β
is negative.

To define the Schwartz space, we define a family of norms on the collection of C∞(Rn)
functions which vanish at ∞. For each pair of multi-indices α and β, we let

ραβ(f) = sup
x∈Rn

|xα∂
βf

∂xβ
(x)|.

We say that a function f is in the Schwartz space on Rn if ραβ(f) < ∞ for all α and
β. This space is denoted by S(Rn). Recall that a norm was defined in Chapter 1. If
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a function ρ : V → [0,∞) satisfies ρ(f + g) ≤ ρ(f) + ρ(g) for all f and g in V and
ρ(λf) = |λ|ρ(f), then ρ is called a semi-norm on the vector space V .

The Schwartz space is given a topology using the norms ραβ in the following way. Let
{ρj}∞j=1 be an arbitrary ordering of the norms ραβ. Let ρ̄j = min(ρj, 1) and then define

ρ(f − g) =
∞∑
j=1

2−j ρ̄j(f − g).

Lemma 2.6 The function ρ is a metric on S(Rn) and S is complete in this metric. The
vector operations (f, g)→ f + g and (λ, f)→ λf are continuous.

Exercise 2.7 Prove Lemma 2.6.

Note that our definition of the metric involves an arbitrary ordering of the norms ραβ.
One consequence of the next proposition, Proposition 2.8 is that the topology on S(Rn)
does not depend on the ordering of the semi-norms.

Proposition 2.8 A set O is open in S(Rn) if and only if for each f ∈ O, there are
finitely many semi-norms ραiβi and ε > 0, i = 1, . . . , N so that

{g : ραiβi(f − g) < ε, i = 1, . . . , N} ⊂ O.

We will not use this proposition, thus the proof is left as an exercise.

Exercise 2.9 Prove Proposition 2.8 Hint: Read the proof of Proposition 2.11.

Exercise 2.10 The Schwartz space is an example of a Fréchet space. A Fréchet space
is a vector space X whose topology is given by a countable family of semi-norms {ρj}
using a metric ρ(f − g) defined by ρ(f − g) =

∑
2−j ρ̄j(f − g). The space X is Fréchet

if the resulting topology is Hausdorff and if X is complete in the metric ρ. Show that
S(Rn) is a Fréchet space. Hint: If one of the semi-norms is a norm, then it is easy to
see the resulting topology is Hausdorff. In our case, each semi-norm is a norm.

Proposition 2.11 A linear map T from S(Rn) to S(Rn) is continuous if and only if for
each semi-norm ραβ, there exists a finite collection of semi-norms {ραiβi : i = 1 . . . , N}
and a constant C so that

ραβ(Tf) ≤ C
N∑
i=1

ραiβi(f).

A map u from S(Rn) to a normed vector space V is continuous if and only if there
exists a finite collection of semi-norms {ραiβi : i = 1 . . . , N} and a constant C so that

‖u(f)‖V ≤ C
n∑
i=1

ραiβi(f).
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Proof. We first suppose that T : S → S is continuous. Let the given semi-norm ραβ =
ρN under the ordering used to define the metric. Then T is continuous at 0 and hence
given ε = 2−N−1, there exists δ > 0 so that if ρ(f) < δ, then ρ(Tf) < 2−N−1. We may
choose M so that

∑∞
j=M+1 2−j < δ/2. Given f , we set

f̃ =
δ

2

f∑M
j=1 2−jρj(f)

.

The function f̃ satisfies ρ(f̃) < δ and thus ρ(T f̃) < 2−N−1. This implies that ρN(T f̃) <
1/2. Thus, by the homogeneity of ρN and T , we obtain

ρN(Tf) ≤ 1

δ

M∑
j=1

ρj(f).

Now suppose that the second condition of our theorem holds and we verify that the
standard ε − δ formulation of continuity holds. Since the map T is linear, it suffices to
prove that T is continuous at 0. Let ε > 0 and then choose N so that 2−N < ε/2. For
each j = 1, . . . , N , there exists Cj and Nj so that

ρj(Tf) ≤ Cj

Nj∑
k=1

ρk(f).

If we set N0 = max(N1, . . . , Nj), and C0 = max(C1, . . . , CN), then we have

ρ(Tf) ≤
N∑
j=1

2−jρj(Tf) +
ε

2

≤ C0

N∑
j=1

2−j
N0∑
k=1

ρk(f)

+
ε

2
. (2.12)

Now we define δ by δ = 2−N0 min(1, ε/(2N0C0)). If we have ρ(f) < δ, then we have
ρ̄k(f) < 1 and ρk(f) < ε/(2N0C0) for k = 1, . . . , N0. Hence, we have ρk(f) < ε/(2N0C0)
for k = 1, . . . , N0. Substituting this into the inequality (2.12) above gives that ρ(Tf) < ε.

The proof of the second part is simpler and is left as an exercise.

Exercise 2.13 Show that the map f → ∂f/∂xj is continuous on S(Rn).

Exercise 2.14 Show that the map f → xjf is continuous on S(Rn).
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Finally, it would be embarrassing to discover that the space S(Rn) contains only the
zero function. The following exercise implies that S(Rn) is not trivial.

Exercise 2.15 a) Let

φ(t) =

{
exp(−1/t), t > 0
0, t ≤ 0.

Show that φ(t) is in C∞(R). That is, φ has derivatives of all orders on the real line.
Hint: Show by induction that φ(k)(t) = P2k(1/t)e

−1/t for t > 0 where P2k is a polynomial
of order 2k.

b) Show that φ(1 − |x|2) is in S(Rn). Hint: This is immediate from the chain rule
and part a).

Lemma 2.16 If 1 ≤ p <∞, then S(Rn) is dense in Lp(Rn).

Proof. Let φ be the function defined in part b) of exercise 2.15 and then define η =
φ/(

∫
φ dx) so that

∫
Rn η(x) dx = 1. Define ηε(x) = ε−nη(x/ε) and given f in Lp(Rn), set

fε = ηε ∗ f . It is known that if 1 ≤ p <∞, then

lim
ε→0+

‖ηε ∗ f − f‖p = 0, 1 ≤ p <∞.

See [29].
Finally, let

fε1,ε2(x) = φ(ε2x)(ηε1 ∗ f(x).

Since φ(0) = 1, we can choose ε1 and then ε2 small so that ‖f − fε1,ε2‖p is as small as we
like. Since fε1,ε2 is infinitely differentiable and compactly supported, we have proven the
density of S(Rn) in Lp.

Remark. It is easy to see that Lemma 2.16 fails for p = ∞. In fact, the closure of the
Schwartz functions in L∞ will be the class of continuous functions which have a limit of
zero at infinity.

2.2 Tempered distributions

We define the space of tempered distributions, S ′(Rn) as the dual of S(Rn). If V is a
topological vector space, then the dual is the vector space of continuous linear functionals
on V . We give some examples of tempered distributions.



16 CHAPTER 2. TEMPERED DISTRIBUTIONS

Example 2.17 Each f ∈ S gives a tempered distribution by the formula

g → uf (g) =
∫
Rn
f(x)g(x) dx.

In the following example, we introduce the standard notation 〈(〉x) = (1 + |x|2)1/2.

Example 2.18 If f is in Lp(Rn) for some p, 1 ≤ p ≤ ∞, then we may define a tempered
distribution uf by

uf (g) =
∫
Rn
f(x)g(x) dx

To see this, note that if N is a non-negative integer, then 〈x〉 is bounded by a linear
combination of the norms, ρα0 for |α| ≤ N . Thus, for f ∈ S(Rn), we have that there
exists a constant C = C(n,N) so that

(
∫
|f(x)|p dx)1/p ≤ C

∑
α≤N

ρα0(f)(
∫
Rn
〈x〉−pN dx)1/p.

If we fix N so that pN > n, then the integral on the right-hand side of the inequality
(2.19) is finite. Thus, we have there is a constant C so that

‖f‖p ≤ C(n, p)
∑
|α|≤N

ρα0(f). (2.19)

Note that for p = ∞, the estimate ‖f‖∞ ≤ ρ00(f) is obvious. Now for f is in Lp, we
have |uf (g)| ≤ ‖f‖p‖g‖p′ from Hölder’s inequality. Now the inequality (2.19) applied to
g and the Lp

′
norm and Proposition 2.11 imply that uf is continuous.

Exercise 2.20 For 1 ≤ p ≤ ∞ and k ∈ R we may define a weighted Lp-space Lpk(R
n) =

{f : 〈x〉f(x) ∈ Lp} with the norm

‖f‖Lp
k

=
(∫

Rn
|f(x)|p〈x〉pk dx

)1/p

.

Show that if f ∈ Lpk for some p and k then uf (g) =
∫
fg dx defines a tempered

distribution.

Exercise 2.21 Suppose that f is a locally integrable function and that there are constants
C and N so that ∫

{x:|x|<R}
|f(x)| dx ≤ CRN , R > 1.

Show that f defines a tempered distribution.
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Exercise 2.22 Show that the map f → uf from S(Rn) into S ′(Rn) is injective.

Example 2.23 The delta function δ is the tempered distribution given by

δ(f) = f(0).

Example 2.24 More generally, if µ is any finite Borel measure on Rn, we have a dis-
tribution uµ defined by

uµ(f) =
∫
f dµ.

This is a tempered distribution because

|uµ(f)| ≤ |µ|(Rn)ρ00(f).

Example 2.25 Any polynomial P gives a tempered distribution by

uP (f) =
∫
P (x)f(x) dx.

Example 2.26 For each multi-index α, a distribution is given by

δ(α)(f) =
∂αf(0)

∂xα
.

2.3 Operations on tempered distributions

If T is a continuous linear map on S(Rn) and u is a tempered distribution, then f →
u(Tf) is also a distribution. The map u → u ◦ T is called the transpose of T and is
sometimes written as T tu = u ◦ T . This construction is an important part of extending
familiar operations on functions to tempered distributions. Our first example considers
the map

f → ∂αf

∂xα

which is clearly continuous on the Schwartz space. Thus if u is a distribution, then we
can define a new distribution by

v(f) = u(
∂αf

∂xα
).
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If we have a distribution u which is given by a Schwartz function f , we can integrate by
parts and show that

(−1)αuf (
∂αg

∂xα
) = u∂αf/∂xα(g).

Thus we will define the derivative of a distribution u by the formula

∂αu

∂xα
(g) = (−1)|α|u(

∂αg

∂xα
).

This extends the definition of derivative from smooth functions to distributions. When
we say extend the definition of an operation T from functions to distributions, this means
that we have

Tuf = uTf

whenever f is a Schwartz function.
This definition of the derivative on distributions is an example of a general procedure

for extending maps from functions to distributions. Given a map T : S(Rn) → S(Rn),
we can extend T to S ′(Rn) if if we can find a (formal) transpose of T , T t, that satisfies∫

Rn
Tfg dx =

∫
Rn
fT tg dx

for all f, g ∈ S(Rn). Then if T t is continuous on S(Rn), we can define T on S ′(Rn) by
Tu(f) = u(T tf).

Exercise 2.27 Show that if α and β are multi-indices and u is a tempered distribution,
then

∂α

∂xα
∂β

∂xβ
u =

∂β

∂xβ
∂α

∂xα
u.

Hint: A standard result of vector calculus tells us when partial derivatives of functions
commute.

Exercise 2.28 Suppose that f is in Lp for some p with 1 ≤ p ≤ ∞ and that the partial
derivative ∂f/∂xj exists in the Lp sense. Let uf be the tempered distribution give by the
function f and show that

∂

∂xj
uf = u∂f/∂xj .

Exercise 2.29 Let H(t) be the Heaviside function on the real line. Thus H(t) = 1 if
t > 0 and H(t) = 0 if t < 0. Find the distributional derivative of H. That is find H ′(φ)
for φ in S.
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We give some additional examples of extending operations from functions to distribu-
tions. If P is a polynomial, then we f → Pf defines a continuous map on the Schwartz
space. We can define multiplication of a distribution by a polynomial by Pu(f) = u(Pf).

Exercise 2.30 Show that this definition extends to ordinary product of functions in the
sense that if f is a Schwartz function,

uPf = Puf .

Exercise 2.31 Show that if f and g are in S(Rn), then fg is in S(Rn) and that the
map

f → fg

is continuous.

Exercise 2.32 Show that 1/x defines a distribution on R by

u(f) = lim
ε→0+

∫
{x:|x|>ε}

f(x)
1

x
dx.

This way of giving a value to an integral which is not defined as an absolutely convergent
integral is called the principal value of the integral. Hint: The function 1/x is odd, thus
if we consider

∫
{ε<|x|<1} f(x)/x dx, we can subtract a constant from f without changing

the value of the integral.

Exercise 2.33 Let u(f) = limR→∞
∫ R
∞ f(t)et dt, provided the limit exists. Is u a tempered

distribution?

Exercise 2.34 Let u(f) = limR→∞
∫ R
−∞ e

t sin(et) dt, provided the limit exists. Is the map
u a tempered distribution?

Next we consider the convolution of a distribution and a test function. If f and g are
in the Schwartz class, we have by Fubini’s theorem that∫

Rn
f ∗ g(x)h(x) dx =

∫
Rn
f(y)

∫
Rn
h(x)g̃(y − x) dx dy.

The reflection of g, g̃ is defined by g̃(x) = g(−x). Thus, we can define the convolution
of a tempered distribution u and a test function g, g ∗ u by

g ∗ u(f) = u(f ∗ g̃).

This will be a tempered distribution thanks to exercise 2.36 below.
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2.4 The Fourier transform

Proposition 2.35 The Fourier transform is a continuous linear map from S(Rn) to
S(Rn) with a continuous inverse, f → f̌ .

Proof. We use the criterion of Proposition 2.11 to show that the Fourier transform is
continuous. If we consider the expression in a semi-norm, we have

ξα
∂β

∂ξβ
f̂(ξ) = (

∂α

∂xα
xβf )̂

where we have used Propositions 1.18 and 1.19. By the Leibniz rule in (2.4), we have

(
∂α

∂xα
xβf )̂ =

∑
γ+δ=α

α!

γ!δ!
((
∂γ

∂xγ
xβ)

∂δ

∂xδ
f )̂.

Hence, using the observation of (2.19) and Proposition 1.18, we have that there is a
constant C = C(n) so that

ραβ(f̂) ≤ C
∑

λ≤β,|γ|≤|α|+n+1

ργλ(f).

Now, Proposition 2.11 implies that the map f → f̂ is continuous. In addition, as f̂ is
in S(Rn) and hence in L1, we may use the Fourier inversion theorem, Theorem 1.32 to

obtain that
ˇ̂
f = f .

Given (1.34) or (1.33) the continuity of f → f̌ on S(Rn) is immediate from the
continuity of f → f̂ and it is clear that f̌ lies in the Schwartz space for f ∈ S(Rn).
Then, we can use (1.34) and then the Fourier inversion theorem for L1, Theorem 1.32,
to show

ˆ̌f=
1

(2π)n

¯̂̄
¯̂̄
f =

¯̂̌
f̄ = f.

Exercise 2.36 Show that if f and g are in S(Rn), then f ∗ g ∈ S(Rn). Furthermore,
show that f → f ∗ g is continuous on S. Hint: One way to do this is to use the Fourier
transform and reduce to a problem about pointwise products.

Next, recall the identity ∫
f̂(x)g(x) dx =

∫
f(x)ĝ(x) dx
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of Lemma 1.31 which holds if f and g are Schwartz functions. Using this identity, it is
clear that we want to define the Fourier transform of a tempered distribution by

û(g) = u(ĝ).

Then the above identity implies that if uf is a distribution given by a Schwartz function,
or an L1 function, then

uf̂ (g) = ûf (g).

Thus, we have defined a map which extends the Fourier transform.
In a similar way, we can define ǔ for a tempered distribution u by ǔ(f) = u(f̌).

Theorem 2.37 The Fourier transform is an invertible linear map on S ′(Rn).

Proof. We know that f → f̌ is the inverse of the map f → f̂ on S(Rn). Thus, it is easy
to see that u→ ǔ is an inverse to u→ û on S ′(Rn).

Exercise 2.38 If f is L1, we have two ways to talk about the Fourier transform of f . We
defined f̂ as the Fourier transform of an L1 function in Chapter 1 and in this chapter,
we defined the Fourier transform of the distribution uf given by uf (g) =

∫
fg dx. Show

that
ûf = uf̂ .

Exercise 2.39 Show that if f is in S, then f has a derivative in the L1-sense.

Exercise 2.40 Show from the definitions that if u is a tempered distribution, then

(
∂α

∂xα
u)̂ = (iξ)αû

and that

((−ix)αu)̂ = (
∂αû

∂ξα
).

We define convergence of distributions. We will say that a sequence of distributions
{uj} converges to u in S ′(Rn) if

lim
j→∞

uj(f) = u(f), for every f ∈ S(Rn).

Exercise 2.41 If fj is a sequence of functions and fj converges in Lp(Rn to f , show
that the distributions ufj given by fj converge to uf .
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Exercise 2.42 Let uj be a sequence of L1(Rn) functions and suppose that ûj are uni-
formly bounded and converge pointwise a.e. to a function v. Show that we may define a
tempered distribution u by u(f) = limj→∞ uj(f) and that û(f) =

∫
fv dx.

Exercise 2.43 Let u be the temperered distribution defined in Exercise 2.32,

u(f) = lim
ε→0+

∫
|x|>ε

f(t)
dt

t
.

Find û. Hint: Consider the sequence of function fj(t) = 1
t
χ{1/j<|t|<j}(t) and use the

previous exercise.

Exercise 2.44 (Poisson summation formula) If f is in S(R), show that we have

∞∑
k=−∞

f(x+ 2πk) =
1

2π

∞∑
k=−∞

f̂(k)eikx.

Hint: The standard proof requires basic facts about Fourier series.
b) Show that P =

∑∞
j=−∞ δj defines a tempered distribution and that

P̂ = 2π
∞∑

k=−∞
δ2πk.

2.5 More distributions

In addition to the tempered distributions discussed above, there are two more spaces of
distributions that are commonly studied. The (ordinary) distributions D′(Rn) and the
distributions of compact support, E ′(Rn). The D′ is defined as the dual of D(Rn), the
set of functions which are infinitely differentiable and have compact support on Rn. The
space E ′ is the dual of E(Rn), the set of functions which are infinitely differentiable on
Rn.

Since we have the containments,

D(Rn) ⊂ S(Rn) ⊂ E(Rn),

we obtain the containments

E ′(Rn) ⊂ S ′(Rn) ⊂ D′(Rn).

To see this, observe that (for example) each tempered distribution defines an ordinary
distribution by restricting the domain of u from S to D.
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The space D′(Rn) is important because it can also be defined on open subsets of Rn

or on manifolds. The space E ′ is interesting because the Fourier transform of such a
distribution will extend holomorphically to Cn. The books of Laurent Schwartz [16, 17,
16] are still a good introduction to the subject of distributions.
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Chapter 3

The Fourier transform on L2.

In this section, we prove that the Fourier transform acts on L2 and that f → (2π)−n/2f̂
is an isometry on this space. Each L2 function gives a tempered distribution and thus
its Fourier transform is defined. Thus, the new result is to prove the Plancherel identity
which asserts that f → (2π)−n/2f̂ is an isometry.

3.1 Plancherel’s theorem

Proposition 3.1 If f and g are in the Schwartz space, then we have∫
Rn
f(x)ḡ(x) dx =

1

(2π)n

∫
Rn
f̂(ξ)¯̂g(ξ) dξ.

Proof. According to the Fourier inversion theorem, Theorem 1.32,

ḡ =
1

(2π)n
ˆ̄̂g.

Thus, we can use the identity (1.31) of Chapter 1 to conclude the Plancherel identity for
Schwartz functions.

Theorem 3.2 (Plancherel) If f is in L2, then f̂ is in L2 and we have∫
|f(x)|2 dx =

1

(2π)n

∫
|f̂(ξ)|2 dξ.

Furthermore, the map f → f̂ is invertible.

25
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Proof. According to Lemma 2.16 we may approximate f by a sequence of functions {fj}
taken from the Schwartz class, {fj}. Applying the previous proposition with f = g =

fi − fj we conclude that the sequence {f̂j} is Cauchy in L2. Since L2 is complete, the
sequence {fj} has a limit, F . Since fj → F in L2 we also have that {fj} converges to
F as tempered distributions. To see this, we use the definition of the Fourier transform,
and then that {fj} converges in L2 to obtain that

uf̂ (g) =
∫
fĝ dx = lim

i→∞

∫
fiĝ dx =

∫
f̂ig dx =

∫
Fg dx.

Thus f̂ = F . The identity holds for f and f̂ since it holds for each fj.
We know that f has an inverse on S, f → f̌ . The Plancherel identity tells us this

inverse extends continuously to all of L2. It is easy to see that this extension is still an
inverse on L2.

Recall that a Hilbert space H is a complete normed vector space where the norm
comes from an inner product. An inner product is a map 〈·, ·〉 : H × H → C which
satisfies

〈x, y〉 = 〈y, x〉, if x, y ∈ H
〈λx, y〉 = λ〈x, y〉, x, y ∈ H, λ ∈ C
〈x, x〉 ≥ 0, x ∈ H
〈x, x〉 = 0, if and only if x = 0

Exercise 3.3 Show that the Plancherel identity holds if f takes values in finite dimen-
sional Hilbert space. Hint: Use a basis.

Exercise 3.4 Show by example that the Plancherel identity may fail if f does not take
values in a Hilbert space. Hint: The characteristic function of (0, 1) ⊂ R should provide
an example. Norm the complex numbers by the ∞-norm, ‖z‖ = max(Re z, Im z).

Exercise 3.5 (Heisenberg inequality.) If f is a Schwartz function, show that we have
the inequality:

n
∫
Rn
|f(x)|2 dx ≤ 2‖xf‖2‖∇f‖2.

Hint: Write ∫
Rn
n|f(x)|2 dx =

∫
Rn

(divx)|f(x)|2 dx

and integrate by parts. Recall that the gradient operator ∇ and the divergence operator,
div are defined by

∇f = (
∂f

∂x1

, . . . ,
∂f

∂xn
) and div(f1, . . . , fn) =

n∑
j=1

∂fj
∂xj

.
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This inequality is a version of the Heisenberg uncertainty principle in quantum me-
chanics. The function |f(x)|2 is a probability density and thus has integral 1. The integral
of |xf |2 measures the uncertainty of the position of the particle represented by f and the
integral of |∇f | measures the uncertainty in the momentum. The inequality gives a lower
bound on the product of the uncertainty in position and momentum.

If we use Plancherel’s theorem and Proposition 1.19, we obtain∫
Rn
|∇f |2 dx = (2π)−n

∫
Rn
|ξf̂(ξ)|2 dξ.

If we use this to replace ‖∇f‖2 in the above inequality, we obtain a quantitative version
of the statement “We cannot have f and f̂ concentrated near the origin.”

3.2 Multiplier operators

If σ is a tempered distribution, then σ defines a multiplier operator Tσ by

(Tσf )̂ = σf̂ .

The function m is called the symbol of the operator. It is clear that Tm is maps S to S ′.
Our main interest is when σ is a locally integrable function. Such a function will be

a tempered distribution if there are constants C and N so that∫
BR(0)

|σ(ξ)| dξ ≤ C(1 +RN), for all R > 1.

See exercise 2.21.

Exercise 3.6 Is this condition necessary for a positive function to give a tempered dis-
tribution?

There is a simple, but extremely useful condition for showing that a multiplier oper-
ator is bounded on L2.

Theorem 3.7 Suppose Tσ is a multiplier operator given by a measurable function m.
The operator Tσ is bounded on L2 if and only if σ is in L∞. Furthermore, ‖Tσ‖ = ‖σ‖∞.

Proof. If σ is in L∞, then Plancherel’s theorem implies the inequality

‖Tσf‖2 ≤ ‖σ‖∞‖f‖2.

Now consider Et = {ξ : |σ(ξ)| > t} and suppose this set has positive measure. If we
choose Ft ⊂ Et with 0 < m(Ft) <∞, then we have

‖Tm(χ̌Ft)‖2 ≥ t‖χ̌Ft‖2.

Hence, ‖Tσ‖L(L2) ≥ ‖σ‖∞.
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Exercise 3.8 (Open.) Find a necessary and sufficient condition for Tm to be bounded
on Lp.

Exercise 3.9 Fix h ∈ Rn and suppose that τhf(x) = f(x + h). Show that τh is a
continuous map on S(Rn) and find an extension of this operator to S ′(Rn).

Exercise 3.10 Suppose that Tm : S(Rn) → S ′(Rn). Show that Tm commutes with
translations.

Example 3.11 If s is a real number, then we can define Js, the Bessel potential operator
of order s by

(Jsf )̂ = 〈ξ〉−sf̂ .

If s ≥ 0, then Theorem 3.7 implies that Jsf lies in L2 when f is L2. Furthermore, if α
is multi-index of length |α| ≤ s, then we have∥∥∥∥∥ ∂α∂xαJsf

∥∥∥∥∥
L2

≤ C‖f‖2.

The operator f → ∂α

∂xα
Jsf is a multiplier operator with symbol (iξ)α/〈ξ〉s, which is

bounded. Since the symbol is bounded by 1, we know that this operator is bounded on L2.

3.3 Sobolev spaces

The Example 3.11 motivates the following definition of the Sobolev space L2,s. Sobolev
spaces are so useful that each mathematician has his or her own notation for them. Some
of the more common ones are Hs, W s,2 and B2,s

2 .

Definition 3.12 The Sobolev space L2,s(Rn) is the image of L2(Rn) under the map Js.
The norm is given by

‖Jsf‖2,s = ‖f‖2

or, since Js ◦ J−s is the identity, we have

‖f‖2,s = ‖J−sf‖2.

Note that if s ≥ 0, then L2
s ⊂ L2 as observed in Example 3.11. For s = 0, we have

L2
0 = L2. For s < 0, the elements of the Sobolev space are tempered distributions, which

are not, in general, given by functions. The following propositions are easy consequences
of the definition and the Plancherel theorem, via Theorem 3.7.
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Proposition 3.13 If s ≥ 0 is an integer, then a function f is in the Sobolev space L2,s

if and only if f and all its derivatives of order up to s are in L2.

Proof. If f is in the Sobolev space L2,s, then f = Js ◦ J−sf . Using the observation of
Example 3.11 that

f → ∂α

∂xα
Jsf

is bounded on L2 when |α| ≤ s, we conclude that

‖ ∂
α

∂xα
f‖2 = ‖ ∂

α

∂xα
Js ◦ J−sf‖2 ≤ C‖J−sf‖2 = ‖f‖2,s.

If f has all derivatives of order up to s in L2, then we have that there is a finite
constant C so that

〈ξ〉s|f̂(ξ)| ≤ C(1 +
n∑
j=1

|ξj|s)|f̂(ξ)|.

Since each term on the right is in L2, we have f is in the Sobolev space, L2,s(Rn).

The characterization of Sobolev spaces in the above theorem is the more standard
definition of Sobolev spaces. It is more convenient to define a Sobolev spaces for s
a positive integer as the functions which have (distributional) derivatives of order less
or equal s in L2 because this definition extends easily to give Sobolev spaces on open
subsets of Rn and Sobolev spaces based on Lp. The definition using the Fourier transform
provides a nice definition of Sobolev spaces when s is not an integer.

Proposition 3.14 If s < 0 and −|α| ≥ s, then ∂αf/∂xα is in L2,s and

‖∂
αf

∂xα
‖2,s ≤ ‖f‖2.

Proof. We have

(1 + |ξ|2)s/2(
∂αf

∂ξα
)̂(ξ) = [(iξ)α(1 + |ξ|2)s/2)]f̂(ξ)).

If |α| ≤ −s, then the factor in square brackets on the right is a bounded multiplier and
hence if f is in L2, then the left-hand side is in L2. Now Plancherel’s theorem tells us
that ∂αf/∂xα is in the Sobolev space L2,s.
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Exercise 3.15 Show that for all s in R, the map

f → ∂αf

∂xα

maps L2,s → L2,s−|α|.

Exercise 3.16 Show that L2,−s is the dual of L2,s. More precisely, show that if λ : L2,s →
C is a continuous linear map, then there is a distribution u ∈ L2,−s so that

λ(f) = u(f)

for each f ∈ S(Rn). Hint: This is an easy consequence of the theorem that all continuous
linear functionals on the Hilbert space L2 are given by f →

∫
fḡ.



Chapter 4

Interpolation of operators

In the section, we will say a few things about the theory of interpolation of operators.
For a more detailed treatment, we refer the reader to the book of Stein and Weiss [21]
and the book of Bergh and Löfstrom [3].

An interpolation theorem is the following type of result. If T is a linear map which is
bounded 1 on X0 and X1, then T is bounded on Xt for t between 0 and 1. It should not
be clear what we mean by “between” when we are talking about pairs of vector spaces.
In the context of Lp spaces, Lq is between Lp and Lr will mean that q is between p and
r.

For these results, we will work on a pair of σ-finite measure spaces (M,M, µ) and
(N,N , ν).

4.1 The Riesz-Thorin theorem

We begin with the Riesz-Thorin convexity theorem.

Theorem 4.1 Let pj, qj, j = 0, 1 be exponents in the range [1,∞] and suppose that
p0 < p1. If T is a linear operator defined (at least) on simple functions in L1(M) into
measurable functions on N that satisfies

‖Tf‖qj ≤ Aj‖f‖pj .

1A linear map T : X → Y is bounded as a map from the normed vector space X to Y if the inequality
‖Tf‖Y ≤ C‖f‖X holds. The least constant C for which this inequality holds is called the operator norm
of T .

31
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If we define pt and qt by

1

pt
=

1− t
p0

+
t

p1

and
1

qt
=

1− t
q0

+
t

q1

we will have that T extends to be a bounded operator from Lpt to Lqt:

‖Tf‖qt ≤ At‖f‖pt .

The operator norm, At satisfies At ≤ A1−t
0 At1.

Before giving the proof of the Riesz-Thorin theorem, we look at some applications.

Proposition 4.2 (Hausdorff-Young inequality) The Fourier transform satisfies for 1 ≤
p ≤ 2

‖f̂‖p′ ≤ (2π)2n(1− 1
p

)‖f‖p.

Proof. This follows by interpolating between the L1-L∞ result of Proposition 1.2 and
Plancherel’s theorem, Theorem 3.2.

The next result appeared as an exercise when we introduced convolution.

Proposition 4.3 (Young’s convolution inequality) If f ∈ Lp(Rn) and g ∈ Lq(Rn), 1 ≤
p, q, r ≤ ∞ and

1

r
=

1

p
+

1

q
− 1,

then
‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

Proof. We fix p, 1 ≤ p ≤ ∞ and then will apply Theorem 4.1 to the map g → f ∗ g.
Our endpoints are Hölder’s inequality which gives

|f ∗ g(x)| ≤ ‖f‖p‖g‖p′

and thus g → f ∗g maps Lp
′
(Rn) to L∞(Rn) and the simpler version of Young’s inequality

which tells us that if g is in L1, then

‖f ∗ g‖p ≤ ‖f‖p‖g‖1.

Thus g → f ∗ g also maps L1 to Lp. Thus, this map also takes Lqt to Lrt where

1

qt
=

1− t
1

+ t(1− 1

p
) and

1

rt
=

1− t
p

+
t

∞
.
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If we subtract the definitions of 1/rt and 1/qt, then we obtain the relation

1

rt
− 1

qt
= 1− 1

p
.

The condition q ≥ 1 is equivalent with t ≥ 0 and r ≥ 1 is equivalent with the condition
t ≤ 1. Thus, we obtain the stated inequality for precisely the exponents p, q and r in the
hypothesis.

Exercise 4.4 The simple version of Young’s inequality used in the proof above can be
proven directly using Hölder’s inequality. A proof can also be given which uses the Riesz-
Thorin theorem. To do this, use Tonelli’s and then Fubini’s theorem to establish the
inequality

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

The other endpoint is Hölder’s inequality:

‖f ∗ g‖1 ≤ ‖f‖1‖g‖∞.

Then, apply Theorem 4.1 to the map g → f ∗ g.

Below is a simple, useful result that is a small generalization of the simple version of
Young’s inequality.

Exercise 4.5 a) Suppose that K : Rn ×Rn → C is measurable and that∫
Rn
|K(x, y)| dy ≤M∞

and ∫
Rn
|K(x, y)| dx ≤M1.

Show that
Tf(x) =

∫
Rn
K(x, y)f(y) dy

defines a bounded operator T on Lp and

‖Tf‖p ≤M
1/p
1 M1/p′

∞ ‖f‖p.

Hint: Show that M1 is an upper bound for the operator norm on L1 and M∞ is an upper
bound for the operator norm on L∞ and then interpolate with the Riesz-Thorin Theorem,
Theorem 4.1.

b) Use the result of part a) to provide a proof of Young’s convolution inequality

‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

To do this, write f ∗ g(x) =
∫
Rn f(x− y)g(y) dy and then let K(x, y) = f(x− y).
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Our next step is a lemma from complex analysis, that is called the three lines theorem.
This is one of a family of theorems which state that the maximum modulus theorem
continues to hold in unbounded regions, provided we put an extra growth condition at
infinity. This theorem considers analytic functions in the strip {z : a ≤ Re z ≤ b}.Reference?

Lemma 4.6 (Three lines lemma) If f is analytic in the strip {z : a ≤ Re z ≤ b}, f is
bounded and

Ma = sup |f(a+ it)| and Mb = sup |f(b+ it)|,

then

|f(x+ iy)| ≤M
b−x
b−a
a M

x−a
b−a
b .

Proof. We consider fε(x + iy) = eε(x+iy)2f(x + iy)M
x+iy−b
b−a

a M
a−(x+iy)
b−a

b for ε > 0. This
function satisfies

|fε(a+ iy)| ≤ eεa
2

and |fε(b+ iy)| ≤ eεb
2

.

and

lim
y→±∞

sup
a≤x≤b

|fε(x+ iy)| = 0.

Thus by applying the maximum modulus theorem on sufficiently large rectangles, we can
conclude that for each z ∈ S,

|fε(z)| ≤ max(eεa
2

, eεb
2

).

Letting ε→ 0+ implies the Lemma.

Exercise 4.7 If instead of assuming that f is bounded, we assume that

|f(x+ iy)| ≤ eM |y|

for some M > 0, then the above Lemma holds and with the same proof. Show this. What
is the best possible growth condition for which the above proof works? What is the best
possible growth condition? See [18].

The proof of the Riesz-Thorin theorem relies on constructing the following family of
simple functions.
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Lemma 4.8 Let p0, p1 and p with p0 < p < p1 be given. Consider s =
∑
αjajχEj be a

simple function with αj are complex numbers of length 1, |αj| = 1, aj > 0 and {Ej} is
a pairwise disjoint collection of measurable sets where each is of finite measure. Suppose
‖s‖p = 1. Let

1

pz
=

1− z
p0

+
z

p1

and define
sz =

∑
αja

p/pz
j χEj .

This family satisfies
‖sz‖pRe z

= 1, for 0 < Re z < 1.

Proof. We have that ∫
|sz|pRe z dµ =

∑
apjµ(Ej).

Exercise 4.9 State and prove a similar lemma for the family of Sobolev spaces. Suppose
that u lies in L2

s(R
n) with s0 < s < s1 and ‖u‖L2

s
= 1. Let st = (1− t)s0 + ts1 and find

a family of distributions uz so that

‖uRe z‖L2
sRe z

= 1, 0 ≤ t ≤ 1

This family will be analytic in the sense that if f ∈ S(Rn), then uz(f) is analytic.

We are now ready to give the proof of the Riesz-Thorin theorem, Theorem 4.1.

Proof of Riesz-Thorin theorem. We are now ready to give the proof of the Riesz-Thorin
theorem, Theorem 4.1. We fix a p = pt0 , 0 < t0 < 1 and consider simple functions s on
M and s′ on N which satisfy ‖s‖pt0 = 1 and ‖s′‖q′t0 = 1. We let sz and s′z be the families

from the previous Lemma where sz is constructed using pj, j = 0, 1 and s′z is constructed
using the exponents q′j, j = 0, 1.

According to our hypothesis,

φ(z) =
∫
N
s′z(x)Tsz(x) dν(x)

is an analytic function of z. Also, using Lemma 4.8 and the assumption on T ,

sup
y∈R
|φ(j + iy)| ≤ Aj, j = 0, 1.
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Thus by the three lines theorem, Lemma 4.6, we can conclude that

|
∫
s′Ts dµ| ≤ A1−t0

0 At01 .

Since, s′ is an arbitrary simple function with norm 1 in Lq
′
, we can conclude that

‖Ts‖qt0 ≤ A1−t0
0 At01 .

Finally, since simple functions are dense in Lpt , we may take a limit to conclude that T
can be extended to all of Lp and is bounded.

The next exercise may be used to carry the extension of T from simple functions to
all of Lp.

Exercise 4.10 Suppose T : A → Y is a map defined on a subset A of a metric space
X into a metric space Y . Show that if T is uniformly continuous, then T has a unique
continuous extension T̄ : Ā → Y to the closure of A, Ā. If in addition, X is a vector
space, A is a subspace and T is linear, then the extension is also linear.

Exercise 4.11 Show that if T is a linear map (say defined on S(Rn)) which maps L2
sj

into L2
rj

for j = 0, 1, then T maps L2
st into L2

rt for 0 < t < 1, where st = (1− t)s0 + ts1

and rt = (1− t)r0 + tr1.

4.2 Interpolation for analytic families of operators

The main point of this section is that in the Riesz-Thorin theorem, we might as well
let the operator T depend on z. This is a very simple idea which has many clever
applications.

I do not wish to get involved the technicalities of analytic operator valued functions.
(And am not even sure if there are any technicalities needed here.) If one examines the
above proof, we see that the hypothesis we will need on an operator Tz is that for all sets
of finite measure, E ⊂M and F ⊂ N , we have that

z →
∫
N
χETz(χF ) dν (4.12)

is an analytic function of z. This hypothesis can often be proven by using Morera’s
theorem which replaces the problem of determining analyticity by the simpler problem
of checking if an integral condition holds. The integral condition can often be checked
with Fubini’s theorem.
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Theorem 4.13 (Stein’s interpolation theorem) For z in S = {z : 0 ≤ Re z ≤ 1}, let
Tz be a family of linear operators defined simple functions for which we have that the
function in 4.12 is bounded and analytic in S. We assume that for j = 0, 1, Tj+iy maps
Lpj(M) to Lqj(N). Also assume that 1 ≤ p0 < p1 ≤ ∞. We let pt and qt have the
meanings as in the Riesz-Thorin theorem and define

Mt = sup
y∈R
‖Tt+iy‖

where ‖Tt+iy‖ denotes the norm of Tt+iy as an operator from Lpt(M) to Lqt(N). We
conclude that Tt maps Lpt to Lqt and we have

Mt ≤M1−t
0 M t

1.

The proof of this theorem is the same as the proof of the Riesz-Thorin theorem.

Exercise 4.14 (Interpolation with change of measure) Suppose that T is a linear map
which which maps Lpj(dµ) into Lqj(ωjdν) for j = 0, 1. Suppose that ω0 and ω1 are two
non-negative functions which are integrable on every set of finite measure in N . Show
that T maps Lpt(dµ) into Lqt(ωt) for 0 < t < 1. Here, qt and pt are defined as in the
Riesz-Thorin theorem and ωt = ω1−t

0 ωt1.

Exercise 4.15 Formulate and prove a similar theorem where both measures µ and ν are
allowed to vary.

4.3 Real methods

In this section, we give a special case of the Marcinkiewicz interpolation theorem. This
is a special case because we assume that the exponents pj = qj are the same. The full
theorem includes the off-diagonal case which is only true when q ≥ p. To indicate the
idea of the proof, suppose that we have a map T which is bounded on Lp0 and Lp1 . If we
take a function f in Lp, with p between p0 < p < p1, then we may truncate f by setting

fλ =

{
f, |f | ≤ λ
0, |f | > λ.

(4.16)

and then fλ = f − fλ. Since fλ is Lp0 and fλ is in Lp1 , then we can conclude that
Tf = Tfλ + Tfλ is defined. As we shall see, if we are clever, we can do this splitting
in such a way to see that not only is Tf defined, but we can also compute the norm of
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Tf in Lp. The theorem applies to operators which are more general than bounded linear
operators. Instead of requiring the operator T to be bounded, we require the following
condition. Let 0 < q ≤ ∞ and 0 < p <∞ we say that T is weak-type p, q if there exists
a constant A so that

µ({x : |Tf(x)| > λ}) ≤
(
A‖f‖p
λ

)q
.

If q =∞, then an operator is of weak-type p,∞ if there exists a constant A so that

‖Tf‖∞ ≤ A‖f‖p.

We say that a map T is strong-type p, q if there is a constant A so that

‖Tf‖q ≤ A‖f‖p.

For linear operators, this condition is the same as boundedness. The justification for
introducing the new term “strong-type” is that we are not requiring the operator T to
be linear.

Exercise 4.17 Show that if T is of strong-type p, q, then T is of weak-type p, q. Hint:
Use Chebyshev’s inequality.

The condition that T is linear is replaced by the condition that T is sub-linear. This
means that for f and g in the domain of T , then

|T (f + g)(x)| ≤ |Tf(x)|+ |Tg(x)|.

The proof of the main theorem will rely on the following well-known representation
of the Lp norm of f .

Lemma 4.18 Let p <∞ and f be measurable, then

‖f‖pp = p
∫ ∞

0
µ({x : |f(x)| > λ})λp dλ

λ
.

Proof. It is easy to see that this holds for simple functions. Write a general function as
an increasing limit of simple functions.
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Our main result is the following theorem:

Theorem 4.19 Let 0 < p0 < p1 ≤ ∞ for j = 0, 1 and let T take measurable functions
on M to measurable functions on N . Assume also that T is sublinear and the domain of
T is closed under taking truncations. If T is of weak-type pj, pj for j = 0, 1, then T is of
strong-type pt, pt for 0 < t < 1 and we have for p0 < p < p1, that when p1 <∞

‖Tf‖p ≤ 2(
pAp00

p− p0

+
p1A

p1
1

p1 − p
)1/p‖f‖p.

When p1 =∞, we obtain

‖Tf‖p ≤ (1 + A1)(
Ap00 p

p− p0

)1/p‖f‖pp.

Proof. We first consider the case when p1 < ∞ We fix p = pt with 0 < t < 1, choose
f in the domain of T and let λ > 0 . We write f = fλ + fλ as in (4.16). Since T is
sub-linear and then weak-type pj, pj, we have that

ν({x : |Tf(x)| > 2λ}) ≤ ν({x : |Tfλ(x)| > λ}) + ν({x : |Tfλ(x)| > λ})

≤
(
A0‖fλ‖p0

λ

)p0
+

(
A1‖fλ‖p1

λ

)p1
. (4.20)

We use the representation of the Lp-norm in Lemma 4.18, the inequality (4.20) and the
change of variables 2λ→ λ to obtain

2−p‖Tf‖pp ≤ Ap00 pp0

∫ ∞
0

∫ ∞
0

µ({x : |fλ(x)| > τ})τ p0 dτ
τ
λp−p0

dλ

λ

+Ap11 pp1

∫ ∞
0

∫ λ

0
µ({x : |fλ(x)| > τ})τ p1 dτ

τ
λp−p1

dλ

λ
. (4.21)

Note that the second integral on the right extends only to λ since fλ satisfies the inequality
|fλ| ≤ λ. We consider the second term first. We use that µ({x : |fλ(x)| > τ}) ≤ µ({x :
|f(x)| > τ}) and thus Tonelli’s theorem gives the integral in the second term is bounded
by

pp1

∫ ∞
0

µ({x : |fλ(x)| > τ})
∫ ∞
τ

λp−p1
dλ

λ

dτ

τ
≤ pp1

(p1 − p)

∫ ∞
0

µ({x : |f(x)| > τ})τ p dτ
τ

=
p1

p− p1

‖f‖pp. (4.22)
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We now consider the first term to the right of the inequality sign in (4.21). We observe
that when τ > λ, µ({x : |fλ(x)| > τ}) = µ({x : |f(x)| > τ}), while when τ ≤ λ, we have
µ({x : |fλ(x)| > τ}) = µ({x : |f(x)| > λ}). Thus, we have

pp0

∫ ∞
0

∫ ∞
0

µ({x : |fλ(x)| > τ})τ p0 dτ
τ
λp−p1

dλ

λ

= pp0

∫ ∞
0

∫ ∞
λ

µ({x : |f(x)| > τ})τ p0 dτ
τ
λp−p0

dλ

λ

+p
∫ ∞

0
µ({x : |f(x)| > λ})λpdλ

λ

= (
p0

p− p0

+ 1)‖f‖pp. (4.23)

Using the estimates (4.22) and (4.23) in (4.21) gives

‖Tf‖pp ≤ 2p(
pAp00

p− p0

+
p1A

p1
1

p1 − p
)‖f‖pp.

Which is what we hoped to prove.
Finally, we consider the case p1 =∞. Since T is of type∞,∞, then we can conclude

that, with fλ as above, ν({x : |Tfλ(x)| > A1λ}) = 0. To see how to use this, we write

ν({x : |Tf(x)| > (1 + A1)λ}) ≤ ν({x : |Tfλ(x)| > λ}) + ν({x : |Tfλ(x)| > A1λ})
= ν({x : |Tfλ(x)| > λ}).

Thus, using Lemma 4.18 that T is of weak-type p0, p0, and the calculation in (4.22) we
have

(1 + A1)−p‖Tf‖pp = Ap00 pp0

∫ ∞
0

∫ ∞
λ

µ({x : |fλ(x)| > τ})τ p0 dτ
τ
λp−p0

dλ

λ

≤ Ap00 p

p− p0

‖f‖pp.



Chapter 5

The Hardy-Littlewood maximal
function

In this chapter, we introduce the Hardy-Littlewood maximal function and prove the
Lebesgue differentiation theorem. This is the missing step of the Fourier uniqueness
theorem in Chapter 1.

Since the material in this chapter is familiar from real analysis, we will omit some of
the details. In this chapter, we will work on Rn with Lebesgue measure.

5.1 The Lp-inequalities

We let χ = nχB1(0)/ωn−1 be the characteristic function of the unit ball, normalized so
that

∫
χdx = 1 and then we set χr(x) = r−nχ(x/r). If f is a measurable function, we

define the Hardy-Littlewood maximal function by

Mf(x) = sup
r>0
|f | ∗ χr(x).

Here and throughout these notes, we use m(E) to denote the Lebesgue measure of a set
E.

Note that the Hardy-Littlewood maximal function is defined as the supremum of
an uncountable family of functions. Thus, the sort of person who is compulsive about
details might worry that Mf may not be measurable. The following lemma implies the
measurability of Mf .

Lemma 5.1 If f is measurable, then Mf is upper semi-continuous.

41
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Proof. If Mf(x) > λ, then we can find a radius r so that

1

m(Br(x))

∫
Br(x)

|f(y)| dy > λ.

Since this inequality is strict, for s slightly larger than r, say r+ δ > s > r, we still have

1

m(Bs(x))

∫
Br(x)

|f(y)| dy > λ.

But then by the monotonicity of the integral,

Mf(z) > λ

if Bs(z) ⊃ Br(x). That is if |z − x| < δ. We have shown that the set {x : Mf(x) > λ} is
open.

Exercise 5.2 If {fα : α ∈ I} is a family of continuous real valued functions on Rn show
that

g(x) = sup
α∈I

fα(x)

is upper semi-continuous.

If f is locally integrable, then χr ∗ f is continuous for each r > 0 and the previous
exercise can be used to establish the upper semi-continuity of Mf . Our previous lemma
also applies to functions for which the integral over a ball may be infinite.

We pause briefly to define local integrability. We say that a function is locally inte-
grable if it is in L1

loc(R
n). We say that a function f is Lploc(R

n) if f ∈ Lp(K) for each
compact set K. One may also define a topology by defining the semi-norms,

ρn(f) = ‖f‖Lp(Bn(0)), for n = 1, 2 . . . .

Given this countable family of semi-norms it is easy to define a topology by following the
procedure we used to define a topology on the Schwartz space. as we did in defining the
topology on the Schwartz space (see exercise 2.10).

Exercise 5.3 Show that a sequence converges in the metric for Lploc(R
n) if and only if

the sequence converges in Lp(K) for each compact set K.

Exercise 5.4 Let f = χ(−1,1) on the real line. Show that Mf ≥ 1/|x| if |x| > 1.
Conclude that Mf is not in L1.
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Exercise 5.5 Let f(x) = χ((0,1/2))(x)x−1(log(x))−2. Show that there is a constant c > 0
so that

Mf(x) ≥ c

x(− log(x))
, if 0 < x < 1/2.

Remark: This exercise shows that there is a function f in L1 for which f ∗ is not
locally integrable.

Exercise 5.6 Show that if Mf is in L1(Rn), then f is zero.

Exercise 5.7 Let {Eα}α∈I be a collection of measurable sets. Suppose there is a constant
c0 so that for each α we may find a ball Br(0) so that Eα ⊂ Br(0) and so that m(Eα) ≥
c0m(Br(0)). Define a maximal function by

Nf(x) = sup{ 1

m(Eα)

∫
Eα
|f(x+ y)| dy : α ∈ I}.

a) Show that there is a constant so that

Nf(x) ≤ CMf(x).

b) Show that if {Eα} is the collection of all cubes containing 0, then we may find a
constant C depending only on dimension so that

C−1Nf(x) ≤Mf(x) ≤ CMf(x).

We will show that the Hardy-Littlewood maximal function is finite a.e. when f is in
L1(Rn). This is one consequence of the following theorem.

Theorem 5.8 If f is measurable and λ > 0, then there exists a constant C = C(n) so
that

m({x : |Mf(x)| > λ}) ≤ C

λ

∫
Rn
|f(x)| dx.

The observant reader will realize that this theorem asserts that the Hardy-Littlewood
maximal operator is of weak-type 1, 1. It is easy to see that it is sub-linear and of weak
type ∞,∞ and thus by the diagonal case of the Marcinkiewicz interpolation theorem,
Theorem 4.19, we can conclude the maximal operator is of strong-type p, p.

The proof of this theorem depends on a Lemma which allows us to extract from a
collection of balls, a sub-collection whose elements are disjoint and whose total measure
is relatively large.
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Lemma 5.9 Let β = 1/(2 · 3n). If E is a measurable set of finite measure in Rn and we
have a collection of balls B = {Bα}α∈A so that E ⊂ ∪Bα, then we can find a sub-collection
of the balls {B1, . . . , BN} which are pairwise disjoint and which satisfy

N∑
j=1

m(Bj) ≥ βm(E).

Proof. We may find K ⊂ E which is compact and with m(K) > m(E)/2. Since K is
compact, there is a finite sub-collection of the balls B1 ⊂ B which cover E. We let B1 be
the largest ball in B1 and then we let B2 be the balls in B1 which do not intersect B1.
We choose B2 to be the largest ball in B2 and continue until BN+1 is empty. The balls
B1, B2, . . . , BN are disjoint by construction. If B is a ball in B1 then either B is one of
the chosen balls, call it Bj0 or B was discarded in going from Bj0 to Bj0+1 for some j0.
In either case, B intersects one of the chosen balls, Bj0 , and B has radius which is less
than or equal to the radius of Bj0 . Hence, we know that

K ⊂ ∪B∈B1B ⊂ ∪Nj=13Bj

where if Bj = Br(x), then 3Bj = B3r(x). Taking the measure of the sets K and ∪3Bj,
we obtain

m(E) ≤ 2m(K) ≤ 2 · 3n
N∑
j=1

m(Bj).

Now, we can give the proof of the weak-type 1,1 estimate for Mf in Theorem 5.8.

Proof. (Proof of Theorem 5.8) We let Eλ = {x : Mf(x) > λ} and choose a measurable
set E ⊂ Eλ which is of finite measure. For each x ∈ Eλ, there is a ball Bx so that

m(Bx)
−1
∫
Bx
|f(x)| dx > λ (5.10)

We apply Lemma 5.9 to the collection of balls B ⊂ {Bx : x ∈ E} to find a sub-collection
{B1, . . . , BN} ⊂ B of disjoint balls so that

m(E)

2 · 3n
≤

N∑
j=1

m(Bj) ≤
1

λ

∫
Bj
|f(y)| dy ≤ ‖f‖1

λ
.

The first inequality above is part of Lemma 5.9, the second is (5.10) and the last holds
because the balls Bj are disjoint. Since E is an arbitrary, measurable subset of Eλ of
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finite measure, then we can take the supremum over all such E and conclude Eλ also
satisfies

m(Eλ) ≤
2 · 3n‖f‖1

λ
.

Frequently, in analysis it becomes burdensome to keep track of the exact value of
the constant C appearing in the inequality. In the next theorem and throughout these
notes, we will give the constant and the parameters it depends on without computing its
exact value. In the course of a proof, the value of a constant C may change from one
occurrence to the next. Thus, the expression C = 2C is true even if C 6= 0!

Theorem 5.11 If f is measurable and 1 < p ≤ ∞, then there exists a constant C = C(n)

‖Mf‖p ≤
Cp

p− 1
‖f‖p.

Proof. This follows from the weak-type 1,1 estimate in Theorem 5.8, the elementary
inequality that ‖Mf‖∞ ≤ ‖f‖∞ and Theorem 4.19. The dependence of the constant can
be read off from the constant in Theorem 4.19.

5.2 Differentiation theorems

The Hardy-Littlewood maximal function is a gadget which can be used to study the
identity operator. At first, this may sound like a silly thing to do–what could be easier
to understand than the identity? We will illustrate that the identity operator can be
interesting by using the Hardy-Littlewood maximal function to prove the Lebesgue dif-
ferentiation theorem–the identity operator is a pointwise limit of averages on balls. In
fact, we will prove a more general result which was used in the proof of the Fourier in-
version theorem of Chapter 1. This theorem amounts to a complicated representation of
the identity operator. In addition, we will introduce approximations of the zero operator,
f → 0 in a few chapters.

The maximal function is constructed by averaging using balls, however, it is not hard
to see that many radially symmetric averaging processes can be estimated using M . The
following useful result is lifted from Stein’s book [19]. Before stating this proposition,
given a function φ on Rn, we define the non-increasing radial majorant of φ by

φ∗(x) = sup
|y|>|x|

|φ(y)|.
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Proposition 5.12 Let φ be in L1 and f in Lp, then

sup
r>0
|φr ∗ f(x)| ≤

∫
φ∗(x) dxMf(x).

Proof. It suffices to prove the inequality

φr ∗ f(x) ≤
∫
φ(x) dxMf(x)

when φ is non-negative and radially non-increasing and thus φ = φ∗ a.e. Also, we may
assume f ≥ 0. We begin with the special case when φ(x) =

∑
j ajχBρj (0)(x) and then

φr ∗ f(x) = r−n
∑
j

aj
m(Brρj(x))

m(Brρj(x))

∫
Brρj (x)

f(y) dy

≤ r−nMf(x)
∑
j

ajm(Brρj(x))

= Mf(x)
∫
φ, a.e..

The remainder of the proof is a picture. We can write a general, non-increasing, radial
function as an increasing limit of sums of characteristic functions of balls. The mono-
tone convergence theorem and the special case already treated imply that φr ∗ f(x) ≤
Mf(x)

∫
φ dx and the Proposition follows.

|x|

Finally, we give the result that is needed in the proof of the Fourier inversion theorem.
We begin with a Lemma. Note that this Lemma suffices to prove the Fourier inversion
theorem in the class of Schwartz functions. The full differentiation theorem is only needed
when f is in L1.
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Lemma 5.13 If f is continuous and bounded on Rn and φ ∈ L1(Rn), then for all x,

lim
ε→0+

φε ∗ f(x) = f(x)
∫
φ.

Proof. Fix x in Rn and η > 0. Recall that
∫
φε is independent of ε and thus we have

φε ∗ f(x)− f(x)
∫
φ(x) dx =

∫
φε(y)(f(x− y)− f(x)) dy

Since f is continuous at x, there exists δ > 0 so that |f(x− y)− f(x)| < η if |y| < δ. In
the last integral above, we consider |y| < δ and |y| ≥ δ separately. We use the continuity
of f when |y| is small and the boundedness of |f | for |y| large to obtain:

|φε ∗ f(x)− f(x)
∫
φ dx| ≤ η

∫
{y:|y|<δ}

|φε(y)| dy + 2‖f‖∞
∫
{y:|y|>δ}

|φε(y)| dy

The first term on the right is finite since φ is in L1 and in the second term, a change of
variables and the dominated convergence theorem implies we have

lim
ε→0+

∫
{y:|y|>δ}

|φε(y)| dy = lim
ε→0+

∫
{y:|y|>δ/ε}

|φ(y)| dy = 0.

Thus, we conclude that

lim sup
ε→0+

|φε ∗ f(x)− f(x)
∫
φ(y) dy| ≤ η

∫
|φ| dy.

Since η > 0 is arbitrary, the conclusion of the lemma follows.

Theorem 5.14 If φ has radial non-increasing majorant in L1, and f is in Lp for some
p, 1 ≤ p ≤ ∞, then for a.e. x ∈ Rn,

lim
ε→0+

φε ∗ f(x) = f(x)
∫
φ dx.

Proof. The proof for p = 1, 1 < p <∞ and p =∞ are each slightly different.
Let θ(f)(x) = lim supε→0+ |φε ∗ f(x) − f(x)

∫
φ|. Our goal is to show that θ(f) = 0

a.e. Observe that according to Lemma 5.13, we have if g is continuous and bounded,
then

θ(f) = θ(f − g).

Also, according to Proposition 5.12, we have that there is a constant C so that with
I = |

∫
φ|,

θ(f − g)(x) ≤ |f(x)− g(x)|I + CM(f − g)(x). (5.15)
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If f is in L1 and λ > 0, we have that for any bounded and continuous g that

m({x : θ(f)(x) > λ}) ≤ m({x : θ(f − g)(x) > λ/2}) +m({x : I|f(x)− g(x)| > λ/2})

≤ C

λ

∫
Rn
|f(x)− g(x)| dx.

The first inequality uses (5.15) and the second uses the weak-type 1,1 property of the
maximal function and Tchebishev. Since we can approximate f in the L1 norm by
functions g which are bounded and continuous, we conclude that m({x : θ(x) > λ}) = 0.
Since this holds for each λ > 0, then we have that m({x : θ(x) > 0}) = 0

If f is in Lp, 1 < p < ∞, then we can argue as above and use the that the maximal
operator is of strong-type p, p to conclude that for any continuous and bounded g,

m({x : θ(x) > λ}) ≤ C

λp

∫
|f(x)− g(x)|p dx.

Again, continuous and bounded functions are dense in Lp, if p <∞ so we can conclude
θ(f) = 0 a.e.

Finally, if p = ∞, we claim that for each natural number, n, the set {x : θ(f)(x) >
0 and |x| < n} has measure zero. This implies the theorem. To establish the claim,
we write f = χB2n(0)f + (1 − χB2n(0))f = f1 + f2. Since f1 is in Lp for each p finite,
we have θ(f1) = 0 a.e. and it is easy to see that θ(f2)(x) = 0 if |x| < 2n. Since
θ(f)(x) ≤ θ(f1)(x) + θ(f2)(x), the claim follows.

The standard Lebesgue differentiation theorem is a special case of the result proved
above.

Corollary 5.16 If f is in L1
loc(R

n), then

f(x) = lim
r→0+

1

m(Br(x))

∫
Br(x)

f(y) dy.

Corollary 5.17 If f is in L1
loc(R

n), then there is a measurable set E, with Rn \ E of
Lebesgue measure 0 and so that

lim
r→0+

1

m(Br(x))

∫
Br(x)

|f(y)− f(x)| dy = 0, x ∈ E.

We omit the proof of this last Corollary.
The set E from the previous theorem is called the Lebesgue set of f . It is clear from

the definition that the choice of the representative of f may change E by a set of measure
zero.



Chapter 6

Singular integrals

In this section, we will introduce a class of symbols for which the multiplier operators
introduced in Chapter 3 are also bounded on Lp. The operators we consider are modelled
on the Hilbert transform and the Riesz transforms. They were systematically studied
by Calderón and Zygmund in the 1950’s and are typically called Calderón-Zygmund
operators. These operators are (almost) examples of pseudo-differential operators of
order zero. The distinction between Calderón Zygmund operators and pseudo-differential
operators is the viewpoint from which the operators are studied. If one studies the
operator as a convolution operator, which seems to be needed to make estimates in
Lp, then one is doing Calderón Zygmund theory. If one is studying the operator as a
multiplier, which is more efficient for computing inverses and compositions, then one is
studying pseudo-differential operators. One feature of pseudo-differential operators is
that there is a general flexible theory for variable coefficient symbols. Our symbols will
only depend on the frequency variable ξ.

6.1 Calderón-Zygmund kernels

In this chapter, we will consider linear operators T : S(Rn) → S ′(Rn). In addition, we
assume that T has a kernel K : Rn×Rn → C which gives the action of T away from the
diagonal. The kernel K is a function which is locally integrable on Rn ×Rn \ {(x, y) :
x = y}. That K gives the action of T away from the diagonal means that that for any
two functions f and g in D(Rn) and which have disjoint support, we have that

Tf(g) =
∫
R2n

K(x, y)f(y)g(x) dx dy. (6.1)

49
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Note that the left-hand side of this equation denotes the distribution Tf paired with the
function g. We say that K is a Calderón-Zygmund kernel if there is a constant CK so
that K satisfies the following two estimates:

|K(x, y)| ≤ CK
|x− y|n

(6.2)

|∇xK(x, y)|+ |∇yK(x, y)| ≤ CK
|x− y|n+1

(6.3)

Exercise 6.4 Show that the kernel is uniquely determined by the operator.

Exercise 6.5 What is the kernel of the identity operator?

Exercise 6.6 Let α be a multi-index. What is the kernel of the operator

Tφ =
∂αφ

∂xα
?

Conclude that the operator is not uniquely determined by the kernel.

If an operator T has a Calderón-Zygmund kernel K as described above and T is
L2 bounded, then T is said to be a Calderon-Zygmund operator. In this chapter, we
will prove two main results. We will show that Calderón-Zygmund operators are also
Lp-bounded, 1 < p <∞ and we will show that a large class of multipliers operators are
Calderón-Zygmund operators.

Since Calderón-Zygmund kernels are locally bounded in the complement of {(x, y) :
x = y}, if f and g are L2 and have disjoint compact supports, then (6.1) continues to
hold. To see this we approximate f and g by smooth functions and note that we can
arrange that we only increase the support by a small amount when we approximate.

Exercise 6.7 Suppose that Ω is a smooth function near the sphere Sn−1 ⊂ Rn, then
show that

K(x, y) = Ω(
x− y
|x− y|

)
1

|x− y|n

is a Calderón-Zygmund kernel.

Exercise 6.8 If n ≥ 3 and j, k are in {1, . . . , n}, then

∂2

∂xj∂xk

1

|x− y|n−2
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is a Calderón-Zygmund kernel. Of course, this result is also true for n = 2, but it is not
very interesting.

In two dimensions, show that for and j and k,

∂2

∂xj∂xk
log |x− y|

is a Calderón-Zygmund kernel.

Exercise 6.9 Let z = z1 + iz2 give a point in the complex plane. Show that the kernel

K(z, w) =
1

(z − w)2

gives a Calderón-Zygmund kernel on R2.

Theorem 6.10 If T is a Calderón-Zygmund operator, then for 1 < p < ∞ there is a
constant C so that

‖Tf‖p ≤ C‖f‖p.

The constant C ≤ Amax(p, p′) where A depends on the dimension n, the constant in the
estimates for the Calderón-Zygmund kernel and the bound for T on L2.

The main step of the proof is to prove a weak-type 1,1 estimate for T and then to
interpolate to obtain the range 1 < p < 2. The range 2 < p <∞ follows by applying the
first case to the adjoint of T .

Exercise 6.11 Let H be a Hilbert space with inner product 〈, 〉 If T : H → H is a bounded
linear map on a Hilbert space, then the map x → 〈Tx, y〉 defines a linear functional on
H. Hence, there is a unique element y∗ so that 〈Tx, y〉 = 〈x, y∗〉.

a) Show that the map y → y∗ = T ∗y is linear and bounded.
b) Suppose now that T is bounded on the Hilbert space L2, and that, in addition to

being bounded on L2, the map T satisfies ‖Tf‖p ≤ A‖f‖p, say for all f in L2. Show that
‖T ∗f‖p′ ≤ A‖f‖p′.

Exercise 6.12 If T is a Calderón-Zygmund operator with kernel K, show that T ∗ is also
a Calderón-Zygmund operator and that the kernel of T ∗ is

K∗(x, y) = K̄(y, x).
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Exercise 6.13 If Tm is a multiplier operator with bounded symbol, show that the adjoint
is a multiplier operator with symbol m̄, T ∗m = Tm̄.

Our next theorem gives a weak-type 1,1 estimate for Calderón-Zygmund operators.

Theorem 6.14 If T is a Calderón-Zygmund operator, f is in L2(Rn) and λ > 0, then

m({x : |Tf(x)| > λ}) ≤ C

λ

∫
Rn
|f(x)| dx.

This result depends on the following decomposition lemma for functions. In this
Lemma, we will use cubes on Rn. By a cube, we mean a set of the form Qh(x) = {y :
|xj − yj| ≤ h/2}. We let D0 be the mesh of cubes with side-length 1 and whose vertices
have integer coordinates. For k an integer, we define Dk to be the cubes obtained by
applying the dilation x→ 2kx to each cube in D0. The cubes in Dk have side-length 2k

and are obtained by bisecting each of the sides of the cubes in Dk−1. Thus, if we take
any two cubes Q and Q′, in D = ∪kDk, then either one is contained in the other, or the
two cubes have disjoint interiors. Also, given a cube Q, we will refer to the 2n cubes
obtained by dividing Q as the children of Q. And of course, if Q is a child of Q′, then Q′

is a parent of Q. The collection of cubes D will be called the dyadic cubes on Rn.

Lemma 6.15 (Calderón-Zygmund decomposition) If f ∈ L1(Rn) and λ > 0, then we
can find a family of cubes Qk with disjoint interiors so that |f(x)| ≤ λ a.e. in Rn \∪kQk

and for each cube we have

λ <
1

m(Qk)

∫
Qk

|f(x)| dx ≤ 2nλ.

As a consequence, we can write f = g+ b where |g(x)| ≤ 2nλ a.e. and b =
∑
bk where

each bk is supported in one of the cubes Qk, each bk has mean value zero
∫
bk = 0 and

satisfies ‖bk‖1 ≤ 2
∫
Qk
|f | dx. The function g satisfies ‖g‖1 ≤ ‖f‖1

Proof. Given f ∈ L1 and λ > 0, we let E be the collection of cubes Q ∈ D which satisfy
the inequality

1

m(Q)

∫
Q
|f(x)| dx > λ. (6.16)

Note that because f ∈ L1, if m(Q)−1‖f‖1 ≤ λ, then the cube Q will not be in E . That
is E does not contain cubes of arbitrarily large side-length. Hence, for each cube Q′ in E ,
there is a largest cube Q in E which contains Q′. We let these maximal cubes form the
collection M = {Qk}, which we index in an arbitrary way. If Q′k is the parent of some
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Qk in M, then Q′k is not in E and hence the inequality (6.16) fails for Q′k. This implies
that we have ∫

Qk

|f(x)| dx ≤
∫
Q′
k

|f(x)| ≤ 2nm(Qk)λ. (6.17)

Hence, the stated conditions on the family of cubes hold.
For each selected cube, Qk, we define bk = (f −m(Qk)

−1
∫
Qk
f(x) dx)χQk on Qk and

zero elsewhere. We set b =
∑
k bk and then g = f − b. It is clear that

∫
bk = 0. By the

triangle inequality, ∫
|bk(x)| dx ≤ 2

∫
Qk

|f(x)| dx.

It is clear that ‖g‖1 ≤ ‖f‖1. We verify that |g(x)| ≤ 2nλ a.e. On each cube Qk, this
follows from the upper bound for the average of |f | on Qk. For each x in the complement
of ∪kQk, there is sequence of cubes in D, with arbitrarily small side-length and which
contain x where the inequality (6.16) fails. Thus, the Lebesgue differentiation theorem
implies that |g(x)| ≤ λ a.e.

Our next step in the proof is the following Lemma regarding the kernel.

Lemma 6.18 If K is a Calderón-Zygmund kernel and x, y are in Rn with |x− y| ≤ d,
then ∫

Rn\B2d(x)
|K(z, x)−K(z, y)| dz ≤ C.

The constant depends only on the dimension and the constant appearing in the definition
of the Calderón-Zygmund kernel.

Proof. We apply the mean-value theorem of calculus to conclude that if y ∈ B̄d(x) and
z ∈ Rn \B2d(x), then the kernel estimate (6.3)

|K(z, x)−K(z, y)| ≤ |x− y| sup
y∈Bd(x)

|∇yK(z, y)| ≤ 2n+1CK |x− y||x− z|−n−1. (6.19)

The second inequality uses the triangle inequality |y − z| ≥ |x − z| − |y − x| and then
that |x− z| − |y − x| ≥ |x− z|/2 if |x− y| ≤ d and |x− z| ≥ 2d. Finally, if we integrate
the inequality (6.19) in polar coordinates, we find that∫

Rn\B2d(x)
|K(z, x)−K(z, y)| dz ≤ dCK2n+1ωn−1

∫ ∞
2d

r−n−1rn−1 dr = CK2nωn−1.

This is the desired conclusion.
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Now, we give the proof of the weak-type 1,1 estimate in Theorem 6.14.

Proof of Theorem 6.14. We may assume that f is in L1 ∩ L2. We let λ > 0. We apply
the Calderón-Zygmund decomposition, Lemma 6.15 at λ to write f = g + b. We have

{x : |Tf(x)| > λ} ⊂ {x : |Tg(x)| > λ/2} ∪ {x : |Tb(x)| > λ/2}.
Using Tchebisheff’s inequality and that T is L2-bounded, and then that |g(x)| ≤ Cλ we
obtain

m({x : |Tg(x)| > λ/2}) ≤ C

λ2

∫
Rn
|g(x)|2 dx ≤ C

λ

∫
Rn
|g(x)| dx

Finally, since ‖g‖1 ≤ ‖f‖1, we have

m({x : |Tg(x)| > λ/2}) ≤ C

λ
‖f‖1.

Now, we turn to the estimate of Tb. We let Oλ = ∪Bk where each ball Bk is chosen
to have center xk, the center of the cube Qk and the radius of Bk is

√
n multiplied by the

side-length of Q. Thus, if y ∈ Qk, then the distance |xk − y| is at most half the radius
of Bk. This will be needed to apply Lemma 6.18. We estimate the measure of Oλ using
that

m(Oλ) ≤ C
∑
k

m(Qk) ≤
1

λ

∑
k

∫
Qk

|f | dx ≤ C

λ
‖f‖1.

Next, we obtain an L1 estimate for Tbk. If x is in the complement of Qk, we know that
Tbk(x) =

∫
K(x, y)bk(y) dy =

∫
(K(x, y) − K(x, xk))bk(y) dy where the second equality

uses that bk has mean value zero. Now, applying Fubini’s theorem and Lemma 6.18, we
can estimate∫

Rn\Bk
|Tbk(x)| dx ≤

∫
Qk

|bk(y)|
∫
Rn\Bk

|K(x, y)−K(x, xk)| dx dy

≤ C
∫
Qk

|bk(y)| dy ≤ C
∫
Qk

|f(y)| dy

Thus, if we add on k, we obtain∫
Rn\Oλ

|Tb(y)| dy ≤
∑
k

∫
Rn\Bk

|Tbk(y)| dy ≤ C‖f‖1 (6.20)

Finally, we estimate

m({x : Tb(x) > λ/2}) ≤ m(Oλ) +m({x ∈ Rn \Oλ : |Tb(x)| > λ/2})

≤ m(Oλ) +
C

λ
‖f‖1.

Where the the last inequality uses Chebishev and our estimate (6.20) for the L1-norm of
Tb in the complement of Oλ.
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Exercise 6.21 Let Q be a cube in Rn of side-length h > 0, Q = {x : 0 ≤ xi ≤ h}.
Compute the diameter of Q. Hint: The answer is probably h

√
n.

Proof of Theorem 6.10. Since we assume that T is L2-bounded, the result for 1 < p < 2,
follows immediately from Theorem 6.14 and the Marcinkiewicz interpolation theorem,
Theorem 4.19. The result for 2 < p < ∞ follows by observing that if T is a Calderón-
Zygmund operator, then the adjoint T ∗ is also a Calderón-Zygmund operator and hence
T ∗ is Lp-bounded, 1 < p < 2. Then it follows that T is Lp-bounded for 2 < p <∞.

The alert reader might observe that Theorem 4.19 appears to give a bound for the
operator norm which grows like |p− 2|−1 near p = 2. This growth is a defect of the proof
and is not really there. To see this, one can pick one’s favorite pair of exponents, say
4/3 and 4 and interpolate (by either Riesz-Thorin or Marcinkiewicz) between them to
see that norm is bounded for p near 2.

6.2 Some multiplier operators

In this section, we study multiplier operators where the symbol m is smooth in the
complement of the origin. For each k ∈ R, we define a class of multipliers which we call
symbols of order k. We say m is symbol of order k if for each multi-index α, there exists
a constant Cα so that ∣∣∣∣∣∂αm∂ξα (ξ)

∣∣∣∣∣ ≤ Cα|ξ|−|α|+k. (6.22)

The operator given by a symbol of order k corresponds to a generalization of a differ-
ential operator of order k. Strictly speaking, these operators are not pseudo-differential
operators because we allow symbols which are singular near the origin. The symbols we
study transform nicely under dilations. This makes some of the arguments below more
elegant, however the inhomogeneous theory is probably more useful.

Exercise 6.23 a) If P (ξ) is homogeneous polynomial of degree k, then P is a symbol of
order k.

b) The multiplier for the Bessel potential operator (1 + |ξ|2)−s/2 is a symbol of order
−s for s ≥ 0. What if s < 0?

We begin with a lemma to state some of the basic properties of these symbols.

Lemma 6.24 a) If mj is a symbol of order kj for j = 1, 2, then m1m2 is a symbol of
order k1 + k2 and each constant for m1m2 depends on finitely many of the constants for
m1 and m2.
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b) If η ∈ S(Rn), then η is a symbol of order k for any k ≤ 0.
c) If m is a symbol of order k, then for all ε > 0, ε−km(εξ) is a symbol of order k

and the constants are independent of ε.
d) If mj, j = 1, 2 are symbols of order k, then m1 +m2 is a symbol of order k.

Proof. A determined reader armed with the Leibniz rule will find that these results are
either easy or false.

Exercise 6.25 a) Use Lemma 6.24 to show that if m is a symbol of order 0 and η ∈
S(Rn) with η = 1 near the origin, then mε(ξ) = η(εξ)(1 − η(ξ/ε))m(ξ) is a symbol of
order 0.

b) Show that if η(0) = 1, then for each f ∈ L2(Rn) the multiplier operators given by
m and mε satisfy

lim
ε→0+

‖Tmf − Tmεf‖2 = 0.

c) Do we have limε→0+ ‖Tm − Tmε‖ = 0? Here, ‖T‖ denotes the operator norm of T
as an operator on L2.

Exercise 6.26 Show that if m is a symbol of order 0 and there is a δ > 0 so that
|m(ξ)| ≥ δ for all ξ 6= 0, then m−1 is a symbol of order 0.

Lemma 6.27 If m is in the Schwartz class and m is a symbol of order k > −n, then
there is a constant C depending only on finitely many of the constants in (6.22) so that

|m̌(x)| ≤ C|x|−n−k.

Proof. To see this, introduce a cutoff function η0 ∈ D(Rn) and fix |x| so that η0(ξ) = 1
if |ξ| < 1 and η0 = 0 if |ξ| > 2 and set η∞ = 1− η0. We write

Kj(x) = (2π)−n
∫
eix·ξηj(ξ|x|)m(ξ) dξ, j = 0,∞.

For j = 0, the estimate is quite simple since η0(ξ|x|) = 0 if |ξ| > 2/|x|. Thus,

|K0(x)| ≤ (2π)−n
∫
|ξ|<2/|x|

|ξ|k dξ = C|x|−k−n.

For the part near ∞, we need to take advantage of the cancellation that results from
integrating the oscillatory exponential against the smooth kernel m. Thus, we write
(ix)αeix·ξ = ∂α

∂ξα
eix·ξ and then integrate by parts to obtain

(2π)n(ix)αK∞(x) =
1

(2π)n

∫
(
∂α

∂ξα
eix·ξ)η∞(ξ|x|)m(ξ) dξ = (−1)|α|

∫
eix·ξ

∂α

∂ξα
(η∞(ξ|x|)m(ξ)) dξ.
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The boundary terms vanish since the integrand is in the Schwartz class. Using the symbol
estimates (6.22) and that η∞ is zero for |ξ| near 0, we have for k − |α| < −n, that

|(ix)αK∞(x)| ≤ C
∫
|ξ|>1/|x|

|ξ|k−|α| dξ = C|x|−n−k+|α|.

This implies the desired estimate that |K∞(x)| ≤ C|x|−n−k.

We are now ready to show that the symbols of order 0 give Calderón Zygmund
operators.

Theorem 6.28 If m is a symbol of order 0, then Tm is a Calderón-Zygmund operator.

Proof. The L2-boundedness of Tm is clear since m is bounded, see Theorem 3.7. We
will show that the kernel of Tm is of the form K(x− y) and that for all multi-indices α
there is a constant Cα so that K satisfies

| ∂
α

∂xα
K(x)| ≤ C|x|−n−|α|.

The inverse Fourier transform of m, m̌, is not, in general, a function. Thus, it is
convenient to approximate m by nice symbols. To do this, we let η ∈ D(Rn) satisfy
η(x) = 1 if |x| < 1 and η(x) = 0 if |x| > 2. We define mε(ξ) = η(εξ)(1 − η(ξ/ε))m(ξ).
By Lemma 6.24, we see that mε is a symbol with constants independent of ε. Since
mε ∈ S(Rn), by Lemma 6.27 we have that Kε = m̌ε satisfies for each multi-index α,

| ∂
α

∂xα
K(x)| ≤ C|x|−n−|α|. (6.29)

This is because the derivative of order α of Kε by Proposition 1.19 is the inverse Fourier
transform of (−iξ)αmε(ξ), a symbol of order |α|. Since the constants in the estimates are
uniform in ε, we can apply the Arzela-Ascoli theorem to prove that there is a sequence
{εj} with limj→∞ εj = 0 so that Kεi and all of its derivatives converge uniformly on
compact subsets of Rn \ {0} and of course the limit, which we call K, satisfies the
estimates (6.29).

It remains to show that K(x− y) is a kernel for the operator Tm. Let f be in S(Rn).
By the dominated convergence theorem and the Plancherel theorem, Tmεf → Tmf in L2

as ε→ 0+. By Proposition 1.24, Tmεf = Kε ∗f . Finally, if f and g have disjoint support,
then ∫

Tmf(x)g(x) dx = lim
j→∞

∫
Tmεj f(x)g(x) dx

= lim
j→∞

∫
Kεj(x− y)f(y)g(x) dx dy

=
∫
K(x− y)f(y)g(x) dx dy.
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The first equality above holds because Tmεf converges in L2, the second follows from
Proposition 1.24 and the third equality holds because of the locally uniform convergence
of K in the complement of the origin. This completes the proof that K(x− y) is a kernel
for Tm.

We can now state a corollary which is usually known as the Mikhlin multiplier theo-
rem.

Corollary 6.30 If m is a symbol of order 0, then the multiplier operator Tm is bounded
on Lp for 1 < p <∞.

We conclude with a few exercises.

Exercise 6.31 If m is infinitely differentiable in Rn \ {0} and is homogeneous of degree
0, then m is a symbol of order zero.

Exercise 6.32 Let u be the principal value distribution on the complex plane given by

u(f) = lim
ε→0+

∫
|z|>ε

f(z)

z2
dz.

Find û. (I am not sure how hard this one will be, let me know if you have a good hint.)

In the next exercise, we introduce the Laplacian ∆ =
∑n
j=1

∂2

∂x2
j
.

Exercise 6.33 Let 1 < p < ∞, n ≥ 3. If f ∈ S(Rn), then we can find a tempered
distribution u so that ∆u = f and we have the estimate

‖ ∂2u

∂xj∂xk
‖p ≤ C‖f‖p

where the constant in the estimate C depends only on p and n. Why is n = 2 different?
In two dimensions, show that we can construct u if f̂(0) = 0. (This construction can be
extended to all of the Schwartz class, but it is more delicate when f̂(0) 6= 0.)

This exercise gives an estimate for the solution of ∆u = f . This estimate follows
immediately from our work so far. We should also prove uniqueness: If u is a solution
of ∆u = 0 and u has certain growth properties, then u = 0. This is a version of the
Liouville theorem. The above inequality is not true for every solution of ∆u = f . For
example, on R2, if u(x) = ex1+ix2 , then we have ∆u = 0, but the second derivatives are
not in any Lp(R2).
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Exercise 6.34 Let 2 = ∂2

∂t2
−∆ be the wave operator which acts on functions of n + 1

variables, (x, t) ∈ Rn ×R. Can we find a solution of 2u = f and prove estimates like
those in Exercise 6.33? Why or why not?

Exercise 6.35 Show that if λ ∈ C is not a negative real number, the operator given by
m(ξ) = (λ+ |ξ|2)−1 is bounded on Lp for 1 < p <∞ and that we have the estimate

‖Tmf‖p ≤ C‖f‖p.

Find the dependence of the constant on λ.
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Chapter 7

Littlewood-Paley theory

In this chapter, we look at a particular singular integral and see how this can be used
to characterize the Lp norm of a function in terms of its Fourier transform. The theory
discussed here has its roots in the theory of harmonic functions in the disc or the up-
per half-plane. The expressions Qkf considered below, share many properties with the
2−k∇u(x′, 2−k) where u is the harmonic function in the upper-half plane xn > 0 whose
boundary values are f . Recently, many of these ideas have become part of the theory
of wavelets. The operators Qkf decompose f into pieces which are of frequency approx-
imately 2k. A wavelet decomposition combines this decomposition in frequency with a
spatial decomposition, in so far as this is possible.

7.1 A square function that characterizes Lp

We let ψ be a real-valued function in D(Rn) which is supported in {ξ : 1/2 < |ξ| < 4}
and which satisfies

∑∞
k=−∞ ψk(ξ)

2 = 1 in Rn \{0} where ψk(ξ) = ψ(ξ/2k) and we will call
ψ a Littlewood-Paley function. It is not completely obvious that such a function exists.

Lemma 7.1 A Littlewood-Paley function exists.

Proof. We take a function ψ̃ ∈ D(Rn) which is non-negative, supported in {ξ : 1/2 <
|ξ| < 4} and which is strictly positive on {ξ : 1 < |ξ| < 2}. We set

ψ(ξ) = ψ̃(ξ)/(
∞∑

k=−∞
ψ̃2(ξ/2k))0.5.
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For f in Lp, say, we can define Qkf = ψ̌k ∗ f = (ψkf̂ )̌. We define the square function
S(f) by

S(f)(x) = (
∞∑

k=−∞
|Qk(f)(x)|2)1/2.

From the Plancherel theorem, Theorem 3.2, it is easy to see that

‖f‖2 = ‖S(f)‖2 (7.2)

and of course this depends on the identity
∑
k ψ

2
k = 1. We are interested in this operator

because we can characterize the Lp spaces in a similar way.

Theorem 7.3 Let 1 < p <∞. There is a finite nonzero constant C = C(p, n, ψ) so that
if f is in Lp, then

C−1
p ‖f‖p ≤ ‖S(f)‖p ≤ Cp‖f‖p.

This theorem will be proven by considering a vector-valued singular integral. The
kernel we consider will be

K(x, y) = (. . . , 2nkψ̌(2k(x− y)), . . .).

Lemma 7.4 If ψ is in S(Rn), then the kernel K defined above is a Calderón-Zygmund
kernel.

Proof. We write out the norm of K

|K(x, y)|2 =
∞∑

k=−∞
22nk|ψ̌((2k(x− y))|2.

We choose N so that 2N ≤ |x− y| < 2N+1 and split the sum above at −N . Recall that
ψ̌ is in S(Rn) and decays faster than any polynomial. Near 0, that is for k ≤ −N , we
use that ψ̌(x) ≤ C. For k > −N , we use that ψ̌(x) ≤ C|x|−n−1. Thus, we have

|K(x, y)|2 ≤ C(
−N∑

k=−∞
22nk +

∞∑
k=−N+1

22nk(2k+N)−2(n+1)) = C2−2nN .

Recalling that 2N is approximately |x−y|, we obtain the desired upper-bound for K(x, y).
To estimate the gradient, we observe that∇xK(x, y) = (. . . , 2−(n+1)k(∇ψ̌)((x−y)2k), . . .).
This time, we will need a higher power of |x| to make the sum converge. Thus, we use
that |∇ψ̌(x)| ≤ C near the origin and |∇ψ̌(x)| ≤ C|x|−n−2. This gives that

|∇K(x)|2 ≤ C(
−N∑

k=−∞
22k(n+1) +

∞∑
k=−N+1

22k(n+1)(2k+N)−2(n+2)) = C2−2N(n+1).

Recalling that 2N is approximately |x− y| finishes the proof.
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Proof of Theorem 7.3. To establish the right-hand inequality, we fix N and consider
the map f → (ψ−N f̂ , . . . , ψN f̂ )̌ = KN ∗ f . The kernel KN is a vector-valued function
taking values in the vector space C2N+1. We observe that the conclusion of Lemma 6.18
continues to hold, if we interpret the absolute values as the norm in the Hilbert space
C2N+1, with the standard norm, |(z−N , . . . , zN)| = (

∑N
k=−N |zk|2)1/2.

As a consequence, we conclude that KN ∗ f satisfies the Lp estimate of Theorem 6.10
and we have the inequality

‖(
N∑

k=−N
|Qkf |2)1/2‖p ≤ ‖f‖p. (7.5)

We can use the monotone convergence theorem to let N →∞ and obtain the right-hand
inequality in the Theorem.

To obtain the other inequality, we argue by duality. First, using the polarization
identity, we can show that for f, g in L2,∫

Rn

∞∑
k=−∞

Qk(f)(x)Qk(g)(x) dx =
∫
Rn
f(x)ḡ(x) dx. (7.6)

Next, we suppose that f is L2∩Lp and use duality to find the Lp norm of f , the identity
(7.6), and then Cauchy-Schwarz and Hölder to obtain

‖f‖p = sup
‖g‖p′=1

∫
Rn
f(x)ḡ(x) dx = sup

‖g‖p′=1

∫
Rn

∑
Qk(f)(x)Qk(g)(x) dx ≤ ‖S(f)‖p‖S(g)‖p′ .

Now, if we use the right-hand inequality, (7.5) which we have already proven, we obtain
the desired conclusion. Note that we should assume g is in L2(Rn) ∩ Lp′(Rn) to make
use of the identity (7.2).

A straightforward limiting argument helps to remove the restriction that f is in L2

and obtain the inequality for all f in Lp.

7.2 Variations

In this section, we observe two simple extensions of the result above. These modifications
will be needed in a later chapter.

For our next proposition, we consider an operators Qk which are defined as above,
except, that we work only in one variable. Thus, we have a function ψ ∈ D(R) and
suppose that

∞∑
k=−∞

|ψ(ξn/2
k)|2 = 1.
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We define the operator f → Qkf = (ψ(ξn/2
k)f̂(ξ))̌.

Proposition 7.7 If f ∈ Lp(Rn), then for 1 < p <∞, we have

Cp‖f‖pp ≤ ‖(
∑
k

|Qkf |2)1/2‖pp ≤ Cp‖f‖pp.

Proof. If we fix x′ = (x1, . . . , xn−1), then we have that

Cp‖f(x′, ·)‖pLp(R) ≤ ‖(
∑
k

|Qkf(x′, ·)|2)1/2‖pp ≤ Cp‖f(x′, ·)‖pLp(R).

This is the one-dimensional version of Theorem 7.3. If we integrate in the remaining
variables, then we obtain the Proposition.

We will need the following Corollary for the one-dimensional operators. Of course the
same result holds, with the same proof, for the n-dimensional operator.

Corollary 7.8 If 2 ≤ p <∞, then we have

‖f‖p ≤ C(
∞∑

k=−∞
‖Qkf‖2

p)
1/2.

If 1 < p ≤ 2, then we have

(
∞∑

k=−∞
‖Qkf‖2

p)
1/2 ≤ C‖f‖p.

Proof. To prove the first statement, we apply Minkowski’s inequality bring the sum out
through an Lp/2 norm to obtain

(
∫
Rn

(
∞∑

k=−∞
|Qkf(x)|2)p/2 dx)2/p ≤

∞∑
k=−∞

‖Qkf‖2
p.

The application of Minkowski’s inequality requires that p/2 ≥ 1. If we take the square
root of this inequality and use Proposition 7.7, we obtain the first result of the Corollary.

The second result has a similar proof. To see this, we use Minkowski’s integral
inequality to bring the integral out through the `2/p norm to obtain

(
∞∑

k=−∞
(
∫
Rn
|Qkf(x)|2 dx)2/p)p/2 ≤

∫
Rn

(
∞∑

k=−∞
|Qkf(x)|2)p/2.

Now, we may take the pth root and apply Proposition 7.7 to obtain the second part of
our Corollary.



Chapter 8

Fractional integration

In this chapter, we study the fractional integration operator or Riesz potentials. To mo-
tivate these operators, we consider the following peculiar formulation of the fundamental
theorem of calculus: If f is a nice function, then

f(x) =
∫ x

−∞
f ′(t)(x− t)1−1 dt.

Thus the map g →
∫ x
−∞ g(t) dt is a left-inverse to differentiation. For α > 0, we define a

family of fractional integral operators by

I+
α f(x) =

1

Γ(α)

∫ x

−∞
f(t)(x− t)α−1 dt.

Exercise 8.1 Show that if α > 0and β > 0, then

I+
α (I+

β (f)) = I+
α+β(f).

In this section, we consider a family of similar operators in all dimensions. We will
establish the Lp mapping properties of these operators. We also will consider the Fourier
transform of the distribution given by the function |x|α−n. Using these results, we will
obtain the Sobolev inequalities.

We begin by giving an example where these operators arise in nature. This exercise
will be much easier to solve if we use the results proved below.

Exercise 8.2 If f is in S(Rn), then

f(x) =
1

(2− n)ωn−1

∫
Rn

∆f(y)|x− y|2−n dy.
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Exercise 8.3 If f is in S(R2) and ∂̄f(x) = 1
2
( ∂f
∂x1

+ i ∂f
∂x2

, show that

f(x) =
1

π

∫
R2

∂̄f(y)

x− y
dy.

8.1 The Hardy-Littlewood-Sobolev theorem

The operators we consider in Rn are the family of Riesz potentials

Iα(f)(x) = γ(α, n)
∫
Rn
f(y)|x− y|α−n (8.4)

for α satisfying 0 < α < n. The constant, γ(α, n) is given by

γ(α, n) =
2n−αΓ((n− α)/2)

(4π)n/2Γ(α/2)
.

The condition α > 0 is needed in order to guarantee that |x|α−n is locally integrable.
Our main goal is to prove the Lp mapping properties of the operator Iα. We first observe
that the homogeneity properties of this operator imply that the operator can map Lp to
Lq only if 1/p − 1/q = α/n. By homogeneity properties, we mean: If r > 0 and we let
δrf(x) = f(rx) be the action of dilations on functions, then we have

Iα(δrf) = r−αδr(Iαf). (8.5)

This is easily proven by changing variables. This observation is essential in the proof of
the following Proposition.

Proposition 8.6 If the inequality

‖Iαf‖q ≤ C‖f‖p

holds for all f in S(Rn) and a finite constant C, then

1

p
− 1

q
=
α

n
.

Proof. Observe that we have ‖δrf‖p = r−n/p‖f‖p. This is proven by a change of variables
if 0 < p < ∞ and is obvious if p = ∞. (Though we will never refer to the case p < 1,
there is no reason to restrict ourselves to p ≥ 1.) Next, if f is in S(Rn), then by (8.5)

‖Iα(δrf)‖q = r−α‖δr(Iαf)‖q = r−α−n/q‖Iαf‖q.
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Thus if the hypothesis of our proposition holds, we have that for all Schwartz functions
f and all r > 0, that

r−α−n/q‖Iαf‖q ≤ C‖f‖pr−n/p.
If ‖Iαf‖q 6= 0 then the truth of the above inequality for all r > 0 implies that the
exponents on each side of the inequality must be equal. If f 6= 0 is non-negative, then
Iαf > 0 everywhere and hence ‖Iαf‖q > 0 and we can conclude the desired relation on
the exponents.

Next, we observe that the inequality must fail at the endpoint p = 1. This follows by
choosing a nice function with

∫
φ = 1. Then with φε(x) = ε−nφ(x/ε), we have that as

ε→ 0+,
Iα(φε)(x)→ γ(α, n)|x|α−n.

If the inequality ‖Iαφε‖n/(n−α) ≤ C‖φε‖1 = C holds uniformly as ε, then Fatou’s Lemma
will imply that |x|α−n lies in Ln/(n−α) , which is false.

Exercise 8.7 Show that Iα : Lp → Lq if and only if Iα : Lq
′ → Lp

′
. Hence, we can

conclude that Iα does not map Ln/α to L∞.

Exercise 8.8 Can you use dilations, δr to show that the inequality

‖f ∗ g‖r ≤ ‖f‖p‖g‖q

can hold only if 1/r = 1/p+ 1/q − 1?

Exercise 8.9 Show that the estimate

‖∇f‖p ≤ C‖f‖q

can not hold. That is if we fix p and q, there is no constant C so that the above inequality
is true for all f in the Schwartz class. Hint: Let f(x) = η(x)eiλx1 where η is a smooth
bump.

We now give the positive result. The proof we give is due Lars Hedberg [9]. The
result was first considered in one dimension (on the circle) by Hardy and Littlewood.
The n-dimensional result was considered by Sobolev.

Theorem 8.10 (Hardy-Littlewood-Sobolev) If 1/p − 1/q = α/n and 1 < p < n/α, then
there exists a constant C = C(n, α, p) so that

‖Iαf‖q ≤ C‖f‖p.

The constant C satisfies C ≤ C(α, n) min((p− 1)−(1−α
n

), (α
n
− 1

p
)−(1−α

n
)).
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Proof of Hardy-Littlewood-Sobolev inequality. We may assume that the Lp norm of f
satisfies ‖f‖p = 1. We consider the integral defining Iα and break the integral into sets
where |x− y| < R and |x− y| > R:

Iαf(x) ≤ γ(α, n)

(∫
BR(x)

|f(y)|
|x− y|n−α

dy +
∫
Rn\BR(x)

|f(y)|
|x− y|n−α

dy

)
≡ γ(α, n)(I + II).

By Proposition 5.12, we can estimate

I(x,R) ≤Mf(x)ωn−1

∫ R

0
rα−nrn−1 dr = Mf(x)

Rα

α
ωn−1

where we need that α > 0 for the integral to converge. To estimate the second integral,
II(x,R), we use Hölder’s inequality to obtain

II(x,R) ≤ ‖f‖pω1/p′

n−1

(∫
r>R

r(α−n)p′+n−1 dr
)1/p′

= ‖f‖pω1/p′

n−1

(
R(α−n)p′+n

(α− n)p′ + n)

)1/p′

= ‖f‖pω1/p′

n−1

Rα−n
p

((α− n)p′ + n)1/p′

where we need α < n/p for the integral in r to converge. Using the previous two
inequalities and recalling that we have set ‖f‖p = 1, we have constants C1 and C2 so
that

|Iα(f)(x)| ≤ C1R
αMf(x) + C2R

α−n
p . (8.11)

If we were dedicated analysts, we could obtain the best possible inequality (that this
method will give) by differentiating with respect to R and using one-variable calculus
to find the minimum value of the right-hand side of (8.11). However, we can obtain an
answer which is good enough by choosing R = Mf(x)−p/n. We substitute this value of
R into (8.11) and obtain

|Iαf(x)| ≤ (C1 + C2)Mf(x)1−αn/p

and if we raise this inequality to the power pn/(n− αp) we obtain

|Iαf(x)|np/(n−αp) ≤ (C1 + C2)np/(n−αp)Mf(x)p.

Now, if we integrate and use the Hardy-Littlewood theorem Theorem 5.11 we obtain the
conclusion of this theorem.
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Exercise 8.12 The dependence of the constants on p, α and n is probably not clear from
the proof above. Convince yourself that the statement of the above theorem is correct.

Exercise 8.13 In this exercise, we use the behavior of the constants in the Hardy-
Littlewood-Sobolev theorem, Theorem 8.10, to obtain an estimate at the endpoint, p =
n/α.

Suppose that f is in Ln/α and f = 0 outside B1(0). We know that, in general, Iαf is
not in L∞. The following is a substitute result. Consider the integral

∫
B1(0)

exp([ε|Iαf(x)|n/(n−α)]) dx =
∞∑
k=1

1

k!
εnk/(n−kα)

∫
B1(0)
|Iαf(x)|

kn
n−α dx.

Since f is in Ln/α and f is zero outside a ball of radius 1, we have that f is in Lp(Rn) for
all p < n/α. Thus, Iαf is in every Lq-space for ∞ > q > n/(n − α). Hence, each term
on the right-hand side is finite. Show that in fact, we can sum the series for ε small.

Exercise 8.14 If α is real and 0 < α < n, show by example that Iα does not map Ln/α

to L∞. Hint: Consider a function f with f(x) = |x|−α(− log |x|)−1 if |x| < 1/2.

Next, we compute the Fourier transform of the tempered distribution γ(α, n)|x|α−n.
More precisely, we are considering the Fourier transform of the tempered distribution

f → γ(α, n)
∫
Rn
|x|α−nf(x) dx.

Theorem 8.15 If 0 < Reα < n, then

γ(α, n)(|x|α−n)̂ = |ξ|−α.

Proof. We let η(|ξ|) be a standard cutoff function which is 1 for |ξ| < 1 and 0 for |ξ| > 2.
We set mε(ξ) = η(|ξ|ε)(1 − η(|ξ|/ε))|ξ|−α. The multiplier mε is a symbol of order −α
uniformly in ε. Hence, by the result Lemma 6.27 of Chapter 6, we have that Kε = m̌ε

satisfies the estimates

| ∂
β

∂xβ
Kε(x)| ≤ C(α, β)|x|α−n−|β|. (8.16)

Hence, applying the Arzela-Ascoli theorem we can extract a sequence {εi} with εi → 0
so that Kεi converges uniformly to some function K on each compact subset of Rn \ {0}.
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We choose f in S(Rn) and recall the definition of the Fourier transform of a distribution
to obtain ∫

Rn
K(x)f̂(x) dx = lim

j→∞

∫
Kεj(x)f̂(x) dx

= lim
j→∞

∫
mεj(ξ)f(ξ) dξ

=
∫
|ξ|−αf(ξ) dξ.

The first equality depends on the uniform estimate for Kε in (8.16) and the locally
uniform convergence of the sequence Kεj . Thus, we have that K̂(ξ) = |ξ|−α in the sense
of distributions. Note that each mε is radial. Hence, Kε and thus K is radial. See
Chapter 1.

Our next step is to show that the kernel K is homogeneous:

K(Rx) = Rα−nK(x). (8.17)

To see this, observe that writing K = limj→∞Kεj again gives that∫
Rn
K(Rx)f̂(x) dx = lim

j→∞

∫
Rn
Kεj(Rx)f̂(x) dx

= R−n lim
j→∞

∫
Rn
mεj(ξ/R)f(ξ) dξ = Rα−n

∫
Rn
|ξ|α−nf(ξ) dξ

= Rα−n
∫
K(x)f̂(x) dx.

This equality for all f in S(Rn) implies that (8.17) holds. If we combine the homogeneity
with the rotational invariance of K observed above, we can conclude that

m̌(x) = c|x|α−n.
It remains to compute the value of c. To do this, we only need to find one function where
we can compute the integrals explicitly. We use the friendly gaussian. We consider

c
∫
|x|α−ne−|x|2 dx = (4π)−n/2

∫
|ξ|−αe−|ξ|2/4 dξ = 2n−α(4π)−n/2

∫
|ξ|−αe−|ξ|2 dξ. (8.18)

Writing the integrals in polar coordinates, substituting s = r2, and then recalling the
definition of the Gamma function, we obtain∫

Rn
|x|−βe−|x|2 dx = ωn−1

∫ ∞
0

rn−βe−r
2 dr

r

=
ωn−1

2

∫ ∞
0

s(n−β)/2e−s
ds

s

=
1

2
Γ(
n− β

2
)ωn−1.
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Using this to evaluate the two integrals in (8.18) and solving for c gives

c =
2n−αΓ((n− α)/2)

(4π)n/2Γ(α/2)
.

We give a simple consequence.

Corollary 8.19 For f in S(Rn), we have

Iα(f) = (f̂(ξ)|ξ|−α)̌.

A reader who is not paying much attention, might be tricked into thinking that this
is just an application of Proposition 1.24. Though I like to advocate such sloppiness, it
is traditional to be a bit more careful. Note that Proposition 1.24 does not apply to the
study of Iαf because Iαf is not the convolution of two L1 functions. A proof could be
given based on approximating the multiplier |ξ|−α by nice functions. This result could
have appeared in Chapter 2. However, we prefer to wait until it is needed to give the
proof.

Proposition 8.20 If u is a tempered distribution and f is a Schwartz function, then

(f ∗ u)̂ = f̂ û.

Proof. Recall the definition for convolutions involving distributions that appeared in
Chapter 2. By this and the definition of the Fourier transform and inverse Fourier
transform, we have

(f ∗ u)̂(g) = f ∗ u(ĝ) = ˇ̂u(f̃ ∗ ĝ) = û((f̃ ∗ ĝ)̌).

Now, we argue as in the proof of Proposition 1.24 and use the Fourier inversion theorem,
1.32 to obtain

(f̃ ∗ ĝ)̌(x) = (2π)−n
∫
R2n

f(ξ − η)ĝ(η)eix·((ξ−η+η)) dξdη = f̂(x)g(x).

Thus, we have (f ∗ u)̂(g) = û(f̂ g) = (f̂ û)(g).

Proof of Corollary 8.19. This is immediate from Theorem 8.15 which gives the Fourier
transform of the distribution given by γ(α, n)|x|α−n and the previous proposition.
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8.2 A Sobolev inequality

Next step is to establish an inequality relating the Lq-norm of a function f with the
Lp-norm of its derivatives. This result, known as a Sobolev inequality is immediate from
the Hardy-Littlewood-Sobolev inequality, once we have a representation of f in terms of
its gradient.

Lemma 8.21 If f is a Schwartz function, then

f(x) =
1

ωn−1

∫
Rn

∇f(y) · (x− y)

|x− y|n
dy.

Proof. We let z′ ∈ Sn−1 and then write

f(x) = −
∫ ∞

0

d

dt
f(x+ tz′) dt = −

∫ ∞
0

z′ · (∇f)(x+ tz′) dt.

If we integrate both sides with respect to the variable z′, and then change from the polar
coordinates t and z′ to y which is related to t and z′ by y − x = tz′, we obtain

ωn−1f(x) = −
∫
Sn−1

∫ ∞
0

z′ ·∇f(x+ tz′)tn−1+1−n dt dz′ =
∫
Rn

x− y
|x− y|

·∇f(y)
1

|x− y|n−1
dy.

This gives the conclusion.

Theorem 8.22 If 1 < p < n (and thus n ≥ 2), f is in the Sobolev space Lp,1 and q is
defined by 1/q = 1/p− 1/n, then there is a constant C = C(p, n) so that

‖f‖q ≤ C‖∇f‖p.

Proof. According to Lemma 8.21, we have that for nice functions,1

|f(x)| ≤ I1(|∇f |)(x).

Thus, the inequality of this theorem follows from the Hardy-Littlewood-Sobolev theorem
on fractional integration. Since the Schwartz class is dense in the Sobolev space, a routine
limiting argument extends the inequality to functions in the Sobolev space.

1This assumes that ω−1
n−1 = γ(1, n), which I have not checked.
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The Sobolev inequality continues to hold when p = 1. However, the above argument
fails. The standard argument for p = 1 is an ingenious argument due to Gagliardo, see
Stein [19, pp. 128-130] or the original paper of Gagliardo [7].

Exercise 8.23 If p > n, then the Riesz potential, I1 produces functions which are in
Hölder continuous of order γ = 1− (n/p). If 0 < γ < 1, define the Hölder semi-norm by

‖f‖Cγ = sup
x 6=y

|f(x)− f(y)|
|x− y|γ

,

a) Show that if f is a Schwartz function, then ‖I1(f)‖Cγ ≤ C‖f‖p provided p > n and
γ = 1 − (n/p). b) Generalize to Iα. c) The integral defining I1(f) is not absolutely
convergent for all f in Lp if p > n. Show that the differences I1f(x) − I1f(y) can be
expressed as an absolutely convergent integral. Conclude that if f ∈ Lp,1, then f ∈ Cγ

for γ and p as above.

Exercise 8.24 Show by example that the Sobolev inequality, ‖f‖∞ ≤ C‖∇f‖n fails if
p = n and n ≥ 2. Hint: For appropriate a, try f with f(x) = η(x)(− log |x|)a with η a
smooth function which is supported in |x| < 1/2.

Exercise 8.25 Show that there is a constant C = C(n) so that if g = I1(f), then

sup
r>0,x∈Rn

1

m(Br(x)

∫
Br(x)

|g(x)− (g)r,x| dx ≤ C‖f‖n.

Here, (f)r,x denotes the average of f on the ball Br(x).

(f)r,x =
1

Br(x)

∫
Br(x)

f(y) dy.

Exercise 8.26 Show that in one dimension, we have the inequality ‖f‖∞ ≤ ‖f ′‖1 for
nice f . State precise hypotheses that f must satisfy.

We now consider an operator in two-dimensions that will be of interest in a few
chapters. In the next two exercises, we will use a complex variable x = x1 + ix2 to denote
a point in R2.

Exercise 8.27 We define the Cauchy transform of a Schwartz function by

gf(x) =
1

π

∫
C

f(y)

x− y
dy.
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a) Let u denote the distribution given by

u(f) =
1

π

∫ f(y)

y
dy.

Verify that if we use the definition of the convolution of a tempered distribution and test
function as in Chapter 3, we have

u ∗ f(g) =
∫
g(f)(x)h(x) dx.

b) For f in S(R2), show that

∂̄g(f)(x) = f(x).

c) If f is in Lp for 1 < p < 2, show that we have

∂̄gf = f

where we identify Cf with the distribution h→
∫
Cf(x)h(x) dx.

d) If f is a Schwartz function, show that we have

∂g(f)(x) = lim
ε→0+

1

π

∫
|x−y|>ε

f(y)

(x− y)2
dy.

Here, ∂ = 1
2
( ∂
∂x1
− i ∂

∂x2
). We define the Beurling operator by Bf(x) = ∂g(f)(x).

e) Show that we have

B̂f(ξ) =
ξ̄

ξ
f̂(ξ).

Again, we are using the complex variable ξ = ξ1 + iξ2 to denote a point in R2. Conclude
that ‖Bf‖p ≤ Cp‖f‖p, for 1 < p <∞.

f) Suppose f is in S(R2). Show that∫
R2
|∂̄f |2 dx =

∫
R2
|∂f |2 dx.

Hint: Integrate by parts.

Exercise 8.28 The functions of bounded mean oscillation are the class of functions for
which the expression

‖f‖∗ = sup{
∫
B
|f(x)− fB| dx}
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is finite. Here, fB denotes the average of f on B. The supremum is taken over all balls
in Rn.

Note that in general, the expression ‖f‖∗ will not be a norm but only a seminorm.
If f is a Schwartz function on R2, show that

‖Cf‖∗ ≤ C‖f‖2.
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Chapter 9

Singular multipliers

In this section, we establish estimates for an operator whose symbol is singular. The
results we prove in this section are more involved than the simple L2 multiplier theorem
that we proved in Chapter 3. However, roughly speaking what we are doing is taking
a singular symbol, smoothing it by convolution and then applying the L2 multiplier
theorem. As we shall see, this approach gives estimates in spaces of functions where we
control the rate of increase near infinity. Estimates of this type were proven by Agmon
and Hörmander. The details of our presentation are different, but the underlying ideas
are the same.

9.1 Estimates for an operator with a singular symbol

For the next several chapters, we will be considering a differential operator,

∆ + 2ζ · ∇ = e−x·ζ∆ex·ζ

where ζ ∈ Cn satisfies ζ · ζ =
∑n
j=1 ζjζj = 0.

Exercise 9.1 Show that ζ ∈ Cn satisfies ζ · ζ = 0 if and only if ζ = ξ + iη where ξ and
η are in Rn and satisfy |ξ| = |η| and ξ · η = 0.

Exercise 9.2 a) Show that ∆ex·ζ = 0 if and only if ζ · ζ = 0. b) Find conditions on
τ ∈ R and ξ ∈ Rn so that eτt+x·ξ satisfies

(
∂2

∂t2
−∆)etτ+x·ξ = 0.

77
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The symbol of this operator is

−|ξ|2 + 2iζ · ξ = | Im ζ|2 − | Im ζ + ξ|2 + 2iRe ζ · ξ.

Thus it is clear that this symbol vanishes on a sphere of codimension 2 which lies in the
hyperplane Re ζ · ξ = 0 and which has center − Im ζ and radius | Im ζ|. Near this sphere,
the symbol vanishes to first order. This means that the reciprocal of the symbol is locally
integrable. In fact, we have the following fundamental estimate.

Lemma 9.3 If η ∈ Rn and r > 0 then there exists a constant C depending only on the
dimension n so that ∫

Br(η)

∣∣∣∣∣ 1

−|ξ|2 + 2iζ · ξ

∣∣∣∣∣ dξ ≤ Crn−1

|ζ|
.

Proof. We first observe that we are trying to prove a dilation invariant estimate, and we
can simplify our work by scaling out one parameter. If we make the change of variables,
ξ = |ζ|x, we obtain∫

Br(η)

∣∣∣∣∣ 1

−|ξ|2 + 2iζ · ξ

∣∣∣∣∣ dξ = |ζ|n−2
∫
Br/|ζ|(η/|ζ|)

1

−|x|2 + 2ζ̂ · x
dx

where ζ̂ = ζ/|ζ|. Thus, it suffices to consider the estimate when |ζ| = 1 and we assume
below that we have |ζ| = 1.

We also, may make rotation ξ = Ox so that Ot Re ζ = e1/
√

2, with e1 the unit vector
in the x1 direction and Ot Im ζ = e2/

√
2. Then, we have that∫

Br(η)

∣∣∣∣∣ 1

−|ξ|2 + 2iζ · ξ

∣∣∣∣∣ dξ =
∫
Br(Otη)

∣∣∣∣∣ 1

−|x|2 + 2iOtζ · x

∣∣∣∣∣ dx.
Thus, it suffices to prove the Lemma in the special case when ζ = (e1 + ie2)/

√
2.

We let Σζ = {ξ : −|ξ|2 + 2iζ · ξ = 0} be the zero set of the symbol.
Case 1. The ball Br(η) satisfies r < 1/100, dist(η,Σζ) < 2r. In this case, we make

an additional change of variables. We rotate in the variables (ξ2, . . . ξn) about the center
of Σζ , −e1/

√
2, so that η is within 2r units of the origin. We can find a ball B3r of radius

3r and centered 0 in Σζ so that Br(η) ⊂ B3r Now, we use coordinates x1 = Re ζ · ξ,
x2 = | Im ζ|2 − | Im ζ + ξ|2 and xj = ξj for j = 3, . . . , n. We leave it as an exercise to
compute the Jacobian and show that it is bounded above and below on Br(η). This gives
the bound∫

B3r

∣∣∣∣∣ 1

−|ξ|2 + 2iζ · ξ

∣∣∣∣∣ dξ ≤ C
∫
BCr(0)

1

|x1 + ix2|
dx1 dx2 . . . dxn = Crn−1.
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1
ξ

ξ

ξ
2

3

ζΣ

Case 2. We have Br(η) with dist(η,Σζ) > 2r. In this case, we have

sup
ξ∈Br(η)

1

| − |ξ|2 + 2iζ · ξ|
≤ C/r

and the Lemma follows in this case.
Case 3. The ball Br(η) satisfies r > 1/100 and dist(η,Σζ) < 2r.
In this case, write Br(η) = B0 ∪B∞ where B0 = Br(η)∩B4(0) and B∞ = Br(η) \B0.

By case 1 and 2, ∫
B0

1

| − |ξ|2 + 2iζ · ξ|
dξ ≤ C.

Since B4(0) contains the set Σζ , one can show that

1

| − |ξ|2 + 2iζ · ξ|
≤ C/|ξ|2

on B∞ and integrating this estimate gives∫
B∞

1

| − |ξ|2 + 2iζ · ξ|
dξ ≤ Crn−2.

Since r > 1/100, the estimates on B0 and B∞ imply the estimate of the Lemma in this
case.
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As a consequence of this Lemma, we can define the operator Gζ : S(Rn) → S ′(Rn)
by

Gζf =

(
f̂(ξ)

−|ξ|2 + 2iξ · ζ

)
ˇ

Lemma 9.4 The map Gζ is bounded from S(Rn) to S ′(Rn) and we have

(∆ + 2ζ · ∇)Gζf = Gζ(∆ + 2ζ · ∇)f = f

if f ∈ S(Rn).

Proof. According to the previous lemma, the symbol of Gζ satisfies the growth condition
of Example 2.25 in Chapter 2. Hence Gζf is in S ′(Rn). The remaining results rely on
the Proposition 1.18 of Chapter 11.

It is not enough to know that Gζf is a tempered distribution. We would also like
to know that the map Gζ is bounded between some pair of Banach spaces. This will be
useful when we try to construct solutions of perturbations of the operator ∆ + 2ζ · ∇.
The definition of the spaces we will use appears similar to the Besov spaces and the
Littlewood-Paley theory in Chapter 7. However, now we are decomposing f rather than
f̂ . To define these spaces, we let

Bj = B2j(0)

and then put Rj = Bj \Bj−1. We let Ṁp,s
q (Rn) denote the space of functions u for which

the norm

‖u‖Ṁp,s
q

=

 ∞∑
k=−∞

[
2ks‖u‖Lp(Rk)

]q1/q

<∞.

Also, we let Mp,s
q be the space of measurable functions for which the norm

‖u‖Mp,s
q

=

(
‖u‖qLp(B0) +

∞∑
k=1

[
2ks‖u‖Lp(Rk)

]q)1/q

.

These definitions are valid for 0 < p ≤ ∞, s ∈ R and 0 < q <∞. We will also need the
case when q =∞ and this is defined by replacing the `q norm of the sequence 2ks‖u‖Lp(Rk)

by the supremum. Our primary interests are the spaces where p = 2, q = 1 and s = 1/2
and the space where p = 2, q = ∞ and s = −1/2. The following exercises give some
practice with these spaces.

1There is a sign error in the version of this Proposition handed out in class.
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Exercise 9.5 For which a do we have

(1 + |x|2)a/2 ∈M2,1/2
∞ (Rn).

Exercise 9.6 Show that if r ≥ q, then

M2,s
q ⊂M2,s

r .

Exercise 9.7 Show that if s > 0, then

M2,s
1 ⊂ Ṁ2,s

1 .

Exercise 9.8 Let T be the multiplication operator

Tf(x) = (1 + |x|2)−(1+ε)/2f(x).

Show that if ε > 0, then

T : M2,−1/2
∞ →M

2,1/2
1 .

Exercise 9.9 Show that we have the inclusion M
2,1/2
1 ⊂ L2(Rn, dµs) where dµs = (1 +

|x|2)2sdx. This means that we need to establish that for some C depending on n and s,
we have the inequality

‖u‖L2(B0) +
∞∑
k=1

‖u‖L2(Rk) ≤ C(
∫
Rn
|u(x)|2(1 + |x|2)s dx)1/2

Hint: The integral on Rn dominates the integral on each ring. On each ring, the
weight changes by at most a fixed factor. Thus, it makes sense to replace the weight by
its smallest value. This will give an estimate on each ring that can be summed to obtain
the M

2,1/2
1 norm.

The main step of our estimate is the following lemma.

Lemma 9.10 Let ψ and ψ′ are Schwartz functions on Rn and set ψk(x) = ψ(2−kx) and
ψ′j(x) = ψ′(2−jx). We define a kernel K : Rn ×Rn → C by

K(ξ1, ξ2) =
∫
Rn

ψ̂′j(ξ1 − ξ)ψ̂k(ξ − ξ2)

−|ξ|2 + 2iζ · ξ
dξ.
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Then there is a constant C so that

sup
ξ1

∫
|K(ξ1, ξ2)| dξ2 ≤

C2j

|ζ|
(9.11)

sup
ξ2

∫
|K(ξ1, ξ2)| dξ1 ≤

C2k

|ζ|
. (9.12)

As a consequence, the operator Tj,k given by

Tj,kf(ξ1) =
∫
K(ξ1, ξ2)f(ξ2) dξ2

satisfies

‖Tj,kf‖p ≤
C

|ζ|
2k/p2j/p

′
. (9.13)

Proof. Observe that ψ̂k(ξ) = 2knψ̂(ξ2k) = (ψ̂)2−k(ξ). Thus, ‖ψ̂k‖1 is independent of k.
Since ψ ∈ S(Rn), we have that ‖ψ̂‖1 is finite. Thus if we use Tonelli’s theorem, we have

∫
Rn
|K(ξ1, ξ2)| dξ2 ≤ ‖ψ̂‖1

∫ |ψ̂′j(ξ1 − ξ)|
| − |ξ|2 + 2iζ · ξ|

dξ.

To estimate the integral on the right of this inequality, we break the integral into rings
centered at ξ1 and use that ψ̂′ decays rapidly at infinity so that, in particular, we have
ψ̂′(ξ) ≤ C min(1, |ξ|−n). Then applying Lemma 9.3 gives us

∫ |ψ̂′j(ξ1 − ξ)|
| − |ξ|2 + 2iζ · ξ|

dξ ≤ ‖ψ̂‖∞2nj
∫
B

2−j (ξ1)

1

| − |ξ|2 + 2iζ · ξ|
dξ

+
∞∑
l=1

C2nj2−n(j−l)
∫
B

2−j+l (ξ1)\B
2−j+l−1 (ξ1)

1

| − |ξ|2 + 2iζ · ξ|
dξ

≤ C

|ζ|
2j
∞∑
l=0

2−l.

This gives the first estimate (9.11). The second is proven by interchanging the roles of
ξ1 and ξ2. The estimate (9.11) gives a bound for the operator norm on L∞. The estimate
(9.12) gives a bound for the operator norm on L1. The bound for the operator norm on
Lp follows by the Riesz-Thorin interpolation theorem, Theorem 4.1. See exercise 4.5.
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Exercise 9.14 Show that it suffices to prove the following theorem for |ζ| = 1. That is,
show that if the theorem holds when |ζ| = 1, then by rescaling, we can deduce that the
result holds for all ζ with ζ · ζ = 0.

Exercise 9.15 The argument given should continue to prove an estimate as long as Re ζ
and Im ζ are both nonzero. Verify this and show how the constants depend on ζ.

Theorem 9.16 The map Gζ satisfies

sup
j

2−j/2‖Gζf‖L2(Bj) ≤
C

|ζ|
‖f‖

Ṁ
2,1/2
1

and

sup
j

2−j/2‖Gζf‖L2(Bj) ≤
C

|ζ|
‖f‖

M
2,1/2
1

.

Proof. We first suppose that f is in the Schwartz space. We choose ψ ≥ 0 as in Chapter
7 so that suppψ ⊂ {x : 1/2 ≤ x ≤ 2} and with ψk(x) = ψ(2−kx), we have

∞∑
k=−∞

ψ2
k = 1, in Rn \ {0}.

We let φ = 1 if |x| < 1, φ ≥ 0, φ ∈ D(Rn) and set φj(x) = φ(2−jx). We decompose f
using the ψk’s to obtain

φjGζf =
∞∑

k=−∞
φjGζψ

2
kf.

The Plancherel theorem implies that

‖φjGζ(ψ
2
kf)‖2

2 = (2π)−n
∫
|Tj,kψ̂kf |2 dξ.

Here, the operator Tj,k is as in the previous lemma but with ψ replaced by φ and ψ′

replaced by ψ. Hence, from Lemma 9.10 we can conclude that

‖φjGζψ
2
kf‖2 ≤

C

|ζ|
2j/22k/2

∑
|`|≤1

‖ψk+`f‖2. (9.17)

Now, using Minkowski’s inequality, we have

‖Gζf‖L2(Bj) ≤ C
∑

k=−∞∞
‖φjGζψ

2
kf‖L2(Rn). (9.18)
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The first conclusion of the theorem now follows from (9.17) and (9.18).
The estimate in the inhomogeneous space follows by using Cauchy-Schwarz to show

0∑
k=−∞

2k/2‖f‖L2(Rk) ≤

 0∑
k=−∞

‖f‖2
L2(Rk)

1/2 0∑
k=−∞

2k/2

1/2

=

( √
2√

2− 1

)1/2

‖f‖L2(B0).

Finally, to remove the restriction that f is in the Schwartz space, we observe that the
Lemma below tells us that Schwartz functions are dense in Ṁ

2,1/2
1 and M

2,1/2
1 .

Lemma 9.19 We have that S(Rn) ∩ Ṁ2,1/2
1 is dense in Ṁ

2,1/2
1 and S(Rn) ∩M2,1/2

1 is

dense in Ṁ
2,1/2
1 .

Proof. To see this, first observe that if we pick f in Ṁ
2,1/2
1 and define

fN(x) =

{
0, |x| < 2−N or |x| > 2N

f(x), 2−N ≤ |x| ≤ 2N

then fN converges tof in Ṁ
2,1/2
1 . Next, if we regularize with a standard mollifier, then

fN,ε = fN ∗ ηε converges to fN in L2. If we assume that η is supported in the unit ball,
then for ε < 2−N−1, fN,ε will be supported in the shell {x : 2−N−1 ≤ |x| ≤ 2N+1}. For
such functions, we may use Cauchy-Schwarz to obtain

‖fN − fN,ε‖Ṁ2,1
1
≤

 N+1∑
k=−N

‖fN,ε − fN‖2
L2(Rk)

1/2 N+1∑
k=−N

2k

1/2

= C‖fN − fN,ε‖2.

Hence, for functions supported in compact subsets of Rn \ {0}, the L2 convergence of

fN,ε to fN implies convergence in the space Ṁ
2,1/2
1 . Approximation in M

2,1/2
1 is easier

since we only need to cut off near infinity.

Exercise 9.20 Are Schwartz functions dense in M2,−1/2
∞ ?

Exercise 9.21 Use the ideas above to show that

sup
j

2−j/2‖∇Gζf‖L2(Bj) ≤ C‖f‖
Ṁ

2,1/2
1

.

Hint: One only needs to find a replacement for Lemma 9.3.

Exercise 9.22 Use the ideas above to show that Iα : Ṁ
2,α/2
1 → Ṁ2,−α/2

∞ . Hint: Again,
the main step is to find a substitute for Lemma 9.3.
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Finally, we establish uniqueness for the equation ∆u + 2ζ · ∇u = 0 in all of Rn. In
order to obtain uniqueness, we will need some restriction on the growth of u at infinity.

Theorem 9.23 If u in L2
loc and satisfies

lim
j→∞

2−j‖u‖L2(Bj(0)) = 0

and ∆u+ 2ζ · ∇u = 0, then u = 0.

The following is taken from Hörmander [11], see Theorem 7.1.27.

Lemma 9.24 If u is a tempered distribution which satisfies

lim sup
R→∞

R−d‖u‖L2(BR(0)) = M <∞

and û is supported in a compact surface S of codimension d, then there is a function
u0 ∈ L2(S) so that

û(φ) =
∫
S
φu0dσ

and ‖u0‖L2(S) ≤ CM .

Proof. We choose φ ∈ D(Rn), suppφ ⊂ B1(0), φ even,
∫
φ = 1 and consider û ∗ φε. By

Plancherel’s theorem, we have that∫
|û ∗ φ2−j |2 dξ =

∫
|φ̂(2−jx)u(x)|2 dx ≤ C2−djM2.

To establish this, we break the integral into the integral over the unit ball and integrals
over shells. We use that φ̂ is in S(Rn) and satisfies |φ̂(x)| ≤ C min(1, |x|−(d+1)). For j
large enough so that 2−jd‖u‖L2(Bj) ≤ 2M , we have

∫
|φ̂(2−jx)|2|u(x)|2 dx ≤

∫
Bj
|u(x)|2 dx+

∞∑
k=j

∫
Rk+1

|φ̂(2−jx)|2|u(x)|2 dx

≤ C22jd4M2 + C22j(d+1)
∞∑
k=j

2−2k4M2 = CM22dj.

If we let Sε = {ξ : dist(ξ, suppS) < ε} and ψ is in the Schwartz class, then we have∫
S
|ψ(x)|2 dσ = Cd lim

ε→0+
ε−d

∫
Sε
|ψ(x)|2 dx.
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Since φε ∗ ψ → ψ in S, we have

û(ψ) = lim
j→∞

û(φ2−j ∗ ψ).

Then using Cauchy-Schwarz and the estimate above for u ∗ φ2−j , we obtain

|û(ψ ∗ φ2−j)| = |
∫
S

2−j
û ∗ φ2−j(x)ψ(x) dx| ≤ CM2jd(

∫
S

2−j
|ψ(x)|2 dx)1/2.

If we let ε → 0+, we obtain that |û(ψ)| ≤ CM‖ψ‖L2(S). This inequality implies the
existence of u0.

Now we can present the proof of our uniqueness theorem.

Proof of Theorem 9.23. Since ∆u+ 2ζ · ∇u = 0, we can conclude that the distribution
û is supported on the zero set of −|ξ| + 2iζ · ξ, a sphere of codimension 2. Now the
hypothesis on the growth of the L2 norm and the previous lemma, Lemma 9.24 imply
that û = 0.

Corollary 9.25 If f is in M
2,1/2
1 , then there is exactly one solution u of

∆u+ 2ζ · ∇u = f

which lies in M2,−1/2
∞ . This solution satisfies

|ζ|‖u‖
M

2,−1/2
∞

+ ‖∇u‖
M

2,−1/2
∞

≤ C‖f‖
M

2,1/2
1

.

Proof. The existence follows from Theorem 9.16 and exercise 9.21. If u is in M2,−1/2
∞ ,

then we have u is in L2
loc and that

lim
j→∞

2−αj‖u‖L2(B
2j

(0) = 0

if α > 1/2. Thus, the uniqueness follows from Theorem 9.23.
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9.2 A trace theorem.

The goal of this section is to provide another application of the ideas presented above.
The result proven will not be used in this course. Also, this argument will serve to
introduce a technical tool that will be needed in Chapter 14.

We begin with a definition of a Ahlfors condition. We say that a Borel measure µ
in Rn satisfies an Ahlfors condition if for some constant A it satisfies µ(Br(x)) ≤ Arn−1.
This is a property which is satisfied by surface measure on the boundary of a C1-domain
as well as by surface measure on a graph {(x′, xn) : xn = φ(x′)} provided that the
‖∇φ‖∞ <∞.

Our main result is the following theorem.

Theorem 9.26 If f is in S(Rn) and µ satisfies the Ahlfors condition, then there is a
constant C so that ∫

Rn
|û(ξ)|2 dµ ≤ C‖u‖2

Ṁ
2,1/2
1

.

This may seem peculiar, but as an application, we observe that this theorem implies
a trace theorem for Sobolev spaces.

Corollary 9.27 If µ satisfies the Ahlfors condition and s > 1/2 then we have∫
Rn
|u|2 dµ ≤ C‖u‖2

L2
s(R

n).

Proof. First assume that u ∈ S(Rn). Applying the previous theorem to ǔ(x) =
(2π)−nû(−x) gives that ∫

|u|2 dµ(x) ≤ C‖û‖
Ṁ

2,1/2
1

.

It is elementary (see exercise 9.9), to establish the inequality

‖v‖
M

2,1/2
1
≤ Cs

∫
Rn
|v(x)|2(1 + |x|2)s dx

when s > 1/2. Also, from exercise 9.7 or the proof of theorem 9.16, we have

‖v‖
Ṁ

2,1/2
1
≤ Cs‖v‖M2,1/2

1
.

Combining the two previous inequalities with v = û gives the desired conclusion.
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Lemma 9.28 The map g →
∫
·g dx is an isomorphism from Ṁ2,−1/2

∞ to the dual space

of M
2,1/2
1 , Ṁ

2,1/2
1

′.

Proof. It is clear by applying Hölder’s inequality twice that∫
Rn
fg dx ≤ ‖f‖

Ṁ
2,1/2
1
‖g‖

M
2,−1/2
∞

.

Thus, our map takes Ṁ2,1/2
∞ into the dual of Ṁ

2,1/2
1 . To see that this map is onto, suppose

that λ ∈ M
2,1/2
1

′
. Observe L2(Rk) ⊂ Ṁ

2,1/2
1 in the sense that if f ∈ L2(Rk), then the

function which is f in Rk and 0 outside Rk lies in Ṁ
2,1/2
1 . Thus, for such f ,

λ(f) ≤ ‖λ‖
Ṁ

2,1/2
1

′‖f‖Ṁ2,1/2
∞

= 2k/2‖λ‖
Ṁ

2,1/2
1

′‖f‖L2(Rk).

Since we know the dual of L2(Rk), we can conclude that there exists gk with

‖gk‖L2(Rk) ≤ 2k/2‖λ‖
Ṁ

2,1/2
1

′ (9.29)

so that
λ(f) =

∫
Rk

fg dx (9.30)

for f ∈ L2(Rk). We set g =
∑∞
k=−∞ gk. Note that there can be no question about the

meaning of the infinite sum since for each x at most one summand is not zero. The
estimate (9.29) implies ‖g‖

Ṁ
2,−1/2
∞

≤ ‖λ‖
Ṁ

2,1/2
1

′ . If f is supported in ∪Nk=−NRk, then

summing (9.30) implies that

λ(f) =
∫
fg dx.

Finally, such f are dense in Ṁ
2,1/2
1 , so we conclude λ(f) =

∫
fg dx for all f .

We have defined the adjoint of an operator on a Hilbert space earlier. Here, we need
a slightly more general notion. If T : X → H is a continuous linear map from a normed
vector space into a Hilbert space, then x → 〈Tx, y〉 is a continuous linear functional of
X. Thus, there exists y∗ ∈ X ′ so that y∗(x) = 〈Tx, y〉. One can show that the map
y → y∗ = T ∗y is linear and continuous. The map T ∗ : H → X ′ is the adjoint of
the map T . There adjoint discussed here is closely related to the transpose of a map
introduced when we discussed distributions. For our purposes, the key distinction is
that the transpose satisfies (Tf, g) = (f, T tg) for a bilinear pairing, while the adjoint is
satisfies 〈Tf, g〉 = 〈f, T ∗g〉 for a sesquilinear pairing (this means linear in first variable
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and conjugate linear in the second variable). The map T → T t will be linear, while the
map T → T ∗ is conjugate linear.

The following lemma is a simple case of what is known to harmonic analysts as the
Peter Tomás trick. It was used to prove a restriction theorem for the Fourier transform
in [27].

Lemma 9.31 Let T : X → H be a map from a normed vector space X into a Hilbert
space H. If T ∗T : X → X ′, and

‖T ∗Tf‖X′ ≤ A2‖f‖X

then
‖Tf‖H ≤ A‖f‖X .

Proof. We have
T ∗Tf(f) = 〈Tf, Tf〉 = ‖Tf‖2

H

and since |T ∗Tf(f)| ≤ ‖T ∗Tf‖X′‖f‖X ≤ A2‖f‖X , the lemma follows.

Proof of Theorem 9.26. We consider f in Ṁ
2,1/2
1 and let T denote the map f → f̂ as a

map into L2(µ). The map T ∗T is given by

T ∗Tf(x) =
∫
Rn
f̂(ξ)e−ix·ξ dµ(ξ).

Using the Ahlfors condition on the measure µ one may repeat word for word our proof of
Theorem 9.16 to conclude T ∗T maps Ṁ

2,1/2
1 → Ṁ2,−1/2

∞ . Now the two previous Lemmas

give that T : Ṁ
2,1/2
1 → L2(µ).

Exercise 9.32 Prove a similar result for other co-dimensions–even fractional ones. That
is suppose that µ(Br(x)) ≤ Crn−α for 0 < α < n. Then show that∫

Rn
|f̂(ξ)|2 dµ(ξ) ≤ C‖f‖

Ṁ
2,α/2
1

.
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Chapter 10

The Dirichlet problem for elliptic
equations.

In this chapter, we introduce some of the machinery of elliptic partial differential equa-
tions. This will be needed in the next chapter to introduce the inverse boundary value
problem we will study.

10.1 Domains in Rn

For O an open subset of Rn, we let Ck(O) denote the space of functions on O which have
continuous partial derivatives of all orders α with |α| ≤ k. We let Ck(Ō) be the space
of functions for which all derivatives of order up to k extend continuously to the closure
O, Ō. Finally, we will let D(O) to denote the space of functions which are infinitely
differentiable and are compactly supported in O.

We say that Ω ⊂ Rn is a domain if Ω is a bounded connected open set. We say that a
domain is of class Ck if for each x ∈ Ω, there is an r > 0, φ ∈ Ck(Rn−1) and coordinates
(x′, xn) ∈ Rn−1×R (which we assume are a rotation of the standard coordinates) so that

∂Ω ∩B2r(x) = {(x′, xn) : xn = φ(x′)}
Ω ∩B2r(x) = {(x′, xn) : xn > φ(x′)}.

Here, ∂Ω is the boundary of a set. We will need that the map x→ (x′, 2φ(x′)− xn) map
Ω ∩ Br(x) into Ω̄c. This can always be arranged by decreasing r. We also will assume
that ∇φ is bounded in all of Rn−1.

91



92 CHAPTER 10. THE DIRICHLET PROBLEM FOR ELLIPTIC EQUATIONS.

x  =   (x’)φ
n

In these coordinates, we can define surface measure dσ on the boundary by∫
Br(x)∩∂Ω

f(y) dσ(y) =
∫
Br(x)∩{y:yn=φ(y′)}

f(y′, φ(y′))
√

1 + |∇φ(y′)|2 dy′.

Also, the vector field ν(y) = (∇φ(y′),−1)(1 + |∇φ(y′)|2)−1/2 defines a unit outer normal
for y ∈ Br(x) ∩ ∂Ω.

Since our domain is bounded, the boundary of Ω is a bounded, closed set and hence
compact. Thus, we may always find a finite collection of balls, {Br(xi) : i = 1, . . . , N}
as above which cover ∂Ω.

Many of arguments will proceed more smoothly if we can divide the problem into
pieces, choose a convenient coordinate system for each piece and then make our calcu-
lations in this coordinate system. To carry out these arguments, we will need partitions
of unity. Given a collection of sets, {Aα}, which are subsets of a topological space X,
a partition of unity subordinate to {Aα} is a collection of real-valued functions {φα} so
that suppφα ⊂ Aα and so that

∑
α φα = 1. Partitions of unity are used to take a problem

and divide it into bits that can be more easily solved. For our purposes, the following
will be useful.

Lemma 10.1 If K is a compact subset in Rn and {U1, . . . , UN} is a collection of open
sets which cover K, then we can find a collection of functions φj with each φj in D(Uj),
0 ≤ φj ≤ 1 and

∑N
j=1 φj = 1 on K.

Proof. By compactness, we can find a finite collection of balls {Bk}Mk=1 so that each B̄k

lies in some Uj and the balls cover K. If we let F = ∪B̄k be the union of the closures of
the balls Bk, then the distance between K and Rn \ F is positive. Hence, we can find
finitely many more balls {BM+1, . . . , BM+L} to our collection which cover ∂F and which
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are contained in Rn \K. We now let η̃k be the standard bump translated and rescaled
to the ball Bk. Thus if Bk = Br(x), then η̃k(y) = exp(−1/(r2 − |y − x|2)) in Bk and 0
outside Bk. Finally, we put η̃ =

∑M+L
k=1 η̃k and then ηk = η̃k/η̃. Each ηk, k = 1, . . . ,M is

smooth since η̃ is strictly positive on O. Then we have
∑M
k=1 ηk = 1 on K and we may

group to obtain one φj for each Uj.

The following important result is the Gauss divergence theorem. Recall that for a Cn

valued function F = (F1, . . . , Fn), the divergence of F , is defined by

divF =
n∑
j=1

∂Fj
∂xj

.

Theorem 10.2 (Gauss divergence theorem) Let Ω be a C1 domain and let F : Ω→ Cn

be in C1(Ω̄). We have ∫
∂Ω
F (x) · ν(x) dσ(x) =

∫
Ω

divF (x) dx.

The importance of this result may be gauged by the following observation: the theory
of weak solutions of elliptic pde (and much of distribution theory) relies on making this
result an axiom.

An important Corollary is the following version of Green’s identity. In this Corollary
and below, we should visualize the gradient of u, ∇u as a column vector so that the
product A∇u is makes sense as a matrix product.

Corollary 10.3 If Ω is a C1-domain, v is in C1(Ω̄), u is in C2(Ω̄) and A(x) is an n×n
matrix with C1(Ω̄) entries, then∫

∂Ω
v(x)A(x)∇u(x) · ν(x) dσ(x) =

∫
Ω
A(x)∇u(x) · ∇v(x) + v(x)divA(x)∇u(x) dx.

Proof. Apply the divergence theorem to vA∇u.

Next, we define Sobolev spaces on open subsets of Rn. Our definition is motivated by
the result in Proposition 3.13. For k a positive integer, we say that u ∈ L2,k(Ω) if u has
weak or distributional derivatives for all α for |α| ≤ k and these derivatives, ∂αu/∂xα,
lie in L2(Ω). This means that for all test functions φ ∈ D(Ω), we have∫

Ω
u
∂α

∂xα
φ(x) dx = (−1)|α|

∫
Ω
φ
∂αu

∂xα
(x) dx.
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The weak derivatives of u are defined as we defined the derivatives of a tempered dis-
tribution. The differences are that since we are on a bounded open set, our functions
are supported there and in this instance we require that the derivative be a distribution
given by a function.

It should be clear how to define the norm in this space. In fact, we have that these
spaces are Hilbert spaces with the inner product defined by

〈u, v〉 =
∫

Ω

∑
|α|≤k

∂αu

∂xα
∂αv̄

∂xα
dx. (10.4)

We let ‖u‖L2,k(Ω) be the corresponding norm.

Exercise 10.5 Show that if Ω is a bounded open set, then Ck(Ω̄) ⊂ L2,k(Ω).

Example 10.6 If u is in the Sobolev space L2,k(Rn) defined in Chapter 3 and Ω is an
open set, then the restriction of u to Ω, call it ru, is in the Sobolev space L2,k(Ω). If Ω
has reasonable boundary, (C1 will do) then the restriction map r : L2,k(Rn)→ L2,k(Ω) is
onto. However, this may fail in general.

Exercise 10.7 a) Prove the product rule for weak derivatives. If φ is in Ck(Ω̄) and all
the derivatives of φ, ∂αφ/∂xα with |α| ≤ k are bounded, then we have that

∂αφu

∂xα
=

∑
β+γ=α

α!

β!γ!

∂βφ

∂xβ
∂γu

∂xγ
.

b)If φ ∈ Ck(Ω̄), conclude that the map u → φu takes L2,k(Ω) to L2,k(Ω) and is
bounded.

c) If φ ∈ C1(Ω̄), show that the map u→ φu maps L2,1
0 (Ω)→ L2,1

0 (Ω).

Lemma 10.8 If Ω is a C1 domain and u is in the Sobolev space L2,k(Ω), then we may
write u =

∑N
j=0 uj where u0 has support in a fixed (independent of u) compact subset of Ω

and each uj, j = 1, . . . , N is supported in a ball Br(x) as in the definition of C1 domain.

Proof. We cover the boundary, ∂Ω by balls {B1, . . . , BN} as in the definition of C1

domain. Then, K = Ω\∪Nk=1Bk is a compact set so that the distance from K to Rn \Ω is
positive, call this distance δ. Thus, we can find an open set U0 = {x : dist(x, ∂Ω) > δ/2}
which contains K and is a positive distance from ∂Ω. We use Lemma 10.1 to make a
partition of unity 1 =

∑N
j=0 ηj for the open cover of Ω̄ {U0, B1 . . . , BN} and then we

decompose u =
∑N
j=0 ηju . The product rule of exercise 10.7 allows us to conclude that

each term uj = ηju is in L2,k(Ω).
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Recall that we proved in Chapter 2 that smooth (Schwartz, actually) functions are
dense in Lp(Rn), 1 ≤ p <∞. One step of the argument involved considering the map

η ∗ u

where η is a Schwartz function with
∫
η = 1. This approach may appear to break down

u is only defined in an open subset of Rn, rather than all of Rn. However, we can make
sense of the convolution in most of Ω if we require that the function φ̌ have compact
support. Thus, we let η ∈ D(Rn) be supported in B1(0) and have

∫
η = 1.

Lemma 10.9 Suppose u is the Sobolev space Lp,k(Ω), 1 ≤ p < ∞, for k = 0, 1, 2, . . ..
Set Ωε = Ω ∩ {x : dist(x, ∂Ω) > ε}. If we set uδ = ηδ ∗ u, then for |α| ≤ k, we have

∂α

∂xα
uδ = (

∂α

∂xα
u)δ, for x ∈ Ωε with δ < ε.

Hence, for each ε > 0, we have

lim
δ→0+

‖u− uδ‖Lp,k(Ωε) = 0.

Proof. We assume that u is defined to be zero outside of Ω. The convolution u ∗ ηδ(x)
is smooth in all of Rn and we may differentiate inside the integral and then express the
x derivatives as y derivatives to find

u ∗ ηδ(x) =
∫

Ω
u(y)

∂α

∂xα
ηδ(x− y) dy = (−1)|α|

∫
Ω
u(y)

∂α

∂yα
ηδ(x− y) dy.

If we have δ < ε and x ∈ Ωε, then ηδ(x − ·) will be in the space of test functions D(Ω).
Thus, we can apply the definition of weak derivative to conclude

(−1)|α|
∫

Ω
u(y)

∂α

∂yα
ηδ(x− y) dy =

∫
Ω

(
∂α

∂yα
u(y))ηδ(x− y) dy.

Lemma 10.10 If Ω is a C1-domain and k = 0, 1, 2, . . ., then C∞(Ω̄) is dense in L2,k(Ω).

Proof. We may use Lemma 10.8 to reduce to the case when u is zero outside Br(x)∩Ω
for some ball centered at a boundary point x and ∂Ω is given as a graph, {(x′, xn) : xn =
φ(x′)} in Br(x). We may translate u to obtain uε(x) = u(x + εen). Since uε has weak
derivatives in a neighborhood of Ω, by the local approximation lemma, Lemma 10.9 we
may approximate each uε by functions which are smooth up to the boundary of Ω.
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Lemma 10.11 If Ω and Ω′ are bounded open sets and F : Ω → Ω′ is C1(Ω̄) and F−1 :
Ω′ → Ω is also C1(Ω̄′), then we have u ∈ L2,1(Ω′) if and only if u ∈ L2,1(Ω′).

Proof. The result is true for smooth functions by the chain rule and the change of
variables formulas of vector calculus. Note that our hypothesis that F is invertible
implies that the Jacobian is bounded above and below. The density result of Lemma
10.9 allows us to extend to the Sobolev space.

Lemma 10.12 If Ω is a C1-domain, then there exists an extension operator E : L2,k(Ω)→
L2,k(Rn).

Proof. We sketch a proof when k = 1. We will not use the more general result. The
general result requires a more substantial proof. See the book of Stein [19], whose result
has the remarkable feature that the extension operator is independent of k.

For the case k = 1, we may use a partition of unity and to reduce to the case where u
is nonzero outside Br(x)∩Ω and that ∂Ω is the graph {(x′, xn) : xn = φ(x′)} in Br(x). By
the density result, Lemma 10.10, we may assume that u is smooth up to the boundary.
Then we can define Eu by

Eu(x) =

{
u(x), xn > φ(x′)
u(x′, 2φ(x′)− xn), xn < φ(x′)

If ψ is test function in Rn, then we can apply the divergence theorem in Ω and in
Rn \ Ω̄ to obtain that ∫

Ω
Eu

∂ψ

∂xj
+ ψ

∂Eu

∂xj
dx =

∫
∂Ω
ψEuν · ej dσ∫

Rn\Ω̄
Eu

∂ψ

∂xj
+ ψ

∂Eu

∂xj
dx = −

∫
∂Ω
ψEuν · ej dσ

In the above expressions, the difference in sign is due to the fact that the normal which
points out of Ω is the negative of the normal which points out of Rn \ Ω̄.

Adding these two expressions, we see that Eu has weak derivatives in Rn. These weak
derivatives are given by the (ordinary) derivative ∂Eu/∂xj, which is defined except on
∂Ω. In general, Eu will not have an ordinary derivative on ∂Ω. Using Lemma 10.11, one
can see that this extension operator is bounded. The full extension operator is obtained
by taking a function u, writing u =

∑N
j=0 ηju as in Lemma 10.8 where the support of η)

does not meet the boundary. For each ηj which meets the boundary, we apply the local
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extension operator constructed above and then sum to obtain Eu = η0u+
∑N
j=1E(ηju).

Once we have defined the extension operator on smooth functions in L2,1, then we can
use the density result of Lemma 10.10 to define the extension operator on the full space.

Next, we define an important subspace of L2,1(Ω), L2,1
0 (Ω). This space is the closure

of D(Ω) in the norm of L2,1(Ω). The functions in L2,1
0 (Ω) will be defined to be the

Sobolev functions which vanish on the boundary. Since a function u in the Sobolev space
is initially defined a.e., it should not be clear that we can define the restriction of u to a
lower dimensional subset. However, we saw in Chapter 9 that this is possible. We shall
present a second proof below. The space L2,1

0 (Ω) will be defined as the space of functions
which have zero boundary values.

Remark: Some of you may be familiar with the spaces L2,1(Ω) as H1(Ω) and L2,1
0 (Ω)

as H1
0 (Ω).

We define the boundary values of a function in L2,1(Ω) in the following way. We
say that u = v on ∂Ω if u − v ∈ L2,1

0 (Ω). Next, we define a space L2,1/2(∂Ω) to be the
equivalence classes [u] = u+L2,1

0 (Ω) = {v : v− u ∈ L2,1(Ω)}. Of course, we need a norm
to do analysis. The norm is given by

‖u‖L2,1/2(∂Ω) = inf{‖v‖L2
1(Ω) : u− v ∈ L2,1

0 (Ω)}. (10.13)

It is easy to see that this is a norm and the resulting space is a Banach space. It is
less clear L2,1/2(∂Ω) is a Hilbert space. However, if the reader will recall the proof of
the projection theorem in Hilbert space one may see that the space on the boundary,
L2,1/2(∂Ω), can be identified with the orthogonal complement of L2,1

0 (Ω) in L2,1(Ω) and
thus inherits an inner product from L2,1(Ω).

This way of defining functions on the boundary should be unsatisfyingly abstract to
the analysts in the audience. The following result gives a concrete realization of the
space.

Proposition 10.14 Let Ω be a C1-domain. The map

r : C1(Ω̄)→ L2(∂Ω)

which takes φ to the restriction of φ to the boundary, rφ satisfies

‖ru‖L2(∂Ω) ≤ C‖u‖L2
1(Ω)

and as a consequence extends continuously to L2,1(Ω). Since r(L2,1
0 (Ω)) = 0, the map

r is well-defined on equivalence classes in L2,1/2(∂Ω) and gives a continuous injection
r : L2,1/2(∂Ω)→ L2(∂Ω).
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Exercise 10.15 Prove the above proposition.

Exercise 10.16 If Ω is a C1 domain, let H be a space of functions f on ∂Ω defined as
follows. We say that f ∈ H if for each ball Br(x) as in the definition of C1 domains and
each η ∈ D(Br(x)), we have (ηf)(y′, φ(y′)) is in the space L2,1/2(Rn−1) defined in Chapter
3. In the above, φ is the function whose graph describes the boundary of Ω near x. A
norm in the space H may be defined by fixing a covering of the boundary by balls as in
the definition of C1-domains, and then a partition of unity subordinate to this collection
of balls,

∑
ηk and finally taking the sum∑

k

‖ηkfL2,1/2(Rn−1)

.
Show that H = L2,1/2(∂Ω).
Hint: We do not have the tools to solve this problem. Thus this exercise is an excuse

to indicate the connection without providing proofs.

Lemma 10.17 If Ω is a C1 domain and u ∈ C1(Ω̄), then there is a constant C so that∫
∂Ω
|u(x)|2 dσ(x) ≤ C

∫
Ω
|u(x)|2 + |∇u(x)|2 dx.

Proof. According to the definition of a C1-domain, we can find a finite collection of balls
{Bj : j = 1, . . . , N} and in each of these balls, a unit vector, αj, which satisfies αj · ν ≥
δ > 0 for some constant δ. To do this, choose αj to be −en in the coordinate system which
is used to describe the boundary near Bj. The lower bound will be minj(1+‖∇φj‖2

∞)−1/2

where φj is the function which defines the boundary near Bj. Using a partition of unity∑
j φj subordinate to the family of balls Bj which is 1 on ∂Ω, we construct a vector field

α(x) =
N∑
j=1

φj(x)αj.

We have α(x) · ν(x) ≥ δ since each αj satisfies this condition and each φj takes values in
[0, 1]. Thus, the divergence theorem gives

δ
∫
∂Ω
|u(x)|2 dσ(x) ≤

∫
∂Ω
|u(x)|2α(x) · ν(x) dx

=
∫

Ω
|u|2(divα) + 2 Re(u(x)α · ∇ū(x)) dx.

Applying the Cauchy-Schwarz inequality proves the inequality of the Lemma. The con-
stant depends on Ω through the vector field α and its derivatives.
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Proof of Proposition 10.14. The proposition follows from the lemma. That the map r
can be extended from nice functions to all of L2,1(Ω) depends on Lemma 10.10 which
asserts that nice functions are dense in L2,1(Ω).

Exercise 10.18 Suppose that Ω is a C1 domain. Show that if φ ∈ C1(Ω̄) and φ(x) = 0
on ∂Ω, then φ(x) is in the Sobolev space L2,1

0 (Ω).

Finally, we extend the definition of one of the Sobolev spaces of negative order to
domains. We define L2,−1(Ω) to be the dual of the space L2,1

0 (Ω). As in the case of Rn,
the following simple lemma gives examples of elements in this space.

Proposition 10.19 Assume Ω is an open set of finite measure, and g and f1, . . . , fn are
functions in L2(Ω). Then

φ→ λ(φ) =
∫

Ω
g(x)φ(x) +

n∑
j=1

fj(x)
∂φ(x)

∂xj
dx

is in L2,−1(Ω).

Proof. According to the Cauchy-Schwarz inequality, we have

λ(φ) ≤
(∫

Ω
|u(x)|2 + |∇u(x)|2 dx

)1/2
∫

Ω
|g(x)|2 + |

n∑
j=1

fj(x)2| dx

1/2

.

10.2 The weak Dirichlet problem

In this section, we introduce elliptic operators. We let A(x) be function defined on an
open set Ω and we assume that this function takes values in n × n-matrices with real
entries. We assume that each entry is Lebesgue measurable and that A satisfies the
symmetry condition

At = A (10.20)

and ellipticity condition, for some λ > 0,

λ|ξ|2 ≤ A(x)ξ · ξ ≤ λ−1|ξ|2, ξ ∈ Rn, x ∈ Ω. (10.21)
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We say that u is a local weak solution of the equation divA(x)∇u = f for f ∈ L2,−1(Ω)
if u is in L2,1

loc(Ω) and for all test functions φ ∈ D(Ω), we have

−
∫
A(x)∇u(x) · ∇φ(x) dx = f(φ).

Since the derivatives of u are locally in L2, we can extend to test functions φ which are
in L2,1

0 (Ω) and which (have a representative) which vanishes outside a compact subset of
Ω. However, let us resist the urge to introduce yet another space.

Statement of the Dirichlet problem. The weak formulation of the Dirichlet problem
is the following. Let g ∈ L2,1(Ω) and f ∈ L2,−1(Ω), then we say that u is a solution of
the Dirichlet problem if the following two conditions hold:

u ∈ L2,1(Ω) (10.22)

u− g ∈ L2,1
0 (Ω) (10.23)

−
∫

Ω
A(x)∇u(x)∇φ(x) dx = f(φ) φ ∈ L2,1

0 (Ω). (10.24)

Note that both sides of the equation (10.24) are continuous in φ in the topology of
L2,1

0 (Ω). Thus, we only need to require that this hold for φ in a dense subset of L2,1
0 (Ω).

A more traditional way of writing the Dirichlet problem is, given g and f find u which
satisfies {

divA∇u = f, in Ω
u = g, on ∂Ω

Our condition (10.24) is a restatement of the equation, divA∇u = f . The condition
(10.23) is a restatement of the boundary condition u = f . Finally, the condition (10.22)
is needed to show that the solution is unique.

Theorem 10.25 If Ω is an open set of finite measure and g ∈ L2,1(Ω) and f ∈ L2,−1(Ω),
then there is exactly one weak solution to the Dirichlet problem, (10.22-10.24). There is
a constant C(λ, n,Ω) so that the solution u satisfies

‖u‖L2,1
0 (Ω) ≤ C(‖g‖L2,1(Ω) + ‖f‖L2,−1(Ω)).

Proof. Existence. If u ∈ L2,1
0 (Ω) and n ≥ 3 then Hölder’s inequality and then the

Sobolev inequality of Theorem 8.22 imply

∫
Ω
|u(x)|2 dx ≤

(∫
Ω
|u(x)|

2n
n−2 dx

)1− 2
n

m(Ω)2/n ≤ Cm(Ω)2/n
∫

Ω
|∇u(x)|2 dx.
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If n = 2, the same result holds, though we need to be a bit more persistent and use
Hölder’s inequality, the Soboleve inequality and Hölder again to obtain:∫

Ω
|u(x)|2 dx ≤

(∫
Ω
|u(x)|4 dx

)1/2

m(Ω)1/2 ≤
(∫

Ω
|∇u(x)|4/3 dx

)3/2

m(Ω)1/2

≤
∫

Ω
|∇u(x)|2 dx m(Ω).

Note that in each case, the application of the Sobolev inequality on Rn is allowed because
L2,1

0 (Ω) may be viewed as a subspace of L2,1(Ω) by extending functions on Ω to be zero
outside Ω. Thus we have

‖u‖L2(Ω) ≤ Cm(Ω)1/n‖∇u‖L2(Ω). (10.26)

Next, we observe that the ellipticity condition (10.21) implies that

λ
∫

Ω
|∇u(x)|2 ≤

∫
Ω
A(x)∇u(x)∇ū(x) dx ≤ λ−1

∫
Ω
|∇u(x)|2 dx. (10.27)

We claim the expression ∫
Ω
A(x)∇u(x)∇v̄(x) dx (10.28)

provides an inner product on L2,1
0 (Ω) which induces the same topology as the standard

inner product on L2,1
0 (Ω) ⊂ L2,1(Ω) defined in (10.4). To see that the topologies are the

same, it suffices to establish the inequalities∫
Ω
|∇u(x)|2 + |u(x)|2 dx ≤ λ−1(1 + Cm(Ω)2/n)

∫
Ω
A(x)∇u(x)∇ū(x) dx

and that∫
Ω
A(x)∇u(x)∇ū(x) dx ≤ λ−1

∫
Ω
|∇u(x)|2 dx ≤ λ−1

∫
Ω
|∇u(x)|2 + |u(x)|2 dx.

These both follow from the estimates (10.26) and (10.27). As a consequence, standard
Hilbert space theory tells us that any continuous linear functional on L2,1

0 (Ω) can be
represented using the inner product defined in (10.28). We apply this to the functional

φ→ −
∫

Ω
A∇g∇φ dx− f(φ)

and conclude that there exists v ∈ L2,1
0 (Ω) so that∫

A(x)∇v(x)∇φ(x) dx = −
∫

Ω
A(x)∇g(x)∇φ(x) dx− f(φ), φ ∈ L2

1,0(Ω). (10.29)
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Rearranging this expression, we can see that u = g+v is a weak solution to the Dirichlet
problem.

Uniqueness. If we have two solutions of the Dirichlet problem u1 and u2, then their
difference w = u1 − u2 is a weak solution of the Dirichlet problem with f = g = 0. In
particular, w is in L2,1

0 (Ω) and we can use w̄ as a test function and conclude that∫
A(x)∇w(x) · ∇w̄(x) dx = 0.

Thanks to the inequalities (10.26) and (10.27) we conclude that∫
Ω
|w(x)|2 dx = 0.

Hence, u1 = u2.
Stability. Finally, we establish the estimate for the solution. We replace the test

function φ in (10.29) by v̄. Using the Cauchy-Schwarz inequality gives∫
Ω
A∇v · ∇v̄ dx ≤ λ−1‖v‖L2,1

0 (Ω)‖∇g‖L2,1(Ω) + ‖f‖L2,−1(Ω)‖v‖L2,1
0 (Ω).

If we use that the left-hand side of this inequality is equivalent with the norm in L2,1
0 (Ω),

cancel the common factor, we obtain that

‖v‖L2,1
0 (Ω) ≤ C‖g‖L2,1

0 (Ω) + ‖f‖L2,−1(Ω).

We have u = v + g and the triangle inequality gives

‖u‖L2,1(Ω) ≤ ‖g‖L2,1(Ω) + ‖v‖L2,1
0 (Ω)

so combining the last two inequalities implies the estimate of the theorem.

Exercise 10.30 (Dirichlet’s principle.) Let g ∈ L2,1(Ω) and suppose that f = 0 in the
weak formulation of the Dirichlet problem.

a) Show that the expression

I(u) =
∫

Ω
A(x)∇u(x) · ∇ū(x) dx

attains a minimum value on the set g + L2,1
0 (Ω) = {g + v : v ∈ L2,1

0 (Ω)}. Hint: Use the
foil method. This is a general fact in Hilbert space.

b) If u is a minimizer for I, then u is a weak solution of the Dirichlet problem,
divA∇u = 0 and u = g on the boundary.

c) Can you extend this approach to solve the general Dirichlet problem divA∇u = f
in Ω and u = g on the boundary?



Chapter 11

Inverse Problems: Boundary
identifiability

11.1 The Dirichlet to Neumann map

In this section, we introduce the Dirichlet to Neumann map. Recall the space L2
1/2(∂Ω)

which was introduced in Chapter 10. We let Ω be a bounded open set, A a matrix which
satisfies the ellipticity condition and given f in L2

1/2(∂Ω), we let u = uf be the weak
solution of the Dirichlet problem{

divA∇u = 0, on Ω
u = f, on ∂Ω.

(11.1)

Given u ∈ L2
1(Ω) we can define a continuous linear functional on L2

1(Ω) by

φ→
∫

Ω
A(x)∇u(x)∇φ(x) dx.

If we recall the Green’s identity (10.3), we see that if u and A are smooth, then∫
∂Ω
A(x)∇u(x) · ν(x)φ(x) dσ(x) =

∫
Ω
A(x)∇u(x)∇φ(x) + φ(x)divA(x)∇u(x) dx.

Thus, if u solves the equation divA∇u = 0, then it reasonable to define A∇u · ν as a
linear functional on L2

1/2(∂Ω) by

A∇u · ν(φ) =
∫

Ω
A(x)∇u(x) · ∇φ(x) dx. (11.2)

103
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We will show that this map is defined on L2
1/2(∂Ω) The expression A∇u · ν is called the

conormal derivative of u at the boundary. Note that it is something of a miracle that we
can make sense of this expression at the boundary. To appreciate that this is surprising,
observe that we are not asserting that the full gradient of u is defined at the boundary,
only the particular component A∇u · ν. The gradient of u may only be in L2(Ω) and
thus there is no reason to expect that any expression involving ∇u could make sense on
the boundary, a set of measure zero.

A potential problem is that this definition may depend on the representative of φ
which is used to define the right-hand side of (11.2). Fortunately, this is not the case.

Lemma 11.3 If u ∈ L2
1(Ω) and u is a weak solution of divA∇u = 0, then the value of

A∇u · ν(φ) is independent of the extension of φ from ∂Ω to Ω.
The linear functional defined in (11.2) is a continuous linear functional on L2

1/2(∂Ω).

Proof. To establish that A∇u · ν is well defined, we will use that u is a solution of
divA∇u = 0. We choose φ1, φ2 in L2

1(Ω) and suppose φ1 − φ2 ∈ L2
1,0(Ω). According to

the definition of weak solution,∫
Ω
A(x)∇u(x) · ∇(φ1(x)− φ2(x)) dx = 0.

To establish the continuity, we need to choose a representative of φ which is close to
the infinum in the definition of the L2

1/2-norm (see (10.13)). Thus we need ‖φ‖L2
1(Ω) ≤

2‖rφ‖L2
1/2

(∂Ω). Here, rφ denotes the restriction of φ to the boundary. With this choice of

φ and Cauchy-Schwarz we have

|A∇u · ν(φ)| ≤ C‖∇u‖L2(Ω)‖∇φ‖L2(Ω).

This inequality implies the continuity.

We will define L2
−1/2(∂Ω) as the dual of the space L2

1/2(∂Ω). Now, we are ready to
define the Dirichlet to Neumann map. This is a map

ΛA : L2
1/2(Ω)→ L2

−1/2(∂Ω)

defined by
ΛAf = A∇u · ν

where u is the solution of the Dirichlet problem with boundary data f .
The traditional goal in pde is to consider the direct problem. For example, given

the coefficient matrix A, show that we can solve the Dirichlet problem. If we were more
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persistent, we could establish additional properties of the solution. For example, we could
show that the map A→ ΛA is continuous, on the set of strictly positive definite matrix
valued functions on Ω.

However, that would be the easy way out. The more interesting and difficult problem
is the inverse problem. Given the map ΛA, can we recover the coefficient matrix, A. That
is given some information about the solutions to a pde, can we recover the equation. The
answer to the problem, as stated, is no, of course not.

Exercise 11.4 Let Ω be a bounded domain and let F : Ω→ Ω be a C1(Ω̄) diffeomorphism
that fixes a neighborhood of the boundary. Show that if A gives an elliptic operator divA∇
on Ω, then there is an operator divB∇ so that

divA∇u = 0 ⇐⇒ divB∇u ◦ F = 0.

As a consequence, it is clear that the maps ΛA = ΛB. Hint: See Lemma 11.10 below for
the answer.

Exercise 11.5 Show that the only obstruction to uniqueness is the change of variables
described in the previous problem.

Remark: This has been solved in two dimensions, by John Sylvester [25]. In three
dimensions and above, this problem is open.

Exercise 11.6 Prove that the map A→ ΛA is continuous on the set of strictly positive
definite and bounded matrix-valued functions. That is show that

‖ΛA − ΛB‖L(L2
1/2

,L2
−1/2

) ≤ Cλ‖A−B‖∞.

Here, ‖ · ‖L(L2
1/2

,L2
−1/2

) denotes the norm on linear operators from L2
1/2 to L2

−1/2.

a) As a first step, show that if we let uA and uB satisfy divA∇uA = divB∇uB = 0
in an open set Ω and uA = uB = f on ∂Ω, then we have∫

Ω
|∇uA −∇uB|2 dx ≤ C‖f‖L2

1/2
(∂Ω)‖A−B‖2

∞.

Hint: We have divB∇uA = div(B − A)∇uA since uA is a solution.

b) Conclude the estimate above on the Dirichlet to Neumann maps.
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However, there is a restricted version of the inverse problem which can be solved. In
the remainder of these notes, we will concentrate on elliptic operators when the matrix
A is of the form A(x) = γ(x)I where I is the n× n identity matrix and γ(x) is a scalar
function which satisfies

λ ≤ γ(x) ≤ λ−1 (11.7)

for some constant λ > 0. We change notation a bit and let Λγ be the Dirichlet to
Neumann map for the operator divγ∇. Then the inverse conductivity problem can be
formulated as the following question:

Is the map γ → Λγ injective?

We will answer this question with a yes, if the dimension n ≥ 3 and we have some reason-
able smoothness assumptions on the domain and γ. This is a theorem of J. Sylvester and
G. Uhlmann [26]. Closely related work was done by Henkin and R. Novikov at about the
same time [10, 14]. One can also ask for a more or less explicit construcion of the inverse
map. A construction is given in in the work of Novikov and the work of A. Nachman
[13] for three dimensions and [12] in two dimensions. This last paper also gives the first
proof of injectivity in two dimensions. My favorite contribution to this story is in [4].
But this is not the the place for a complete history.

We take a moment to explain the appearance of the word conductivity in the above.
For this discussion, we will assume that function u and γ are smooth. The problem we
are considering is a mathematical model for the problem of determining the conductivity
γ by making measurements of current and voltage at the boundary. To try and explain
this, we suppose that u represents the voltage potential in Ω and then ∇u is the electric
field. The electric field is what makes electrons flow and thus we assume that the current
is proportional to the electric field, J = γ∇u where the conductivity γ is a constant of
proportionality. Since we assume that charge is conserved, for each subregion B ⊂ Ω,
the net flow of electrons or current through B must be zero. Thus,

0 =
∫
∂B
γ∇u(x) · ν(x) dσ(x).

The divergence theorem gives that

0 =
∫
∂B
γ(x)∇u(x) · ν(x) dσ(x) =

∫
B

divγ(x)∇u(x) dx.

Finally, since the integral on the right vanishes, say, for each ball B ⊂ Ω, we can conclude
that divγ∇u = 0 in Ω.
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11.2 Identifiability

Our solution of the inverse conductivity problem has two steps. The first is to show that
the Dirichlet to Neumann map determines γ on the boundary. The second step is to
use the knowledge of γ on the boundary to relate the inverse conductivity problem to a
problem in all of Rn which turns out to be a type of scattering problem. We will use the
results of Chapter 9 to study this problem in Rn.

Theorem 11.8 Suppose that ∂Ω is C1. If γ is in C0(Ω̄) and satisfies (11.7), then for
each x ∈ ∂Ω, there exists a sequence of functions uN so that

γ(x) = lim
N→∞

ΛγuN(ūN).

Theorem 11.9 Suppose Ω and γ are as in the previous theorem and also ∂Ω is C2 and
γ is in C1(Ω̄). If e is a constant vector and uN as in the previous theorem, then we have

∇γ(x) · e = lim
N→∞

∫
∂Ω

(
γ(x)|∇uN(x)|2e · ν(x)− 2 Re γ(x)

∂uN
∂ν

(x)e · ∇ū(x)

)
dσ.

The construction of the solutions uN proceeds in two steps. The first step is to write
down an explicit function which is an approximate solution and show that the conclusion
of our Theorem holds for this function. The second step is to show that we really do have
an approximate solution. This is not deep, but requires a certain amount of persistence.
I say that the result is not deep because it relies only on estimates which are a byproduct
of our existence theory in Theorem 10.25.

In the construction of the solution, it will be convenient to change coordinates so that
in the new coordinates, the boundary is flat. The following lemma keeps track of how
the operator divγ∇ transforms under a change of variables.

Lemma 11.10 Let A be an elliptic matrix and F : Ω′ → Ω be a C1(Ω̄)-diffeomorphism,
F : Ω′ → Ω. Then have that divA∇u = 0 if and only if divB∇u ◦ F where

B(y) = | detDF (y)|DF−1(F (y))tA(F (y))DF−1(F (y)).

Proof. The proof of this lemma indicates one of the advantages of the weak formulation
of the equation. Since the weak formulation only involves one derivative, we only need
to use the chain rule once.

We use the chain rule to compute

∇u(x) = ∇(u(F (F−1(x))) = DF−1(x)∇(u ◦ F )(F−1(x)).



108 CHAPTER 11. INVERSE PROBLEMS: BOUNDARY IDENTIFIABILITY

This is valid for Sobolev functions also by approximation (see Lemma 10.11). We insert
this expression for the gradient and make a change of variables x = F (y) to obtain∫

Ω
A(x)∇u(x) · ∇φ(x) dx

=
∫

Ω′
A(F (y))DF−1(F (y))∇(u ◦ F (y)) ·DF−1(F (y))∇(φ ◦ F (y))| detDF (y)| dy

=
∫

Ω′
| detDF (y)|DF−1(F (y))tA(F (y))DF−1(F (y))∇(u ◦ F (y)) · ∇(φ ◦ F (y)) dy.

This last integral is the weak formulation of the equation divB∇u = 0 with the test
function φ ◦ F . To finish the proof, one must convince oneself that the map φ → φ ◦ F
is an isomorphism1 from L2

1,0(Ω) to L2
1,0(Ω′).

Exercise 11.11 Figure out how to index the matrix DF−1 so that in the application of
the chain rule in the previous Lemma, the product DF−1∇(u◦F ) is matrix multiplication.
Assume that the gradient is a column vector.

Solution The chain rule reads

∂

∂xi
u ◦G =

∂Gj

∂xi

∂u

∂xj
◦G.

Thus, we want

(DG)ij =
∂Gj

∂xi
.

In the rest of this chapter, we fix a point x on the boundary and choose coordinates
so that x is the origin. Thus, we suppose that we are trying to find the value of γ
and ∇γ at 0. We assume that ∂Ω is C1 near 0 and thus we have a ball Br(0) so that
B2r(0) ∩ ∂Ω = {(x′, xn) : xn = φ(x′)} ∩ B2r(0). We let x = F (y′, yn) = (y′, φ(y′) + yn).
Note that we assume that the function φ is defined in all of Rn−1 and thus, the map F
is invertible on all of Rn. In the coordinates, (y′, yn), the operator divγ∇ takes the form

divA∇u = 0

with A(y) = γ(y)B(y). (Strictly speaking, this is γ(F (y)). However, to simplify the
notation, we will use γ(z) to represent the value of γ at the point corresponding to z
in the current coordinate system. This is a fairly common convention. To carry it out

1An isomorphism for Banach (or Hilbert spaces) is an invertible linear map with continuous inverse.
A map which also preserves the norm is called an isometry.
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precisely would require yet another chapter that we don’t have time for...) The matrix
B depends on φ and, by the above lemma, takes the form

B(y) =

(
1n−1 −∇φ(y′)

−∇φ(y′)t 1 + |∇φ(y′)|2
)
.

Apparently, we are writing the gradient as a column vector. The domain Ω′ has 0 on the
boundary and near 0, ∂Ω′ lies in the hyperplane yn = 0 and Ω′ lies in the regions yn > 0.
We introduce a real-valued cutoff function η(y) = f(y′)g(yn) which is normalized so that∫

Rn−1
f(y′)2 dy′ = 1 (11.12)

and so that g(yn) = 1 if |yn| < 1 and g(yn) = 0 if |yn| > 2. Our next step is to set
ηN(x) = N (n−1)/4η(N1/2y). We choose a vector α ∈ Rn and which satisfies

B(0)α · en = 0 (11.13)

B(0)α · α = B(0)en · en. (11.14)

We define EN by
EN(y) = N−1/2 exp(−N(yn + iα · y))

and then we put
vN(y) = ηN(y)EN(y). (11.15)

The function vN is our approximate solution. The main facts that we need to prove
about vN are in Lemma 11.16 and Lemma 11.19 below.

Lemma 11.16 With vN and Ω′ as above,

lim
N→∞

‖divγB∇vN‖L2
−1(Ω′) = 0.

To visualize why this might be true, observe that EN is a solution of the equation with
constant coefficients B(0). The cutoff function oscillates less rapidly than EN (consider
the relative size of the gradients) and thus it introduces an error that is negligible for N
large and allows us to disregard the fact that EN is not a solution away from the origin.

Our proof will require yet more lemmas. The function vN is concentrated near the
boundary. In the course of making estimates, we will need to consider integrals pairing
vN and its derivatives against functions which are in L2

1,0(Ω). To make optimal estimates,
we will want to exploit the fact that functions in L2

1,0(Ω) are small near the boundary.
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The next estimate, a version of Hardy’s inequality makes this precise. If we have not
already made this definition, then we define

δ(x) = inf
y∈∂Ω
|x− y|.

The function δ gives the distance from x to the boundary of Ω.

Lemma 11.17 (Hardy’s inequality) a) Let f be a C1 function on the real line and sup-
pose that f(0) = 0, then for 1 < p ≤ ∞,∫ ∞

0
|f(t)

t
|p dt ≤ p′

∫ ∞
0
|f ′(t)|p dt.

b) If f is in L2
1,0(Ω), then

∫
Ω

∣∣∣∣∣f(x)

δ(x)

∣∣∣∣∣
2

dx ≤ C
∫

Ω
|∇f(x)|2 + |f(x)|2 dx.

Proof. a) We prove the one-dimensional result with p <∞ first. We use the fundamental
theorem of calculus to write

f(t) = −
∫ t

0
f ′(s) ds

Now, we confuse the issue by rewriting this as

−t
1
p
−1f(t) =

∫
(t/s)−1/p′χ(1,∞)(t/s)s

1/pf(s)
ds

s

=
∫
K(t/s)s1/pf ′(s)

ds

s
(11.18)

where K(u) = u−1/p′χ(1,∞)(u). A computation shows that∫ ∞
0

K(t/s)
ds

s
=
∫ ∞

0
K(t/s)

dt

t
= p′

which will be finite if p > 1. Thus, by exercise 4.5 we have that g →
∫
K(t/s)g(s) ds/s

maps Lp(ds/s) into itself. Using this in (11.18) gives(∫ ∞
0

∣∣∣∣∣f(t)

t

∣∣∣∣∣
p

dt

)1/p

≤ p′
(∫ ∞

0
|f ′(t)|p dt

)1/p

.

Which is what we wanted to prove. The remaining case p =∞ where the Lp norms must
be replaced by L∞ norms is easy and thus omitted.
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b) Since D(Ω) is dense in L2
1,0(Ω), it suffices to consider functions in D(Ω). By a

partition of unity, as in Lemma 10.8 we can further reduce to a function f which is
compactly supported Br(x) ∩ Ω, for some ball centered at x on the boundary, or to a
function f which is supported at a fixed distance away from the boundary. In the first
case have that ∂Ω is given by the graph {(y′, yn) : yn = φ(y′)} near x. Applying the
one-dimensional result in the yn variable and then integrating in the remaining variables
, we may conclude that∫

Ω∩Br(x)

|f(y)|2

(yn − φ(y′))2
dy ≤ 4

∫
Ω∩Br(x)

| ∂u
∂yn

(y)|2 dy.

This is the desired inequality once we convince ourselves that (yn−φ(y′))/δ(y) is bounded
above and below in Br(x) ∩ Ω.

The second case where f is supported strictly away from the boundary is an easy
consequence of the Sobolev inequality, Theorem 8.22, because 1/δ(x) is bounded above
on each compact subset of Ω.

The following Lemma will be useful in obtaining the properties of the approximate
solutions and may serve to explain some of the peculiar normalizations in the definition.

Lemma 11.19 Let vN , EN and ηN be as defined in (11.15). Let β be continuous at 0
then

lim
N→∞

N
∫

Ω′
β(y)|ηN(y)|2e−2Nyn dy = β(0)/2. (11.20)

If k > −1 and η̃ ∈ D(Rn), then for N sufficiently large there is a constant C so that

|
∫

Ω′
δ(y)kη̃(N1/2y)e−2Nyn dy| ≤ CN

1−n
2
−1−k. (11.21)

Proof. To prove the first statement, we observe that by the definition and the normal-
ization of the cutoff function, f , in (11.12) we have that∫

Ω′
ηN(y)2e−2Nyn dy = N

n−1
2

∫
{y:yn>0}

f(N1/2y′)2e−2Nyn dy

+N
n−1

2

∫
{y:yn>0}

(g(N1/2yn)2 − 1)f(N1/2y′)2e−2Nyn dy.

The first integral is 1/(2) and the second is bounded by a multiple of (2N)−1e−2N1/2
.

The estimate of the second depends on our assumption that g(t) = 1 for t < 1. Thus,
we have that

lim
N→∞

N
∫

Ω′
ηN(y)2e−2Nyndy = 1/2.
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Using this to express the 1
2

as a limit gives

|1
2
β(0)− lim

N→∞
N
∫

Ω′
β(y)ηN(y)2e−2Nyndy| ≤ lim

N→∞
N
∫

Ω′
|β(0)− β(y)|

×ηN(y)2e−2Nyndy

≤ lim
N→∞

sup
{y:|y|<21/2N−1/2}

1

2
|β(0)− β(y)|

×N
∫

Ω′
ηN(y)2e−2Nyndy.

Now the continuity of β implies that this last limit is 0.
The inequalities in the second statement follow easily, by observing that for N suffi-

ciently large, we have δ(y) = yn on the support of η̃(N1/2y). If supp η̃ ⊂ BR(0), then we
can estimate our integral by∣∣∣∣∫

Ω′
δ(y)kη̃(N1/2y)e−2Nyn dy

∣∣∣∣ ≤ ‖η̃‖∞
∫
{y′:|y′|<N−1/2R}

∫ ∞
0

ykne
−2Nyn dy′dyn

≤ CN
1−n

2
−1−k.

We can now give the proof of Lemma 11.22.

Lemma 11.22 With Ω′ and vN as above, suppose β is a bounded function on Ω′ which
is continuous at 0, then

lim
N→∞

∫
Ω′
β(y)B(y)∇vN(y) · ∇v̄N(y) dy = β(0)B(0)en · en.

Proof. Using the product rule, expanding the square and that ηN is real valued gives∫
Ω′
β(y)B(y)∇vN(y)∇v̄N(y) dy = N

∫
β(y)(B(y)α · α +B(y)en · en)ηN(y)2e−2Nyn dy

−2
∫
β(y)(B(y)∇ηN(y) · en)ηN(y)e−2Nyn dy

+N−1
∫

Ω′
β(y)B(y)∇ηN(y) · ∇ηN(y)e−2Nyn dy

= I + II + III.

By (11.20) of our Lemma 11.19, we have that

lim
N→∞

I = β(0)(B(0)en · en). (11.23)
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where we have used (11.14) to replace B(0)α · α by B(0)en · en. The integral II can be
bounded above by

II ≤ 2N
n
2 ‖βB‖∞

∫
Ω′
|(∇η1)(N1/2y)η1(N1/2y)|e−2Nyn dy ≤ CN−1/2. (11.24)

Here, we are using the second part of Lemma 11.19, (11.21). The observant reader will
note that we have taken the norm of the matrix B in the above estimate. The estimate
above holds if matrices are normed with the operator norm–though since we do not care
about the exact value of the constant, it does not matter so much how matrices are
normed.

Finally, the estimate for III also follows from (11.21) in Lemma 11.19 as follows:

III ≤ N
n−1

2 ‖βB‖∞
∫

Ω′
|(∇η1)(N1/2y)|2e−2Nyn dy ≤ CN−1. (11.25)

The conclusion of the Lemma follows from (11.23–11.25).

Now, we can make precise our assertion that vN is an approximate solution of the
equation divA∇v = 0.

Lemma 11.26 With vN and Ω′ as above,

lim
N→∞

‖divA∇vN‖L2
−1(Ω′) = 0.

Proof. We compute and use that divA(0)∇EN = 0 to obtain

divA(y)∇vN(y) = div(A(y)− A(0))∇vN(y) + divA(0)∇vN(y)

= div(A(y)− A(0))∇vN(y)

+2A(0)∇ηN(y)∇EN(y) + ENdivA(0)∇ηN(y)

= I + II + III.

In the term I, the divergence must be interpreted as a weak derivative. To estimate the
norm in L2

−1(Ω), we must pair each of I through III with a test function ψ. With I, we
use the definition of weak derivative and recall that ηN is supported in a small ball to
obtain

|I(ψ)| =
∣∣∣∣∫ (A(y)− A(0))∇vN(y) · ∇ψ(y) dy

∣∣∣∣
≤ sup

|y|<23/2N−1/2

|A(y)− A(0)|‖∇vN‖L2(Ω)‖∇ψ‖L2(Ω).
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This last expression goes to zero with N because A is continuous at 0 and according to
(11.22) the L2(Ω) of the gradient of vN is bounded as N → 0.

To make estimates for II, we multiply and divide by δ(y), use the Cauchy-Schwarz
inequality, the Hardy inequality, Lemma 11.17, and then (11.21)

|II(ψ)| = |
∫

Ω′
2A(0)∇ηN(y)∇EN(y)ψ(y) dy|

≤

∫
Ω′

∣∣∣∣∣ψ(y)

δ(y)

∣∣∣∣∣
2

dy

1/2 (
N

n+3
2

∫
Ω′
δ(y)2|(∇η1(N1/2y)|2e−2Nyn dy

)1/2

≤ CN−1/2‖ψ‖L2
1,0(Ω′).

Finally, we make estimates for the third term

|III(ψ)| =
∣∣∣∣∫ EN(y)divA(0)∇ηN(y) dy

∣∣∣∣
≤

∫
Ω′

∣∣∣∣∣ψ(y)

δ(y)

∣∣∣∣∣
2

dy

1/2 (
N

n+1
2

∫
Ω′
δ(y)2|(divA(0)∇η1)(N1/2y)|2e−2Nyn dy

)1/2

≤ C‖ψ‖L2
1,0(Ω′)N

−1.

Now, it is easy to patch up vN to make it a solution, rather than an approximate
solution.

Lemma 11.27 With Ω′ and B as above, we can find a family of solutions, wN , of
divA∇wN = 0 with wN − vN ∈ L2

1,0(Ω′) so that

lim
N→∞

∫
Ω′
β(y)B(y)∇wN(y) · ∇w̄N(y) dy = β(0)B(0)en · en.

Proof. According to Theorem 10.25 we can solve the Dirichlet problem{
divA∇ṽN = −divA∇vN , in Ω′

ṽN = vN , on ∂Ω

The solution ṽN will satisfy

lim
N→∞

‖∇ṽN‖L2(Ω′) ≤ lim
N→∞

C‖divA∇vn‖L2
−1(Ω′) = 0 (11.28)
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by the estimates from the existence theorem, Theorem 10.25 and the estimate of Lemma
11.26.

If we set wN = vN + ṽN , then we have a solution with the correct boundary values
and by (11.28) and Lemma 11.22

lim
N→∞

∫
Ω′
β(y)B(y)∇wN(y) · ∇w̄N(y) dy = lim

N→∞

∫
Ω′
A∇vN(y) · ∇v̄N(y) dy

= β(0)B(0)en · en.

We will need another result from partial differential equations–this one will not be
proven in this course. This Lemma asserts that solutions of elliptic equations are as
smooth as one might expect.

Lemma 11.29 If A is matrix with C1(Ω̄) entries and Ω is a domain with C2-boundary,
then the solution of the Dirichlet problem,{

divA∇u = 0 in Ω
u = f on ∂Ω

will satisfy

‖u‖L2
2(Ω) ≤ C‖f‖L2

2(Ω).

As mentioned above, this will not be proven. To obtain an idea of why it might be
true. Let u be a solution as in the theorem. This, we can differentiate and obtain that
v = ∂u/∂xj satisfies an equation of the form divγ∇v = div(∂γ/∂xj)∇u. The right-hand
side is in L2

−1 and hence it is reasonable to expect that v satisfies the energy estimates
of Theorem 10.25. This argument cannot be right because it does not explain how the
boundary data enters into the estimate. To see the full story, take MA633.

Finally, we can give the proofs of our main theorems.

Proof of Theorem 11.8 and Theorem 11.9. We let F : Ω′ → Ω be the diffeomorphism
used above and let uN = wN ◦ F−1/(1 + |∇φ(0)|2). According to the change of variables
lemma, uN will be a solution of the original equation, divγ∇uN = 0 in Ω. Also, the
Dirichlet integral is preserved:∫

Ω
β(x)|∇uN(x)|2 dx =

1

1 + |∇φ(0)|2
∫

Ω′
β(y)B(y)∇wN(y) · ∇w̄N(y) dy.
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Thus, the recovery of γ at the boundary follows from the result in Ω′ of Lemma 11.27
and we have

γ(0) = lim
N→∞

∫
Ω
γ(x)|∇uN(x)|2 dx = lim

N→∞
Λγ(uN)(ūN).

For the proof of the second theorem, we use the same family of solutions and the
Rellich identity [15]:∫

∂Ω
γ(x)e · ν(x)|∇uN(x)|2 − 2 Re γ(x)

∂u

∂ν
(x) e · ∇ū(x) dx =

∫
Ω
e · ∇γ(x)|∇uN(x)|2 dx.

This is proven by an application of the divergence theorem. The smoothness result in
Lemma 11.29 is needed to justify the application of the divergence theorem: we need to
know that uN has two derivatives to carry this out. The full gradient of uN is determined
by the boundary values of uN and the Dirichlet to Neumann map.

By Lemma 11.22, if γ ∈ C1(Ω̄), we can take the limit of the right-hand side and
obtain that

∂γ

∂xj
(0) = lim

N→∞

∫
Ω

∂γ

∂xj
(x)|∇uN(x)|2 dx.

Corollary 11.30 If we have a C2 domain and for two C1(Ω̄) functions, Λγ1 = Λγ2, then
γ1 = γ2 on the boundary and ∇γ2 = ∇γ1 on the boundary.

Proof. The boundary values of the function uN are independent of γj. The expression
ΛγuN(ūN) in Theorem 11.8 clearly depends only on uN and the map Λγ. The left-hand
side Theorem 11.9 depends only on γ and ∇uN . Since ∇uN which can be computed from
uN and the normal derivative of uN . Hence, we can use Theorem 11.9 to determine ∇γ
from the Dirichlet to Neumann map.

Exercise 11.31 If γ and ∂Ω are regular enough, can we determine the second order
derivatives of γ from the Dirichlet to Neumann map?

It is known that all derivatives of u are determined by the Dirichlet to Neumann
map. I do not know if there is a proof in the style of Theorems 11.8 and 11.9 which tell
how to compute second derivatives of γ by looking at some particular expression on the
boundary.

Exercise 11.32 If one examines the above proof, one will observe that there is a bit of
slop. We made an arbitrary choice for the vector α and used α in the determination of
one function, γ. It is likely that in fact, we can determine (n − 1) parameters at the
boundary by considering (n− 1) linearly independent choices for α. Run with this.



Chapter 12

Inverse problem: Global uniqueness

The goal of this chapter is to prove the following theorem.

Theorem 12.1 If Ω is a C2-domain in Rn, n ≥ 3, and we have two C2(Ω̄) conductivities
with Λγ1 = Λγ2, then γ1 = γ2.

The proof of this result relies on converting the problem of the uniqueness of γ for
the equation divγ∇ to a similar question about the uniqueness of the potential q for
a Schrödinger equation of the form ∆ − q with q = ∆

√
γ/
√
γ. One reason why this

Chapter is so long, is that we spend a great deal of time convincing ourselves that that
the uniqueness question for one equation is equivalent with the uniqueness question for
the other. Most of this chapter is lifted from the paper of Sylvester and Uhlmann [26].
A few of the details are taken from later works that simplify parts of the argument.

12.1 A Schrödinger equation

Here, we extend our notion of weak solution to equations with a potential or zeroth order
term.

We say that v is a weak solution of{
∆v − qv = 0 on Ω
v = f on ∂Ω

if v ∈ L2
1(Ω), v − f ∈ L2

1,0(Ω) and∫
Ω
∇v(x) · ∇φ(x) + q(x)v(x)φ(x) dx = 0, φ ∈ L2

1,0(Ω).

117
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If q ≥ 0 and q ∈ L∞, then the quadratic form associated with this equation clearly
provides an inner product on L2

1,0(Ω) and hence we can prove an existence theorem by
imitating the arguments from Chapter 10. However, the potentials that we are studying
do not satisfy q ≥ 0, in general. Still, it is possible that the quadratic form is non-negative
even without this bound. That is one consequence of the following Lemma. We will use
the Lemma below to relate the existence and uniqueness for ∆− q to divγ∇.

Lemma 12.2 Suppose that Ω is C1, γ is C2(Ω̄) and that γ is bounded above and below
as in (11.7) A function u in L2

1(Ω) satisfies{
divγ∇u = 0, in Ω
u = f, on ∂Ω

if and only if v =
√
γu is a weak solution of{

∆v − qv = 0, in Ω
v =
√
γf, on ∂Ω

Proof. We let C1
c (Ω) denote the space of functions in C1(Ω) which are compactly sup-

ported in Ω. If φ ∈ C1
c (Ω), then

√
γφ is also in C1

c (Ω) and hence lies in L2
1,0(Ω). We

consider the quadratic expression in the weak formulation of divγ∇u = 0 and then use
the product rule twice to obtain∫

Ω
γ(x)∇u(x)∇φ(x) dx =

∫
Ω
∇(
√
γ(x)u(x)) · √γ(x)∇φ(x)

−u(x)(∇√γ(x)) · (√γ(x)∇φ(x)) dx

=
∫

Ω
∇(
√
γ(x)u(x)) · ∇(

√
γ(x)φ(x))

−u(x)(∇√γ(x)) · (√γ(x)∇φ(x))

−∇(
√
γ(x)u(x) · (∇√γ(x))φ(x) dx

Now, in the middle term, we use the divergence theorem to move the gradient operator
from φ to the remaining terms. Since we are not assuming that φ vanishes on the
boundary, we pick up a term on the boundary:∫

Ω
u(x)(∇

√
γ(x)) · (

√
γ(x)∇φ(x)) dx = −

∫
Ω

∆
√
γ(x)

√
γ(x)

(
√
γ(x)u(x))(

√
γ(x)φ(x))

+∇(
√
γ(x)u(x)) · (∇√γ(x))φ(x) dx

+
∫
∂Ω
φ(x)
√
γ(x)∇√γ(x) · ν(x) dσ(x).
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We use this to simplify the above expression, note that two terms cancel and we
obtain, with q = ∆

√
γ/
√
γ, that∫

Ω
γ(x)∇u(x) · ∇φ(x) dx =

∫
Ω
∇(
√
γ(x)u(x)) · ∇(

√
γ(x)φ(x))

+q(x)
√
γ(x)u(x)

√
γ(x)φ(x) dx

−
∫
∂Ω

√
γ(x)u(x)φ(x)∇√γ(x) · ν dσ. (12.3)

Since the map φ→ √γφ is invertible on C1
c (Ω) we have that∫

Ω
γ(x)∇u(x) · ∇φ(x) dx = 0, for all φ ∈ C1

c (Ω),

if and only if with v =
√
γu∫

Ω
∇v(x) · ∇φ(x) + q(x)v(x)φ(x) dx = 0, for all φ ∈ C1

c (Ω).

Corollary 12.4 With q as above, if f ∈ L2
1(Ω), then there exist a unique weak solution

of the Dirichlet problem for ∆− q.

Proof. According to Lemma 12.2, solutions of the Dirichlet problem for ∆v − qv = 0
with data f are taken to solutions of the Dirichlet problem for divγ∇u = 0 with data
f/
√
γ by the map v → v/

√
γ and this map is invertible, the existence and uniqueness

for ∆− q follows from the existence and uniqueness in Theorem 10.25.

Exercise 12.5 We claimed above that if Ω is bounded and q ≥ 0 is real and in L∞, then
the expression ∫

Ω
∇u · ∇v̄ + quv̄ dx

defines an inner product on L2
1,0(Ω) which induces the same topology as the standard

inner product. Verify this.
Show that this continues to hold for n ≥ 3, if q ∈ Ln/2(Ω). What goes wrong if n = 2?

The following Lemma asserts that a function β ∈ C1(Ω) function defines a multiplier
on L2

1/2(∂Ω) which depends only on the boundary values of β. This should seem obvious.
That we need to prove such obvious statements is the price we pay for our cheap definition
of the space L2

1/2(Ω).
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Lemma 12.6 Let Ω be a C1-domain. If β1, β2 ∈ C1(Ω̄), β1 = β2 on ∂Ω, then for each
f ∈ L2

1(Ω), (β1 − β2)f ∈ L2
1,0(Ω). As a consequence, for each f ∈ L2

1/2(∂Ω), β1f = β2f .

Proof. First note that the product rule, exercise 10.7 implies that βjf is in L2
1(Ω) if f

is in L2
1(Ω). To see that (β1 − β2)f is in L2

1,0(Ω), we will establish the following:
Claim. If β ∈ C1(Ω̄) and β = 0 on ∂Ω, then the map f → βf maps L2

1(Ω) into
L2

1,0(Ω).
To establish the claim, we may use a partition of unity to reduce to a function f

which is supported in a ball Br(x0) and so that near x, the boundary lies in a graph
{(x′, xn) : xn = φ(x′)}. We let λ(t) be a function which is smooth on all of R, is 0 if
t < 1 and is 1 if t > 2. We let

ηε(x) = λ((xn − φ(x′))/ε).

Thus, ηε vanishes on ∂Ω∩Br(x0). The product ηε(x)β(x)f(x) will be compactly supported
in Ω, hence we can regularize as in Lemma 10.9 in order to approximate in the L2

1(Ω)-
norm by functions in D(Ω) and conclude that ηε(x)β(x)f(x) is in L2

1,0(Ω). Now we show
that

lim
ε→0+

‖ηεβf − βf‖L2
1(Ω) = 0. (12.7)

This will imply that βf is in L2
1,0(Ω), since L2

1,0(Ω) is (by definition) a closed subspace of
L2

1(Ω).
We establish (12.7). It is an immediate consequence of the Lebesgue dominated con-

vergence theorem that ηεβf → βf in L2(Ω) as ε→ 0+. Now, we turn to the derivatives.
We compute the derivative

∂

∂xj
(ηε(x)β(x)f(x)) = (

∂ηε
∂xj

(x)β(x)f(x) + ηε(x)
∂

∂xj
(β(x)f(x)).

By the dominated convergence theorem, the second term on the right converges in L2(Ω)
to the derivative of βf . We show the first term on the right goes to zero in L2. To
see this, we apply the mean value theorem of one variable calculus on the line segment
joining (x′, φ(x′)) to (x′, xn) and use that β(x′, φ(x′)) = 0 to conclude that

|β(x)| ≤ 2ε‖∇β‖∞.

Using this, and observing that ∇ηε is supported in a thin strip along the boundary and
satisfies |∇ηε| ≤ C/ε , we conclude that∫

Ω
| ∂ηε
∂xj

(x)β(x)f(x)|2 dx ≤ C‖β‖∞
∫
{Br(x0)∩{x:0<xn−φ(x′)<2ε}

|f(x)|2 dx.
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The last integral goes to zero as ε→ 0+. Thus the claim follows.
It is easy to see that f → βjf gives a map on L2

1(Ω).
Now, if each β1 and β2 are as in the theorem and f is a representative of an element

of L2
1/2(∂Ω), then since β1f − β2f ∈ L2

1,0(Ω), we can conclude that β1f and β2f give the

same function L2
1/2(∂Ω).

Our next step is to establish a relation between the Dirichlet to Neumann map for q
and that for γ.

Lemma 12.8 If γ is in C2(Ω̄) and satisfies the ellipticity condition (11.7), and Ω is a
C1-domain, then we have

Λq(·)−
1
√
γ
∇√γ · ν =

1
√
γ

Λγ(
1
√
γ
·).

Proof. We fix f in L2
1/2(∂Ω) and suppose that u is the solution of the Dirichlet problem

for divγ∇ with boundary data f . According to the identity (12.3) in the proof of Lemma
12.2, we have

Λγ(f)(φ) =
∫

Ω
γ(x)∇u(x) · ∇φ(x) dx

=
∫

Ω
∇(
√
γ(x)u(x)) · ∇(

√
γ(x)φ(x)) + q(x)

√
γ(x)u(x)

√
γ(x)φ(x) dx

−
∫
∂Ω

√
γ(x)u(x)φ(x)∇√γ(x) · ν dσ

=
√
γΛq(

√
γf)(φ)−

∫
∂Ω

√
γf∇√γ · νφ dσ.

Making the substitution f = g/
√
γ and dividing by

√
γ gives the desired conclusion. 1

Remark. A clearer and more direct proof of this lemma can be given if we assume
the regularity result of Lemma 11.29. We may choose f which is nice, solve the Dirichlet
problem for divγ∇ with data f to obtain u. We have that v =

√
γu solves the Schrödinger

equation ∆v − qv = 0. Taking the normal derivative we have

Λq(
√
γf) =

√
γ
∂u

∂ν
+ u

∂
√
γ

∂ν
.

We now consider two conductivities γ1 and γ2 and the corresponding potentials qj =
∆
√
γj/
√
γj.

1In the above equation, we are not distinguishing between the multiplication operator that
√
γ gives

on L2
1/2(∂Ω) and the transpose of this operator to the dual, L2

−1/2(∂Ω). Did anyone notice?
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Proposition 12.9 If γ1, γ2 ∈ C1(Ω̄), γ1 = γ2 and ∇γ1 = ∇γ2, then

Λγ1 = Λγ2

if and only if

Λq1 = Λq2 .

Proof. This result follows from Lemma 12.8 and 12.6.

12.2 Exponentially growing solutions

In this section, we consider potential q which are defined in all of Rn and are bounded and
compactly supported. In applications, q will be of the form ∆

√
γ/
√
γ in Ω and 0 outside

Ω. The assumption that q is bounded is needed in this approach. The assumtion that q
is compactly supported is too strong. What is needed is that q defines a multiplication
operator from M2,−1/2

∞ →M
2,1/2
1 and thus there is a constant M(q) so that

‖qφ‖
M

2,1/2
1
≤M(q)‖φ‖

M
2,−1/2
∞

. (12.10)

This requires that q decay faster than (1 + |x|2)−1/2 at infinity, which is true if q is
bounded and compactly supported.

Our goal is to construct solutions of the equation ∆v− qv = 0 which are close to the
harmonic functions ex·ζ . Recall that such an exponential will be harmonic if ζ · ζ = 0.
We will succeed if ζ is large.

Theorem 12.11 Assume M(q) is finite and let ζ ∈ Cn satisfy ζ · ζ = 0. There exists a
constant C = C(n) so that if |ζ| > C(n)M(q), then we can find a solution of

∆v − qv = 0

of the form v(x) = ex·ζ(1 + ψ(x, ζ)) which satisfies

‖ψ‖
M

2,−1/2
∞

≤ CM(q)

|ζ|
‖q‖

M
2,1/2
1

.

Furthermore, the function ψ is the only function in M2,−1/2
∞ for which v as defined above

will satisfy ∆v − qv = 0.
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Proof. Existence. If we differentiate we see that ∆v − qv = 0 if and only if

∆ψ + 2ζ · ∇ψ − qψ = q. (12.12)

A solution of this equation may be constructed by solving the integral equation

ψ −Gζ(qψ) = Gζ(q).

A solution of the integral equation (12.12) is given by the series

ψ =
∞∑
j=1

(Gζq)
j(1).

To see that the series can be summed, we apply the second estimate of Theorem 9.16 of
Chapter 9, and use the estimate for the multiplication operator given by q, (12.10), to
obtain

‖(Gζq)
j(1)‖

M
2,−1/2
∞

≤ (
CM(q)

|ζ|
)j−1 C

|ζ|
‖q‖

M
2,1/2
1

.

Thus, if |ζ| is large, this series converges and defines a functions ψ in M2,−1/2
∞ . Fur-

thermore, according to exercise 9.21 ∇ψ = ∇Gζ(q(1 + ψ)) is in M2,−1/2
∞ . Thus, v will be

a weak solution of the equation ∆v − qv = 0 in Rn.
Uniqueness. If we have two solutions, ψ1 and ψ2 of (12.12) which are in M2,−1/2

∞ , then
their difference satisfies

∆(ψ1 − ψ2) + 2ζ · ∇(ψ1 − ψ2)− q(ψ1 − ψ2) = 0.

According to Theorem 9.23 we have ψ1 − ψ2 = Gζ(q(ψ1 − ψ2)). Thus from the estimate
in Theorem 9.16 we have

‖ψ2 − ψ2‖M2,−1/2
∞

≤ CM(q)

|ζ|
‖ψ1 − ψ2‖M2,−1/2

∞
.

If we have CM(q)/|ζ| < 1, then this inequality will imply that ‖ψ1 − ψ2‖M2,−1/2
∞

= 0.

Lemma 12.13 Suppose that Ω is C1 and suppose that each qj is supported in Ω̄ and that
qj are of the form ∆

√
γ
j
/
√
γj. If Λq1 = Λq2 and vj = (1 + ψj)e

x·ζ are the solutions for

∆− qj from Theorem 12.11, then ψ1(x, ζ) = ψ2(x, ζ) for x ∈ Rn \Ω and all ζ sufficiently
large.
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Proof. We use a cut-and-paste argument. Define a new function by

ψ̃1(x, ζ) =

{
ψ2(x, ζ), x ∈ Rn \ Ω̄
ψ(x, ζ), x ∈ Ω.

Here, ψ(x, ζ) = e−x·ζv(x)− 1 where v is the solution of the Dirichlet problem{
∆v − q1v = 0 x ∈ Ω
v(x) = ex·ζ(1 + ψ2(x, ζ)) x ∈ ∂Ω

We claim that ṽ1(x, ζ) = ex·ζ(1 + ψ̃1) is a solution of ∆v − q1v = 0 in all of Rn. This
depends on the the hypothesis Λq1 = Λq2 . To establish this claim, we let φ ∈ D(Rn) and
consider∫

Rn
∇ṽ1 · ∇φ+ q1ṽ1φ dx =

∫
Rn\Ω

∇v2 · ∇φ dx+
∫

Ω
∇v(x) · ∇φ(x) + q1(x)v(x)φ(x) dx.

Since v2 is a solution of ∆v2 − q2v2 = 0 in Rn, we have that∫
Rn\Ω

∇v2 · ∇φ dx = −
∫

Ω
∇v2 · ∇φ+ q2v2φ dx = Λq2(v2)(φ).

Since v2 = v on the boundary of Ω and Λq1 = Λq2 we have

Λq2(v2)(φ) = Λq1(v)(φ) =
∫

Ω
∇v · ∇φ+ q1vφ dx.

Combining these last three equations shows that ṽ1 is a weak solution of ∆−q1 in Rn. By
the uniqueness statement in Theorem 12.11, the function ψ̃1 defined by ψ̃1 = e−x·ζ ṽ1 − 1
must equal ψ1. In particular, ψ1 = ψ2 outside Ω.

Lemma 12.14 Let q be a potential for which we can solve the Dirichlet problem. The
operator Λq is symmetric. That is we have Λq(φ)(ψ) = Λq(ψ)(φ).

Proof. Let φ1, φ2 be in L2
1/2(∂Ω). We solve the Dirichlet problem with data φj to find a

function uj which solves the Dirichlet problem for ∆ − q with boundary data φj. Then
we have

Λ(φ1)(φ2) =
∫

Ω
∇u1 · ∇u2 + qu1u2 dx.

The integral on the right-hand side is symmetric in u1 and u2 so we can conclude

Λq(φ1)(φ2) = Λq(φ2)(φ1).



12.2. EXPONENTIALLY GROWING SOLUTIONS 125

Proof of Theorem 12.1. According to Corollary 11.30 and Proposition 12.9, we have
that if Λγ1 = Λγ2 , then Λq1 = Λq2 . We will show that if Λq1 = Λq2 , then the Fourier
transforms satisfy q̂2 = q̂1 (where we are assuming that each qj has been defined to be
zero outside Ω). We fix ξ ∈ Rn and choose two unit vectors α and β which satisfy
α · β = α · ξ = β · ξ = 0. (Here, we use our assumption that n ≥ 3 in order to find three
mutually orthogonal vectors.) Next, for R > |ξ|/2, we define ζ1 and ζ2 by

ζ1 = Rα + iβ
√
R2 − |ξ|2/4− iξ/2 and ζ2 = −Rα− iβ

√
R2 − |ξ|2/4− iξ/2.

These vectors satisfy ζj · ζj = 0 , ζ1 + ζ2 = −iξ and |ζj| =
√

2R.
For R large, we let vj be the solution of ∆vj − qjvj = 0 corresponding to ζj as in

Theorem 12.11. Since the Dirichlet to Neumann maps are equal and using Lemma 12.14,
we have

0 = Λq1(v1)(v2)− Λq2(v2)(v1) =
∫

Ω
(q1(x)− q2(x))e−ix·ξ(1 + ψ1 + ψ2 + ψ1ψ2) dx.

Recall, that the ψj depend on the parameter R and that Theorem 12.11 implies that the
ψj → 0 in L2

loc as R→∞. Thus, we conclude

q̂1 = q̂2.

The Fourier inversion theorem implies q1 = q2. Finally, the Lemma below tells us that if
q1 = q2 and γ1 = gamma2 on the boundary, γ1 = γ2.

Lemma 12.15 If γ1 and γ2 in C2(Ω̄) and if ∆
√
γ

1
/
√
γ

1
= ∆

√
γ

2
/
√
γ

2
, then u =

log(γ1/γ2) satisfies the equation

div
√
γ1γ2∇u = 0.

As a consequence, if Ω is C1, and γ1 = γ2 on the boundary, then γ1 = γ2.

Proof. Let φ be a D(Ω) function, say, which is compactly supported in Ω. We multiply
our hypothesis, ∆

√
γ

1
/
√
γ

1
= ∆
√
γ

2
/
√
γ

2
by φ and integrate by parts to obtain

0 =
∫

Ω
(
∆
√
γ

1√
γ

1

−
∆
√
γ

2√
γ

2

)φ dx = −
∫

Ω
∇√γ1 · ∇(

1
√
γ1

φ)−∇√γ2 · ∇(
1
√
γ2

φ) dx

If we make the substitution φ =
√
γ1
√
γ2ψ, then we have∫

Ω

√
γ1γ2∇(log

√
γ1 − log

√
γ2) · ∇ψ dx = 0.

If γ1 = γ2 on the boundary and Ω is C1, then by Lemma 12.6we have log(γ1/γ2) is in
L2

1,0(Ω). We can conclude that this function is zero in Ω from the uniqueness assertion
of Theorem 10.25.
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Exercise 12.16 Suppose the Ω is a C1-domain in Rn. Suppose that u+ is a weak solution
∆u+ = 0 in Ω and u− is a local weak solution of ∆u− = 0 in Rn \ Ω̄ and that ∇u− is in
L2 of every bounded set in Rn \ Ω̄. Set γ = 1 in Rn \ Ω̄ and set γ = 2 in Ω. Define u by

u(x) =

{
u+(x), x ∈ Ω
u−(x), x ∈ Rn \ Ω̄

What conditions must u± satisfy in order for u to be a local weak solution of divγ∇ in all
of Rn. Hint: There are two conditions. The first is needed to make the first derivatives
of u to be locally in L2. The second is needed to make the function u satisfy the weak
formulation of the equation.

Exercise 12.17 Show that the result of Lemma 12.15 continues to hold if we only require
that the coefficients γ1 and γ2 are elliptic and in L2

1(Ω). In fact, the proof is somewhat
simpler because the equation ∆

√
γ1/
√
γ1 = ∆

√
γ2/
√
γ2 and the boundary condition are

assumed to hold in a weak formulation. The proof we gave amounts to showing that the
ordinary formulation of these conditions imply the weak formulation.

Exercise 12.18 (Open) Show that a uniqueness theorem along the lines of Theorem 12.1
holds under the assumption that γ is only C1(Ω̄).
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Bessel functions
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Chapter 14

Restriction to the sphere
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Chapter 15

The uniform sobolev inequality

In this chapter, we give the proof of a theorem of Kenig, Ruiz and Sogge which can be
viewed as giving a generalization of the Sobolev inequality. One version of the Sobolev
inequality is that if 1 < p < n/2, then we have

‖u‖p ≤ C(n, p)‖∆u‖p.

This can be proven using the result of exercise 8.2 and the Hardy-Littlewood-Sobolev
theorem, Theorem 8.10. In our generalization, we will consider more operators, but fewer
exponents p. The result is

Theorem 15.1 Let L = ∆ + a · ∇ + b where a ∈ Cn and b ∈ C and let p satisfy
1/p− 1/p′ = 2/n. For each f with f ∈ Lp and D2fLp we have

‖f‖p′ ≤ C‖Lf‖p.
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Chapter 16

Inverse problems: potentials in Ln/2
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Chapter 17

Scattering for a two-dimensional
system

In this chaper, we begin the study of the scattering theory for a first-order system in two
dimensions. The scattering theory for this system is related to the inverse-conductivity
problem in two dimensions. We will see that this system is also related to an evolution
equation in space called the Davey-Stewartson II system.

The system we study for the next several chapters can be written in the form

(D −Q)ψ = 0 (17.1)

where D is the first order matrix of differential operators given by

D =

(
∂̄ 0
0 ∂

)
.

Throughout this chapter, x = x1 + ix2 will denote a complex variable and we use the
standard notation for complex partial derivatives,

∂̄ =
1

2

(
∂

∂x1

+ i
∂

∂x2

)
∂ =

1

2

(
∂

∂x1

− i ∂
∂x2

)

The potential Q in (17.1) is a 2× 2 off-diagonal matrix,

Q =

(
0 q12

q21 0

)

where the entries qij are functions on R2. We will sometimes impose one of the symmetry
conditions Q = Q∗ or Q = −Q∗.
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Exercise 17.2 (a) Find
∂̄x̄, ∂̄x, ∂x̄ and ∂x.

(b) If f is a function of a complex variable, write the Taylor expansion of f to order
2 using the complex derivatives ∂ and ∂̄.

For those who are not familiar with the term scattering theory, we will describe how
we understand this term. In the problems we consider, we will compare solutions of a
free system (where Q = 0) with a system where Q is not zero. We shall see that we can
determine Q from the asymptotic behavior of solutions. Scattering theory was developed
to attack problems in physics where one tries to determine information at very small
scales (for example, the structure of an atom) from measurements made at much larger
scales.

17.1 Jost solutions

If Q = 0 in (17.1), then we may write down a family of solutions to this system which
depend on a complex parameter z

ψ0(x, z) =

(
eixz 0
0 e−ix̄z

)
.

It is easy for even the most casual observer to see that Dψ0 = 0 where D acts by
differentiating in the variables x and x̄.

Our goal is to construct solutions of (17.1) which are asymptotic to ψ0 at infinity.
The previous sentence will need to made precise before we can prove theorems. It is
reasonable to expect that we can recover Q by studying the ψ and ψ0. What may be
more surprising is that we can recover Q just from the asymptotic behavior of the family
ψ(·, z) as z ranges over C. This is one of the goals of the scattering theory we develop
in the next several chapters.

The exponential growth of the function ψ0 is inconvenient. We will find an equation
satisfied by ψψ−1

0 that eliminates the need to deal with functions of exponential growth.
We write ψ(x, z) = m(x, z)ψ0(x, z) and observe that

D(mψ0) =

(
(∂̄m11)ψ11

0 (∂̄m12ψ22
0 )

∂(m21ψ11
0 ) (∂m22)ψ22

0

)

Thus, we have that

D(mψ0)ψ−1
0 = Dmd +

(
0 (∂̄(m12e−ix̄z))eix̄z

(∂(m21eixz))e−ixz 0

)
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= Dmd +

(
0 (∂̄(m12e−ixz̄−ix̄z))eixz̄+ix̄z

(∂(m21eixz+ix̄z̄))e−ixz−ix̄z̄ 0

)
= Dmd + (D(moA(x, z̄)))A(x,−z̄)

The second equality follows since ∂̄eixz̄ = 0. The matrix-valued function A is defined by

A(x, z) = Az(x) =

(
ei(xz̄+x̄z) 0

0 e−ixz−ix̄z̄

)
.

Using the matrix A we may define the operator Ez by

Ezf = fd + f oAz̄ = fd + A−zf
o.

Here, we let Ad denote the diagonal part of a square matrix A and Ao = A−Ad denotes
the off-diagonal part of A. Finally, we define an operator Dz by Dz = E−1

z DEz. With
this notation, we see that ψ = mψ0 will solve (17.1) if and only if m satisfies

Dzm−Qm = 0. (17.3)

17.2 Estimates

To proceed, we will need to fix a norm on matrices and define spaces of matrix valued
functions. If A and B are n× n matrices with complex entries, then we define an inner
product by 〈A,B〉 = tr(AB∗). Then, the norm is given by

|A|2 =
n∑
j=1

n∑
k=1

|Ajk|2. (17.4)

where A = (Ajk). The norm | · | is often called the Frobenius norm.

Exercise 17.5 a) If A is a matrix Let ‖A‖L denote the norm of A as an operator on Cn,
‖A‖L = sup{|Ax| : |x| ≤ 1}. Show that these norms satisfy the inequality |A|L ≤ |A|.

b) Prove that our matrix norm is mulitiplicative for the matrix product

|AB| ≤ |A||B|.

Hint: If Cj denotes the jth column of a matrix C, then use the operator norm to estimate
(AB)j. Use part (a) to estimate the operator norm of A in terms of the Frobenius norm.
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With this norm, we may define spaces of matrix-valued functions Lpα(R2) = {f : 〈y〉αf(y) ∈
Lp(R2)}. The norm on this space is

‖f‖Lpα(R2) =
(∫

R2
|f(y)|p〈y〉αp dy

)1/p

.

When p = ∞, we define ‖f‖L∞α (R2) = ess sup〈y〉α|f(y)|. Here, we are using 〈x〉 = (1 +
|x|2)1/2. Throughout this section, we will let p denote an exponent in the open interval
(1, 2) and then p̃ is defined by the relation 1/p̃ = 1/p− 1/2. We begin with the following
simple extension of Hölder’s inequality.

Proposition 17.6 Suppose that p, q and r lie in [1,∞] and 1/p = 1/q+1/r, that α and
β lie in R. If f ∈ Lqα(R2) and g ∈ Lrβ(R2), then fg ∈ Lpα+β(R2) and

‖fg‖Lp
α+β

(R2) ≤ ‖f‖Lqα(R2)‖g‖Lrβ(R2).

Proof. The proof is a simple application of Hölder’s inequality.

We now consider the equation

Du = f.

One solution of this equation is given by the operator G defined by

G(f)(x) =
1

π

∫
R2

(
x− y 0

0 x̄− ȳ

)−1

f(y) dy =

(
g(f)(x) 0

0 ḡ(f)(x)

)

where g and ḡ are the Cauchy transform and the corresponding operator for ∂. (See
exercise 8.3) We summarize some well-known properties of this operator G.

Proposition 17.7 Fix p with 1 < p < 2. If f ∈ Lp(R2), then we have

‖G(f)‖Lp̃(R2) + ‖∇G(f)‖Lp(R2) ≤ C‖f‖Lp(R2).

The constant C depends only on p and p̃ is defined by 1/p̃ = 1/p− 1/2.
The function u = G(f) is the unique solution of Du = f which lies in the space

Lp̃(R2).

Next we define an operator Gz by Gz = E−1
z GEz. The next Corollary follow easily

from Proposition 17.7.
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Corollary 17.8 If 1 < p < 2 and f is in Lp(R2), then u = Gz(f) satisfies Dzu = f .
We have

‖Gz(f)‖Lp̃(R2) ≤ C‖f‖Lp(R2)

and for each f in Lp, the map z → Gz(f) from C into Lp̃ is continuous or to put it
another way, the map z → Gz continuous from C into L(Lp, Lp̃) with the strong operator
topology.

Proof. It is easy to see that Gz(f) solves Dzu = f . As the map Ez is an invertible norm
preserving map on Lp, the norm estimate for Gz follows from the corresponding result
for G in Proposition 17.7. To establish the strong convergence of the family of operators
Gz, we observe that

|Gz(f)(x)| ≤ I1(|f |)(x)

where I1 is the Riesz potential defined in (8.4). For x and y fixed, we have the

lim
w→z

A(x− y, w)f(y) = A(x− y, z)f(y).

If I1(|f |)(x) is finite, then |f(y)|/|x − y| is in L1(R2) and the dominated convergence
theorem implies

lim
w→z

Gw(f) = Gz(f).

Another application of the dominated convergence theorem implies that

lim
w→z
‖Gw(f)−Gz(f)‖Lp(R2) = 0.

We will find solutions to the equation (17.3) in the form (I −GzQ)−1(I2) where I2 is
the 2× 2 identity matrix. To proceed, we will need to show that the inverse (I−GzQ)−1

exists and is differentiable. We begin by establishing the invertibility.

Proposition 17.9 Let k ≥ 0 and assume that Q ∈ L2
k(R

2). If 2 < p̃ <∞, we have that

GzQ : Lp̃−k → Lp̃−k

and we have the estimate

‖GzQ(f)‖Lp̃−k(R2) ≤ C‖Q‖L2
k
(R2)‖f‖Lp̃−k(R2).

The constant C depends only on p.

Proof. From Proposition 17.6, we have

‖Qf‖Lp(R2) ≤ ‖Q‖L2
k
(R2)‖f̃‖Lp̃−k(R2).

From Proposition 17.8, we have ‖Gz(Qf)‖Lp̃(R2) ≤ C‖Qf‖Lp(R2). Finally, we have Lp̃−k ⊂
Lp̃ since 〈y〉 ≥ 1 and the estimate of the Proposition follows.
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Remark. When p = 4/3, it is known that C(p) ≤ 1. See Lieb and ...

The following Lemma shows that the map z → GzQ is continuous into operators on
Lp̃−k in the operator norm. Note that this is a stronger result than we proved in Corollary
17.9. In a future version of these notes, Corollary 17.9 will be disappeared.

Lemma 17.10 Let 1 < p < 2 and suppose that k ≥ 0. If Q ∈ Lp̃−k, then the map

z → GzQ is continuous as a map from the complex plane into L(Lp̃−k). If we assume
that (I −Gz0Q) is invertible, then the inverse exists in a neighborhood of z0 and the map
z → (I −GzQ)−1 is continuous at z0.

Proof. We begin by showing that the map z → GzQ is continuous. To see this, fix
ε > 0. We first observe that we may find Q0 which compactly supported and so that
‖Q0 − Q‖L2

k
< ε. Then, Hölder’s inequality, Theorem 17.6, and the Hardy-Littlewood-

Sobolev inequality, Theorem 8.10, imply that

‖Gz(Q−Q0)f‖Lp̃−k ≤ C‖Q−Q0‖L2
k
‖f‖Lp̃−k

as long as k ≥ 0.
Since suppQ0 is compact, we may find R > 0 so that suppQ0 ⊂ BR(0). We can find

a constant C so that

|GzQ0f(x)| ≤
C‖Q0‖L2

k
‖f‖Lp̃−k
|x|

, |x| > R.

Recalling that p̃ > 2 and k ≥ 0, it follows from the above that we may choose R1 so that

‖GzQ0f‖Lp̃−k({x:|x|>R1}) ≤ ε‖f‖Lp̃−k .

Finally, we observe that our matrix valued function A(x, z) satisfies |A(x, z)−A(x,w)| ≤
C|x||z − w|. This and the compact support of Q0 allow us to conclude that we have a
constant C so that

‖GzQ0f −GwQ0f‖Lp̃−k ≤ ‖(E−1
z − E−1

w )GEzQ0f‖Lp̃−k({x:|x|<R1}) + ‖E−1
w G(Ez − Ew)Q0f‖Lp̃−k

≤ C(R +R1)|z − w|‖f‖Lp̃−k .

From the above observations, we see that we have

‖GzQf −GwQf‖Lp̃−k ≤ ‖Gz(Q−Q0)f‖Lp̃−k + ‖Gw(Q−Q0)f‖Lp̃−k
+‖(Gz −Gw)(Q0)f‖Lp̃−k({x:|x|<R})

+‖(Gz)(Q0)f‖Lp̃−k({x:|x|≥R}) + ‖(Gw)(Q0)f‖Lp̃−k({x:|x|≥R})

≤ Cε‖f‖Lp̃−k + C(R +R1)|z − w|‖f‖Lp̃−k .
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If we require |z−w| to be small so that C(R+R1)|z−w| < ε, we obtain that the operator
norm of GzQ−GwQ is at most a multiple of ε. We have established the norm continuity
of GzQ.

To establish the continuity of the inverse, we write

(I−GzQ)−1 = (I−Gz0Q+Gz0Q−GzQ)−1 = (I−Gz0Q)−1
∞∑
j=0

((I−Gz0Q)(Gz0Q−GzQ))j.

The norm continuity of the map z → GzQ now implies that the inverse map is also
continuous.

Corollary 17.11 Let 1 < p < 2 and suppose that k ≥ 0. Let C = C(p) be the constant
in Proposition 17.9. If we have C‖Q‖L2

k
(R2) < 1, then the operator (I−GzQ) is invertible

on Lp̃−k and the norm of the inverse operator satisfies

‖(I −GzQ)−1‖L(Lp̃−k) ≤
1

1− C‖Q‖L2
k

.

In addition, the map z → (I −GzQ)−1 is continuous as a map into the operators on Lp̃−k
with the norm topology.

Proof. We write

(I −GzQ)−1 =
∞∑
k=0

(GzQ)k.

We may use Proposition 17.9 to estimate each term in this series and sum to obtain the
estimate of the Proposition.

To obtain the continuity of the inverse map, we write

((I −GwQ)−1 − (I −GzQ)−1)f = ((I −GwQ)−1(GzQ−GwQ)(I −GzQ)−1)f.

Since the norm of (I − GwQ)−1 is bounded in w, it is clear that the strong continuity
of the map z → GzQ implies the continuity of the inverse map (see the proof of Lemma
A.5).

Corollary 17.12 Suppose that 1 < p < 2 and that k > 2/p̃ and Q ∈ L2
k with C‖Q‖L2

k
.

We may find m a solution of (17.3) with ‖m(·, z‖Lp̃−k ≤ C and m is the only solution in

Lp̃−k. Furthermore, m(·, z) − I lies in Lp̃ and there is only one solution of (17.3) with
m(·, z)− I2 in Lp̃.

Proof. Our condition on p̃ and k guarantees that I2 is in Lp̃−k. Set m(·, z) = (I −
GzQ)−1(I2).
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17.3 Notes

The material we discuss in this chapter is presented formally in Fokas [5], Fokas and
Ablowitz [6], some proofs are sketched in Beals and Coifman [2], and the results are
worked out in complete detail in Sung [22, 23, 24].



Chapter 18

Global existence of Jost solutions

Our next goal is to show that if Q satisfies Q = Q∗, then we have the existence of the
Jost solutions m without any size restriction on Q and we have the estimate

sup
z∈C
‖m(·, z)‖Lp̃−k ≤ C(Q).

We will assume some smoothness on Q to do this. Our goal is to develop a complete
theory when the potential is in the Schwartz class.

18.1 Uniqueness

In this section, we establish uniqueness of solutions to the equation (17.3), (Dz−Q)m = 0.
We begin by studying a scalar equation which contains all of the analytic difficulties.
Under the assumption that Q = Q∗, we are able to reduce the system to several scalar
equations.

Lemma 18.1 Suppose that f lies in Lp(R2) ∩ Lp′(R2) for some p with 1 < p < 2, then
the Cauchy transform of f , g(f) is continuous and satisfies

‖g(f)‖∞ ≤ C(‖f‖p‖f‖p′)1/2.

Proof. We let R > 0 and write

g(f)(x) =
1

π

(∫
|x−y|<R

f(y)

x− y
dy +

∫
|x−y|>R

f(y)

x− y
dy

)
=

1

π
(I(x) + II(x)).

143
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From Hölder’s inequality, we have

|I(x)| ≤ ‖f‖p′
(∫

BR(0)
|y|−p dy

)1/p

= ‖f‖p′
(

2π

2− p

)1/p

R
2
p
−1.

Another application of Hölder’s inequality gives that

II(x) ≤ ‖f‖p
(

2π
∫ ∞
R

r1−p′ dr
)1/p′

= ‖f‖p
(

2π

p′ − 2

)1/p′

R1− 2
p .

Thus, g(f)(x) satisfies

|g(f)(x)| ≤ 1

π

‖f‖p
(

2π

p′ − 2

)1/p′

R1− 2
p + ‖f‖p′

(
2π

2− p

)1/p

R
2
p
−1

 .
The minimum on the right-hand side of this expression will occur if R−1+2/p a multiple
of (‖f‖p/‖f‖p′)1/2. Thus, we may find a constant C(p) so that

‖g(f)‖∞ ≤ C‖f‖1/2
p ‖f‖

1/2
p′ . (18.2)

To see that g(f) is continuous, we fix f in Lp ∩Lp′ and approximate f by a sequence
of smooth functions which converge in Lp and is bounded in Lp

′
. (Unless p = 1, it is easy

to arrange convergence in Lp and Lp
′
.) The estimate (18.2) implies that g(fj) converges

uniformly to g(f) and hence g(f) is continuous.

Exercise 18.3 Show that we have

‖g(f)‖Cα ≤ C(α, p)‖f‖p

if α = 1− 2/p, 2 < p <∞. Here, we are using ‖ · ‖Cα to denote the Cα semi-norm

‖f‖Cα = sup{x 6= y : |f(x)− f(y)|/(|x− y|α)}.

In the next theorem, we use the space C0(R2). This the closure in the uniform norm
of the continuous functions with compact support.

Theorem 18.4 (Vekua [28]) Suppose that q1 and q2 lie in Lp ∩ Lp′ for some p with
1 < p < 2. If f is in Lr for some r with p ≤ r < ∞ or f is in C0(R2) and satisfies the
pseudo-analytic equation

∂̄f − q1f − q2f̄ = 0,

then f = 0.
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Proof. We set

q(x) =

{
q1(x), if f(x) = 0

q1(x) + f(x)
f̄(x)

q2(x), if f(x) 6= 0.

With this definition, we have that ∂̄f − qf = 0 and we have q ∈ Lp ∩ Lp′ for 1 < p < 2.
Our hypothesis on q and Lemma 18.1 imply that u = C(q) is bounded. The pseudo-
analytic equation implies that g = fe−u is analytic. Since u is bounded, we have that
g lies in Lp

′
(or C0) whenever f does. Thus, Liouville’s theorem implies that g must be

identically 0.

Exercise 18.5 (Nachman) Extend Theorem 18.4 to the case when qj ∈ L2 for j = 1, 2.

We now show how to use the above the result of Vekua to establish uniqueness to our
first-order system, (17.3).

Theorem 18.6 Suppose that Q = Q∗ and Q lies in Lp∩Lp′, for some p with 1 < p < 2.
If Dzm−Qm = 0 and m lies in Lr for some r with ∞ > r ≥ p, then m = 0.

Proof. Fix z. We define four functions, u± and v± by

u±(x) = m11(x, z)± exp(−ixz − ix̄z̄)m̄21(x, z)

v±(x) = exp(ixz̄ + ix̄z)m̄12(x, z)±m22(x, z).

Each of these functions will be a solution of the equation ∂̄f − qf = 0. To see this for
u±, we start with the equations

∂̄m11(x, z) = q12(x)m21(x, z)

∂̄(m̄21(x, z) exp(−ixz − ix̄z̄) = q̄21(x)m̄11(x, z) exp(−ixz − ix̄z̄).

Adding these expressions and using that Q∗ = Q, we obtain that

∂̄m11(x, z)± m̄21(x, z) exp(−ixz − ix̄z̄)

= q12(x)m21(x, z)± q12(x)m̄11(x, z) exp(ixz + ix̄z̄)± m̄11

= ±q12 exp(−ixz − ix̄z̄)ū±.

A similar calculation gives that

∂v±(x) = q21(x) exp(ixz + ix̄z̄)v̄±(x).

These equations, and our hypotheses on Q and m allows us to use Theorem 18.4 to show Check this.
that u± = v± = 0. It follows from these four equations that the four components of m
are zero.
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Next, we observe that the map f → GzQg is a compact operator.

Theorem 18.7 Let 1 < p < 2 and suppose that Q ∈ L2
k. Then the operator f → GzQf

is a compact operator on Lp̃−k.

Proof. We first consider the case where Q is bounded and compactly supported. If Q
is supported in a ball B, then we have that GE−1

z Qf will have analytic or anti-analytic
components outside of the support of Q. By examining the Laurent expansions of these
functions, we may see that f → GzQf is a compact map into Lp̃−k(C \ B). On the set
B, we may use that GE−1

z Qf is in the Sobolev space Lq,1(B) for q <∞ and the Rellich
compactness theorem to conclude that GzQ is a compact map into Lp̃−k(B). Thus we
have proven our theorem in the special case that Q is bounded and compactly supported.

If Q is an arbitrary element in L2
k, then we may approximate Q in the space L2

k by
a sequence ‖Qj} where each Qj is compactly supported and bounded. We have that the
sequence of operators GzQj converges in operator norm to the operator GzQ. As the
set of compact operators is closed in the operator topology, we may conclude that the
operator GzQ is compact.

18.2 Existence of solutions.

In this section, we establish the existence of solutions to an integral equation. This result
is the main step in establishing existence of solutions to the equation (17.3).

Theorem 18.8 Fix p with 1 < p < 2. Suppose that Q ∈ Lr ∩ Lr′, Q = Q∗ and Q ∈ L2
k

then for each h in Lp̃−k, the integral equation

(I −GzQ)(f) = h (18.9)

has a unique solution in Lp̃−k. If we set f(x, z) = (I −GzQ)−1(h) is continuous as a map

from C into Lp̃−k.

Proof. We begin by showing that solutions of (18.9) are unique. Suppose that (I −
GzQ)(f) = 0 and f is in Lp̃−k. Since we assume that Q ∈ L2

k, if follows from Hölder’s
inequality that Qf is in Lp we conclude that f = Gz(Qf) is in Lp̃ by Theorem 8.10.
From this, we conclude that Dzf −Qf = 0. It follows from Theorem 18.4 that f = 0.

To show existence, we begin by observing that Proposition 17.6 and Theorem 8.10
imply that (I − GzQ) is a bounded operator on Lp̃−k. Also, from Theorem 18.7, we
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have that the operator f → GzQf is compact. Since we have shown that the operator
f → (I − GzQ)f is injective, it follows from the Fredholm theorem that I − GzQ is
invertible.

The continuity follows from Lemma 17.10.

Corollary 18.10 Suppose that 1 < p < 2 and kp̃ > 2 and let Q ∈ L2
k. If Q is small in

L2
k or Q = Q∗ and Q ∈ Lr ∩ Lr′ for some r with 1 < r < 2, then we may find a unique

solution of (17.3) with m(·, z)− I2 ∈ Lp̃.

18.3 Behavior for large z

Our next theorem shows that m is bounded for large z and in fact we have

lim
|z|→∞

‖I2 −m(·, z)‖Lp̃−k = 0.

We begin by establishing an integral equation for the diagonal part of m, md.

Lemma 18.11 Suppose that Q ∈ L2
k with k ≥ 0 and h is in Lp̃−k with ho = 0. A matrix-

valued function m in Lp̃−k satisfies the integral equation (I − GzQ)m = h if and only if
the diagonal and off-diagonal parts satisfy

md(·, z)−GQGzQm
d(·, z) = h (18.12)

mo(·, z) = GzQm
d(·, z) (18.13)

Proof. If we have m−GzQm = h, we may separate this equation into the diagonal and
off-diagonal parts of the matrix and obtain the equations

md −GQmo = h (18.14)

mo −GzQm
d = 0 (18.15)

If we substitute the second equation into the first, we obtain (18.12) and of course the
second equation is (18.13).

Now suppose that we have the equation (18.12). If we define mo = GzQm
d, we

immediately obtain the integral equation (18.9).
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Theorem 18.16 Fix p with 1 < p < 2 and k ≥ 0. Let Q ∈ L2
k, fix p. If ∇Q ∈ L2 and

Q ∈ L∞, then we have the estimate

‖GQGzQf‖Lp̃ ≤ C(Q)|z|−1‖f‖Lp̃−k .

Proof. We give a detailed proof for one component of GQGzQf . The other components
may be handled similarly. We begin by writing T as the operator which takes f 11 to
(GQGzQf)11,

Tf 11(x1) = (GQGzQf)11(x1)

=
1

π2

∫
C

q12(x2)a2(x2 − x3,−z)q21(x3)

(x1 − x2)(x̄2 − x̄3)
f 11(x3) dx2 dx3.

We write a2(x2 − x3, z) = 1
iz
∂x2a

2(x2 − x3, z), substitute this into the previous displayed
equation and integrate by parts to obtain

Tf 11(x1) =
1

izπ2

∫
C2

1

x1 − x2

q12(x2)q21(x2)f 11(x2) dx2

1

izπ2

∫
C2

∂q12(x2)a2(x2 − x3, z)q
21(x3)

(x1 − x2)(x̄2 − x̄3)
f 11(x3) dx2 dx3

1

izπ2
p.v.

∫
C

1

(x1 − x2)2
q12(x2)

∫ a2(x2 − x3, z)q
21(x3)f 11(x3)

x̄2 − x̄3

dx3dx2

=
1

izπ2
(I + II + III).

We estimate these three terms.
By Theorem 8.10 and Hölder’s inequality, we have

‖I‖p̃ ≤ ‖Q‖∞‖Q‖L2
k
‖f‖Lp̃−k .

For the second term, II, we use Hölder and Theorem 8.10 again to obtain

‖II‖Lp̃ ≤ C‖DQ‖L2‖Q‖L2
k

For III, we use the Calderón-Zygmund theorem, Theorem 6.10, to obtain that

‖III‖Lp̃ ≤ C‖Q‖∞‖Q‖L2
k
‖f‖Lp̃−k .

These estimates complete the proof of the theorem.
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Finally, we can give the main result of this chapter.

Theorem 18.17 Let p̃k > 2. If Q is in S(R2), then m(·, z) = (I −GzQ)−1(I2) satisfies

‖m(·, z)‖Lp̃−k ≤ C.

In addition, m is a solution of (17.3) and for each z, m(·, z) is the only solution of this
equation with the condition that m(·, z)− I2 is in Lp̃.

Proof. We solve the iterated integral equation (18.12). For z large, Theorem 18.16 tells
us that we can solve the integral equation (18.12) with a Neumann series. Thus, we may
find R so that ‖m(·, z)‖Lp̃−k ≤ C if |z| ≥ R. For z less then R, Proposition 17.10 tells us

that z → ‖m(·, z)‖Lp̃−k is continuous function and hence this function is bounded on the

compact set {z : |z| ≤ R}.
If m and m′ are two solutions of (17.3) with m− I2 in Lp̃, then m−m′ is a solution

of (Dz −Q)(m−m′) = 0 with m−m′ ∈ Lp̃. Theorem 18.4 implies that m = m′.

Remark. One puzzling feature of the above Theorem is that we know that ‖m(·, z)‖Lp̃−k
is bounded, but we do not have a quantitative estimate for this bound in terms of Q.
Can you provide such an estimate?
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Chapter 19

Differentiability of the Jost solutions

In this section, we discuss the smoothness of the Jost solutions m to (17.3). We shall see
that decay of Q leads to smoothness of m in the z variable and smoothness in Q leads
to smoothness of m in the x variable.

When we establish the differentiability of m with respect to z, we will also estab-
lish remarkable property of the solutions m. These solutions satisfy an equation in the
variable z which is of the same general form as the equation (17.3). This equation will
be called the ∂/∂z̄-equation In this equation, the function which takes the place of the
potential Q will be called the scattering data S. This scattering data will also appear in
an asymptotic expansion of the solution m. If we recall the solutions ψ0 introduced at
the beginning of Chapter 17, we see that these functions are holomorphic with respect
to the parameter z. When the potential Q is not zero, then the scattering data tells us
how far the solutions m are from being holomorphic.

From these results, we will see that if Q is in the Schwartz function, then the cor-
responding scattering data is also in S(R2). This will be used when we study how to
recover the potential Q from the scattering map.

Throughout this chapter we continue to let p be an exponent in the range 1 < p < 2.

19.1 Differentiability of the Jost solution with re-

spect to x.

We begin with the equation (17.3) for m. As in Lemma 18.11, we may iterate this
equation. It turns out that the off-diagonal part of m is oscillatory. The proper function
to study is n(x, z) = Ezm(x, z). It is is easy to see that the function n will satisfy the
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following iterated integral equation.

n−GQzGQzn = I2 (19.1)

In this equation, we introduce the notation Qz to stand for the operator given by Qzh =
EzQE

−1
z h. We begin with a Lemma on the regularity of solutions of the equation (19.1).

Lemma 19.2 Fix p with 1 < p < 2 and let Q be in L2
k for some k ≥ 0 and n be in Lp̃−k

and satisfy the integral equation

n−GQzGQzn = f.

If ∇f lies in Lp, then ∇n lies in Lp and we have the estimate

‖∇n‖Lp ≤ C‖Q‖2
L2
k
‖n‖Lp̃−k + ‖∇f‖Lp .

Proof. We have the representation for n

n = GQzGQzn+ f.

Our assumptions imply that Qzn lies in Lp with respect to the x-variable. Then Hardy-
Littlewood-Sobolev and Hölder’s inequality imply QzGQzn lies in Lp. Applying the
Hardy-Littlewood-Sobolev and the Calderón-Zygmund theorem gives that n lies in Lp̃

and that ∇n lies in Lp with respect to the x-variable.

Theorem 19.3 Let m ∈ Lp̃−k be a solution of (I − GzQ)m = h and set n = Ezm.
Suppose that ∂αQ/∂xα lies in L2

k for all α with |α| ≤ ` and that h is a diagonal-matrix
valued function with ∂αh/∂xα in Lp for all multi-indices α with 1 ≤ |α| ≤ `. Then
∇∂αnd/∂xα lies in Lp for all α with |α| ≤ `.

Proof. We establish the result for one component and leave the details for the other
component to the reader. We write

n11(x, z) =
1

π2

∫
R4

q12(x1)a2(x2 − x1, z)q
21(x2)n11(x2, z)

(x− x1)(x̄1 − x̄2)
dx1 dx2 + h11(x).

We make the change of variables x1 = x− w1 and w2 = x1 − x2 to obtain

n11(x, z)− 1

π2

∫
R4

q12(x− w1)a2(w2,−z)q21(x− w1 − w2)n11(x− w1 − w2, z)

w1w̄2

dw1 dw2

= h11(x). (19.4)
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We will use induction to show that n has ` derivatives.
According to Lemma 19.2, n has one derivative. Let α be a multi-index of length j

with 1 ≤ j ≤ ` and assume the induction hypothesis that nd has j derivatives. If we
differentiate with (19.4) with respect to x, we obtain

∂α

∂xα
n11(x, z)

− 1

π2

∫
R4

q12(x− w1)a2(w2,−z)q21(x− w1 − w2) ∂α

∂xα
n11(x− w1 − w2, z)

w1w̄2

dw1 dw2

=
∂α

∂xα
h11(x)

+
1

π2

∑
β+γ+δ=α,δ 6=α

α!

β!γ!δ!

∫
R4

a2(w2,−z)

w1w̄2

∂β

∂xβ
q12(x− w1)

× ∂γ

∂xγ
q21(x− w1 − w2)

∂δ

∂xδ
n11(x− w1 − w2, z) dw1 dw2. (19.5)

Changing variables again, we may rewrite the right-hand side as terms of the form

g(a2(·,−z)(
∂βq12

∂xβ
)a2(·, z)(ḡ(

∂γq21

∂xγ
∂δn11

∂xδ
))(·, z)

where g is our new notation for the Cauchy transform. Given our induction hypothesis
and the hypotheses on n, we have the right-hand side of (19.5) has one derivative in Lp.
Hence, we conclude from Lemma 19.2 that ∇∂αn11/∂xα lies in Lp, also.

19.2 Differentiability with respect to z

We discuss the differentiability of the operator GzQ with respect to z. These results will
be used to differentiate the solution m(x, z) of (17.3) with respect to z.

Proposition 19.6 If f ∈ L1
`−1(R2), then for j = 1, · · · , ` the functions

∂`−j

∂z̄`−j
∂j

∂zj
Gz(f)(x)

are continuous for (x, z) ∈ R4 and

sup
x,z

∣∣∣∣∣〈x〉1−` ∂`−j∂z̄`−j
∂j

∂zj
Gz(f)(x)

∣∣∣∣∣ ≤ C(`)‖f‖L1
`−1

(R2).
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Proof. As Gz(f)d is independent of z, we only need to consider (Gzf)o. To simplify
the notation, we only consider one component. The other component may be handled
similarly. Differentiating under the integral sign gives

∂`−j

∂z̄`−j
∂j

∂zj
Gzf(x)12 =

i

π

∫
(i(x− y))`−j−1(i(x̄− ȳ))jei(z̄(x−y)+z(x̄−ȳ))f 12(y) dy.

It is easy to see that the right-hand side is bounded by a multiple of

〈x〉`−1
∫
R2
|f 12(y)|〈y〉`−1 dy.

Exercise 19.7 Use the Hausdorff-Young inequality to show that if f is in Lp(R2), for
some p with 1 ≤ p ≤ 2, and

m(x, z) =
∂

∂z̄
Gz(f)(x)

then we have a constant C so that∫
sup
x
|m(x, z)|p′ dz ≤ C‖f‖p

′

Lp .

Exercise 19.8 Suppose that f ∈ L1(R2). Show that

lim
|z|→∞

∂

∂z̄
Gz(f)(x) = 0

and the convergence is uniform in x.

Corollary 19.9 Let p and q lie in (1,∞). Suppose that k > 2/p′ and j > 2/q. Then
the map

z → Gz

is a strongly differentiable map from the plane into L(Lpk(R
2), Lq−j(R

2)).

Proof. Our condition on p and k implies that Lpk(R
2) ⊂ L1(R2). Thus we may use

Proposition 19.6, to see that the map z → Gzf(x) is differentiable in the point-wise
sense and the derivative is bounded. Since we have L∞(R2) ⊂ Lq−j, the dominated
convergence theorem implies that

lim
h→0

1

|h|
‖Gz+hf −Gzf − h

∂

∂z
Gz(f)− h̄ ∂

∂z̄
Gz(f)‖Lq−j(R2) = 0.
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Corollary 19.10 Let k ≥ 0, and 1 < p < 2. Suppose that Q lies in L2
k so or that

Q = Q∗, Q ∈ Lr ∩ Lr′ for some r with 1 < r < 2 and Q lies in L2
k so that I − GzQ

is invertible on Lp̃−k. If h ∈ Lp̃−k(R2) and Q lies in L2
k+1(R2) with C(p)‖Q‖L2

k
small or

Q = Q∗ so that I −GzQ is invertible on Lp̃−k. Define m by

m(x, z) = (I −GzQ)−1(h).

The function z → m(·, z) is differentiable as a map from the complex plane into Lp̃−k.
If kp̃ > 2 and h = I2, then we have that

∂

∂z̄
m(x, z) = m(x, z̄)E−1

z S(z).

Proof. From the Hölder inequality, we obtain that Qf is in Lp̃1 and our hypotheses imply
that Lp̃1 ⊂ L1. From Corollary 19.9, it follows that I − GzQ is strongly differentiable as
an operator on Lp̃−k(R

2). From Lemma A.5 of Appendix A, it follows that m(·, z) =

(I −GzQ)−1(h) is differentiable as a map from R2 into Lp̃−k.
If we let h = I2, then DI2 = 0 and it is clear that m(·, z) = (I − GzQ)−1(I2) will

satisfy the system (17.3). From Lemma A.5 the derivative with respect to z̄ will be

∂

∂z̄
m(·, z) = (I −GzQ)−1(

∂

∂z̄
GzQ)(I −GzQ)−1(I2). (19.11)

Since m(·, z) = (I −GzQ)−1(I2), we have that

∂

∂z̄
Gz(Q(I −GzQ)−1(I2)) = − 2

π
J
∫
A(x− y, z)Q(y)m(y, z)d dy = E−1

z S(z).

The quantity S(z) is defined by

S(z) = − 2

π
J
∫
R2
Ez(Qm(·, z)d)ody (19.12)

and J = 1
2

(
−i 0
0 i

)
. We will see that S plays an important role in our theory and call

S the scattering data associated to the potential Q. Note that from the weighted Hölder
inequality, we have Qm is in Lp1 ⊂ L1. Hence, it follows that S is a bounded function.
Thus we may rewrite (19.11) more compactly as

∂

∂z̄
m(·, z) = (I −GzQ)−1(E−1

z S(z)). (19.13)
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We now simplify the right-hand side. We observe that if S is an off-diagonal matrix
that is independent of x, a calculation shows that Dz(fE

−1
z S(z)) = (Dz̄f)E−1

z S(z). This
implies that Gz(fE

−1
z S(z)) = Gz̄(f)E−1

z S(z) whenever f in Lp(R2) for some p between
1 and 2. As we have that m satisfies the equation m(·, z̄) − Gz̄(Qm(·, z̄)) = I2, we may
right-multiply this equation by E−1

z S(z) and obtain that the quantity m(·, z̄)E−1
z S(z)

satisfies the equation

m(·, z̄)E−1
z S(z)−Gz(Qm(·, z̄)E−1

z S(z)) = E−1
z S(z).

Applying (I −GzQ)−1 to both sides yields

m(·, z̄)E−1
z S(z) = (I −GzQ)−1(E−1

z S(z)).

Hence we may rewrite (19.13)

∂

∂z̄
m(·, z) = m(·, z̄)E−1

z S(z). (19.14)

This completes the proof of the Corollary.

Exercise 19.15 Show that, under the hypotheses of the above theorem S(z) is continuous
and lim|z|→∞ S(z) = 0.

19.3 Higher derivatives with respect to z

Next, we sketch the proof that our Jost solutions have additional derivatives with respect
to z. Towards this end, we consider the iterated integral equation for md,

md(x, z)−GQGzQm
d(x, z) = I2.

We will prove by induction that this function is differentiable of all orders. We assume
that md has ` derivatives with respect to z and these derivatives exist in the space Lp̃−k.
Let α be a multi-index of length `. Differentiating the iterated integral equation with
respect to z gives

∂α

∂zα
m11(x, z)− 1

π2

∫
R4

q12(x1)a2(x2 − x1, z)q
21(x2)

(x− x1)(x̄1 − x̄2)

∂α

∂zα
m11(x2, z) dx1 dx2

=
∑

β+γ=α,γ 6=α

α!

β!γ!

1

π2

∫
R4

q12(x1)(i(x1 − x2))βa2(x2 − x1, z)q
21(x2)

(x− x1)(x̄1 − x̄2)

∂γ

∂zγ
m11(x2, z) dx1 dx2

≡ F (x, z). (19.16)
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We have defined the right-hand side of the previous equation to be F (x, z) which satisfies

‖ ∂
∂zj

F (·, z)‖Lp̃−k ≤ C‖Q‖L2
`
+1‖Q‖L2

k+`+1

∑
|γ|≤`
‖ ∂

γ

∂zγ
m11(·, z)‖Lp̃−k , j = 1, 2.

Corollary 19.9 implies that the operator on GQGzQ is differentiable with respect to z as
an operator in the strong topology for operators on Lp̃−k. Hence, we may use Lemma A.5
from Appendix A to conclude that the solution of this integral equation has one more
derivative with respect to z. This will require that Q lie in L2

k+`+1 if m lies in Lp̃−k.
We have more or less proven.

Theorem 19.17 Suppose that k ≥ 0 and 1 < p < 2 with kp̃ > 2. Suppose that Q lies in
the Schwartz class and that either Q = Q∗ or that Q is small in L2

k so that I −GzQGzQ
is invertible. Suppose that m = (I − GzQ)−1(I2) is the solution of (17.3) which lies in
Lp̃−k.

Under these hypotheses, all derivatives of the diagonal part of m, md, will lie in
L∞(Lp̃−k).

Finally, combining the arguments used to prove Theorem 19.3 and Theorem 19.17 we
can prove the following.

Theorem 19.18 If Q lies in the Schwartz class and either Q = Q∗ or ‖Q‖L2
k

is small

for some k > 0, then the solution md is infinitely differentiable and for p and k so that
k > 2/p̃ we have

∂α+β

∂xβzα
md ∈ L∞(dz;Lp̃−k).

Exercise 19.19 Note that we only are asserting a result for the diagonal part of m,
where the map Ez has no effect. Formulate and prove a similar result for the off-diagonal
part of m.

Proof. We begin by following the arguments in Theorem 19.17 to obtain that

∂α

∂zα
md(·, z)−GQGzQ

∂α

∂zα
md(·, z) = F (·, z)

where F is as in (19.16). Examining (19.16), we see that
supz ‖∇xF (·, z)‖Lp ≤ C(Q)

∑
|γ|≤|α| ‖ ∂

γ

∂zγ
md‖L∞z (Lp). Now, from Lemma 19.2, it follows

that ∂α

∂zα
md is differentiable once with respect to x and the derivative lies in L∞(Lp).

Finally, an induction argument as in Theorem 19.3 gives higher derivatives with respect
to x.

Note that the method from Theorem 19.3 gives that each derivative lies in Lp, but if
the `th derivatives lie in L∞(Lp), then Sobolev embedding gives that the derivatives of
order `− 1 lie in L∞(Lp̃).
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We give the following result on the map which takes a potential Q to the scattering
data S. Given a potential Q, we define the scattering map T by T (Q) = S.

Theorem 19.20 Let Q be an off-diagonal matrix-valued Schwartz function and suppose
that either ‖Q‖L2

k
is small for some k > 0 or that Q = Q∗. Then T (Q) lies in S(R2).

Proof. We recall the definition of the scattering data (19.12)

S(z) = − 2

π
J
∫
R2
Ez(Qm

d)(y, z) dy.

Let k be a non-negative integer and suppose that β is a multi-index. We may write
zk ∂β

∂zβ
S(z) as

(−J)k+1 2

π

∫
R2

(
∑

γ+δ=β

β!

γ!δ!

∂γ

∂zγ
A(y,−z)Dk(Q(y)

∂δ

∂zδ
md(y, z)) dy.

When Q is in the Schwartz class, the estimates for derivatives of m in Theorem 19.18
allow us to show that this integral is bounded.

Exercise 19.21 (Long!) Show that the map T is continuous on the Schwartz class.



Chapter 20

Asymptotic expansion of the Jost
solutions

In this section, we establish an asymptotic expansion for the Jost solutions, m. We
continue to assume that the potential Q is a matrix-valued Schwartz function. We will
base our expansion on the construction of m as a solution of (17.3). We observe that
similar arguments, with the roles of x and z reversed, will give asymptotic expansions of
the function m which solves the ∂̄-equation, (19.14), below.

20.1 Expansion with respect to x

We begin by giving an expansion in the variable x. We recall our convention that n =
Ezm. The first expansion is more natural in this variable.

We introduce mixed Lp spaces on R4. The space Lpz(L
q
x) will denote the collection of

measurable functions on R4 for which the norm,

‖m‖Lpz(Lqx) =

(∫
R2

(∫
R2
|m(x, z)|p dx

)q/p
dz

)1/q

is finite. We make the usual extension to the case p =∞.

Exercise 20.1 Show that for 1 ≤ p, q ≤ ∞, these spaces are Banach spaces.

Theorem 20.2 Suppose that Q is in the Schwartz class. Fix p with 1 < p < 2 and k so
that k > 2/p̃. Suppose that Q is small in L2

k or that Q = Q∗. We have(
x 0
0 x̄

)` n(x, z)−
∑̀
j=0

(
x 0
0 x̄

)−j
nj(z)

 ∈ L∞z (Lp̃).
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Here, n0 = I2 and for j ≥ 1, we define

nj(x, z) =
1

π

∫
R2

(
x 0
0 x̄

)j−1

(EzQm)(x, z) dy.

Proof. We proceed by induction. The base case follows from our theorem on existence
which gives that n− I2 = GEzQm. Now we consider(

x 0
0 x̄

)
(n(x, z)− I2) =

1

π

∫ (
x
x−y 0

0 x̄
x̄−ȳ

)
EzQm(y, z) dy

On the right-hand side of this expression, we may add and subtract y or ȳ in the numer-
ator to obtain(

x 0
0 x̄

)
(n(x, z)− I2) = n1(x, z) +

1

π

∫
C

( y
x−y 0

0 ȳ
x̄−ȳ

)
EzQm(y, z) dy.

Rearranging this last expression gives the next term of the asymptotic expansion.
It is now clear how to proceed by induction. We suppose that we have the expansion

up to order ` with the exact error term

(
x 0
0 x̄

)`
(n(x, z)−

∑̀
j=0

(
x 0
0 x̄

)−j
nj(z)) =

1

π

∫
C

 y`

x−y 0

0 ȳ`

x̄−ȳ

EzQm(y, z) dy. (20.3)

We multiply both sides by the matrix

(
x 0
0 x̄

)
and then add and subtract y or ȳ in the

numerator of each term in the matrix to conclude(
x 0
0 x̄

)`+1

(n(x, z)−
∑̀
j=0

(
x 0
0 x̄

)−j
nj(z)) = n`+1(z)+

1

π

∫
C

 y`+1

x−y 0

0 ȳ`+1

x̄−ȳ

EzQm(y, z) dy.

Rearranging gives the expansion (20.3) with ` replaced by ` + 1. The estimate (18.17)
for m in Lp̃−k, our hypothesis that Q is in the Schwartz class implies that y`+1Q(y) is in
L2
k and thus Corollary 17.8 implies that the right-hand side of the previous equation is

in L∞z (Lp̃x).

Remark. Note that, up to a constant multiple, the term n1(z) is our scattering data
that appears below in (19.12).
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20.2 Expansion in z

In this section, we give a second expansion for the Jost solution m. The terms in this
expansion will reappear when we study the Davey-Stewartson equation by an inverse
scattering method.

We begin with a Lemma which is a slight extension of our results on invertibility of
(I −GZQ).

Lemma 20.4 Let k ≥ 0 and 1 < p < 2 and suppose that Q lies in the Schwartz class.
If either Q is small in L2

k or Q = Q∗, then the map I −GzQGzQ is invertible on Lp̃−k.

Proof. In the case that Q is small, we may find the inverse with a Neumann series as in
Corollary 17.11.

In the case where we assume Q = Q∗, we may use Lemma 18.11 to see the uniqueness.
With Theorem 18.7, the invertibility on Lp̃−k follows from the Fredholm theory. To see

that the map inverse is bounded on L∞(Lp̃−k), we may use the smoothness of Q to obtain

the operator norm on Lp̃−k is bounded for large z as in Theorem 18.16 and the continuity
of the operator (I −GzQGzQ)−1 (see Lemma 17.10) to conclude the boundedness for all
z.

We give the expansion in z.

Theorem 20.5 Supppose that Q is an off-diagonal matrix valued Schwartz function and
that either Q = Q∗ or that Q is small in L2

k for appropriate k. For ` = 0, 1, 2, . . ., we
have the following expansion for the Jost solution m,

z`(m(x, z)−
∑̀
j=0

z−jmj(x)) ∈ L∞z (Lp̃).

The coefficients mj are given by m0 = I2, mo
1 = 2JQ, mo

j+1 = 2J(−D + QGQ)mo
j and

md
j = GQ(mo

j) for j = 1, 2, . . ..

Proof. We begin our proof by observing that if we write

zA(y, z) =

(
i 0
0 −i

)
DA(y, z) = −2JDA(y, z), (20.6)

then we may integrate by parts in the expression Gz(f
o) to obtain

zGz(f
o) = 2Jf o −Gz(2JDf

o). (20.7)
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Now we begin with the iterated integral equation for the off-diagonal part of the Jost
solution, m. We have

(I −GzQGQ)(mo) = GzQ.

We multiply by z and use (20.7) on the right to obtain

(I −GzQGQ)(zmo) = 2JQ−Gz(2JDQ).

The first term on the left is mo
1. We subtract this to the other side and subtract

GzQGQm1 from both sides which leads to

(I −GzQGQ)(z(mo − z−1mo
1) = Gz(−Dmo

1 +QGQmo
1).

As the argument of Gz on the right is a Schwartz function, we may use the invertibility
of the operator I −GzQGQ on L∞(Lp̃) to obtain the expansion for mo and ` = 1.

We now proceed by induction. Our induction hypothesis is that

(I −GzQGQ)(z`(mo −
∑̀
j=1

mo
jz
−j)) = Gz((−D +QGQ)mo

`).

We repeat the manipulations from the first step. That is we begin by multiplying both
sides by z and then use (20.7). This gives

(I −GzQGQ)(z`+1(mo −
∑̀
j=1

mo
jz
−j)) = mo

`+1 −Gz(Dm
o
`+1)

We subtract the expression GzQGQm
o
`+1 from both sides and rearrange to obtain

(I −GzQGQ)(z`+1(mo −
`+1∑
j=1

mo
jz
−j)) = Gz((−D +QGQ)mo

`+1).

This completes the proof of the induction step. Applying the inverse of the operator
I −GzQGQ, we obtain that z`+1(mo −∑`+1

j=1m
o
jz
−j) lies in L∞(Lp̃).

To obtain the asymptotic expansion for the diagonal part, we write md = I2 +GzQm
o

and substitute the expansion for mo.
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20.3 The inverse of the scattering map.

In this section, we sketch the proof that we have an inverse to the scattering map T .
To see this, we begin with the ∂̄-equation (19.14). The form of this equation is similar
to our equation for m in the x variable (17.3) and we shall see that we may adapt the
techniques used to study (17.3) to obtain a second representatation of the Jost solution
m as

m = (I − gT )−1(I2) (20.8)

Here, we are using T to denote the map Tm(x, z) = m(x, z̄)S(z)A(x,−z̄) which appears
in the ∂̄ equation, (19.14) and g denotes the Cauchy transform acting matrix-valued
functions of the variable z.

Exercise 20.9 Let m = (I − gT )−1 defined in (20.8). Give a formal calculation which
shows that m is a solution of (17.3) and find an expression for Q in terms of S.

Hint: The answer is

Q(x) =
1

π
J
∫
R2
Tm(x, z) dz.

Here, J acts on 2 × 2 matrices by J a = 2Jao = −2aoJ = [J, a] where [J, a] is the
commutator and the matrix J is as in the proof of Corollary 19.10.

Exercise 20.10 Justify each step in the previous exercise.

We want to establish a global existence result for the equation (19.14). To do this,
we will need a substitute for the condition Q = Q∗ that we used in studying (17.3). This
substitute is given in the next Lemma.

Lemma 20.11 Suppose Q satisfies one of our standard conditions for uniqueness. With
T the scattering map defined by (19.12), we have T (±Q∗)(z) = ±S∗(z̄).

Proof. We define two involutions on matrix valued functions on R4 by

U±f(x, z) = ±
(

0 ±1
1 0

)
m̄(x, z̄)

(
0 ±1
1 0

)
.

Straightforward calculations show that

U±(Dzm) = DzU±m,
∂

∂z̄
U±m = U± ∂

∂z̄
m, and U±(Qm) = ±Q∗U±m.
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Thus, if m is the Jost solution to (17.3) for the potential Q, we may apply U± to both
sides of the equation Dzm−Qm and obtain

DzU±m = ±Q∗U±m.

Also, U±m− I2 ∈ Lp(R2) for every z. Thus, by uniqueness, U±m is the Jost solution for
±Q∗. Using this in the expression for the scattering data (19.12), we conclude that

T (±Q∗)(z) =
−J
π

∫
R2
Ez(±Q∗U±m(x, z)) dx

=
−2J

π

∫
R2

(
0 q̄21(x)m̄11(x, z̄)a1(x,−z)
q̄12(x)m̄22(x, z̄)a2(x,−z) 0

)
dx.

We have that a1(x,−z) = ā2(x,−z̄) and a2(x,−z) = ā1(x,−z̄) and substituting this into
the previous equation gives that

T (±Q∗)(z) = ±T (Q)∗(z̄).

Remark. Using each of these formulae in succession gives that T (−Q) = −T (Q).

Lemma 20.12 Suppose that S is an off-diagonal matrix-valued function with entries in
S(R2) and satisfying S(z) = S∗(z̄). Suppose m is a function in Lp̃ for some p <∞, and
m is a solution of the equation

∂

∂z̄
m(z) = m(z̄)A(x, z)S(z)

for some x. Then m = 0.

Proof. Our proof is essentially the same as Theorem 18.6. We let u±(z) = m11(z) ±
m̄12(z̄) and v±(z) = m21(z)± m̄22(z̄). Using that

∂

∂z̄
w̄(z̄) =

∂w

∂z̄
(z̄),

a straightforward calculation shows that

∂

∂z̄
u±(z) = a2(x, z)S21(z)ū±(z)

and for v±, we have
∂

∂z̄
v±(z) = a2(x, z)S21(z)v̄±(z).

In both cases, our uniqueness theorem for pseudo-analytic functions, Theorem 18.4, imply
that u± = v± = 0.
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With this lemma, we can prove the injectivity of the operator I − gT and use the
Fredholm theory to find m = (I − gT )−1(I2) when we have S(z) = S∗(z̄) and say S is in
the Schwartz class. Of course, existence also follows when we have S small in L2

k.

Theorem 20.13 Suppose that Q is in the Schwartz class and Q = Q∗. Then the map
T is injective on the set {Q : Q = Q∗, Qd = 0, Q ∈ S(R2)}.

Proof. According to Theorem 19.20, we have that if Q is an self-adjoint off-diagonal
matrix valued function in S, then S = T (Q) is an off-diagonal matrix-valued function
satisfying S∗(z̄) = S(z). Suppose we have two potentials Q1 and Q2 for which T (Q1) =
T (Q2) = S. According to Theorem 19.20 we have that S is a matrix-valued Schwartz
function. Let m1 and m2 denote the two Jost solutions. By the Corollary at the end of
Chapter 18 (not in the notes, yet), we have that m1 −m2 is in Lp̃(R4), thus for almost
every x, we may use the ∂̄-equation (19.14) and Lemma 20.12 to conclude that m1−m2

is zero. From Theorem 20.5, if m1 = m2, we have that Q1 = Q2.

Exercise 20.14 Show that T is injective for potentials which are in the Schwartz class
and which are small in L2

k.

Our last result is to show that the map T is onto.

Theorem 20.15 The map T maps {Q : Q = Q∗, Q ∈ S(R2)} onto the set of matrix-
valued, off-diagonal Schwartz functions which satisfy S∗(z) = S(z̄).

Proof. Let S be a matrix valued Schwartz function satisfying S∗(z) = S(z̄). We may
imitate our study of solutions to the equation (17.3) to constructm which satisfies (19.14).
As in exercise 20.10, we can show that the Jost solution m satisfies (17.3) for some
potential Q. Imitating the (very long) proof of Theorem 19.20 gives that the potential
Q is in S.

Exercise 20.16 Show that T is onto the intersection of neighborhood of zero in L2
k with

the Schwartz class.
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Chapter 21

The scattering map and evolution
equations

In this chapter, we develop further properties of the scattering map defined above and
show how this scattering map can be used to study a non-linear evolution equation. The
non-linear equation presented here was known prior to its treatment by the method of
inverse scattering. The equation first arose in the study of water waves.

Our first result gives a remarkable identity for the scattering transform which may be
viewed as a type of non-linear Plancherel identity for the scattering map T . This identity
was fundamental in the treatment of the inverse conductivity problem in two dimensions
by the author and Uhlmann [4]. However, recent work of Astala and Päivärinta have
provided a better treatment in two dimensions [1].

Next, we find the linearization of the scattering map T and its inverse. We use this to
help find a family of evolution equations which may be treated by the inverse scattering
method. The treatment we follow is taken from Beals and Coifman [2]. These results
may also be found in Ablowitz and Fokas [6].

21.1 A quadratic identity

We begin with a remarkable identity for the map T . To motivate this result, we observe
that as the potential tends to zero in L2

k, examining the series for the Jost solution in
Chapter 17 gives that the Jost solution m converges to I2.

Thus, if we consider the linearization at 0, we find that for sufficiently nice potentials

167
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Q,

lim
ε→0+

T (εQ)− T (0)

ε
=
−2

π
J

(
0 q̂12(2z̄)

q̂21(−2z) 0

)
.

Thus, this linearized map will satisfy some variant of the Plancherel identity. We will
show below that we have a similar identity for the non-linear map.

To give the proof of our identity, we start with the definition of the scattering map,

S(z) =
−1

π
J
∫
Ez(Qm) dx

and the definition of the inverse map

Q(x) =
1

π
J
∫
m(x, z̄)S(z)A(x,−z̄) dx

which may be found in (19.12) and Exercise 20.10.
Thus, using (19.12) and Exercise 20.10, we obtain

∫
R2

trQ(x)2 dx =
1

π
tr
∫
R2

∫
R2

2Jmd(x, z̄)S(z)A(x− z̄)Q(x) dz dx

=
1

π
tr
∫
R2

∫
R2
S(z)(−2J)A(x,−z̄)Q(x)md(x, z̄) dx dz

=
∫
R2

trS(z)S(z̄) dz. (21.1)

In the second equality, we apply the simple identity(
α11 0
0 α22

)(
0 β12

β21 0

)
=

(
0 β12

β21 0

)(
α22 0
0 α11

)
.

First, to commute 2Jmd and S and then to commute md and Q. Theorem 19.20 which
implies that S is in the Schwartz class and our estimates for the Jost solutions m in
Theorem 18.8 justify the use of Fubini’s theorem.

With this Lemma, we have the following Theorem.

Theorem 21.2 Suppose Let Q ∈ S and suppose that either ‖Q‖L2
k

is small and Q = −Q∗
or that Q = Q∗. With S = T (Q), we have that∫

|Q(x)|2 dx =
∫
|S(z)|2 dz.
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Proof. If Q = Q∗, then T (Q) = T (Q∗) and hence, from Lemma 20.11, T (Q)(z)∗ =
T (Q)(z̄). The conclusion of our theorem follows from (21.1).

When Q = −Q∗, then Lemma 20.11 implies that T (Q)(z) = −T (Q)(z̄)∗ and thus
S(z̄) = −S(z)∗. Now, using the identity (21.1) and our Lemma 20.11, we obtain that∫

|Q(x)|2 dx = −
∫

tr(Q(x)Q(x)) dx = −
∫

trS(z)S(z̄) dz =
∫
|S(z)|2 dz.

Exercise 21.3 (Open.) Show that the map T is continuous in the L2-norm.

21.2 The tangent maps

In this section, we look at the linearization of the map T or the tangent map. Thus, if
Q(t) is a curve in the Schwartz space, we will try to differentiate S(t) = T (Q(t)) with
respect to t. We also will want to carry out the same exercise for Q(t) = T (S(t)). To
begin, we introduce some more notation. Given a potential Q, we let Q̃ = −Qt where
Qt is the ordinary transpose of a matrix and then m̃ will be the Jost solution for the
potential Q̃. We will use two matrix-valued forms

〈f, g〉1 =
1

π

∫
(f(x, z)tg(x, z))o dx and 〈f, g〉2 =

1

π

∫
(f(x, z)g(x,−z)t)o dz.

Note that 〈f, g〉1 will be a matrix valued function of x and 〈·, ·〉2 will be a matrix-valued
function of z. We observe that the formal transpose of Q with respect to form 〈·, ·〉1 is
−Q̃. Thus, 〈Qf, g〉1 = −〈f, Q̃g〉1. If we let Dτ

z denote the transpose of Dz with respect
to the form 〈·, ·〉1, we have

Dτ
z (fA−z) = −(D−z̄f)A−z. (21.4)

Next, we observe that under our standard hypotheses, we have that (I − QGz)
−1 is an

invertible map on the dual of Lp̃−k, L
p̃′

k .

Lemma 21.5 Let Q satisfy our standard hypotheses. Then the operator (I − QGz) is

invertible on Lp̃
′

k and we have the identity

Q(I −GzQ)−1 = (I −QGz)
−1Q.



170 CHAPTER 21. THE SCATTERING MAP AND EVOLUTION EQUATIONS

Proof. Under our standard hypotheses, we have that (I−QGz)
−1 is an invertible map on

dual of Lp̃−k, L
p̃′

k . To see this, observe that with respect to the bi-linear form
∫

tr(f tg) dx,
the transpose of Q is Qt and the transpose of Gz is −G−z. Thus we have that (I−QGz)

−1

is the transpose of (I −G−zQ̃)−1 and our assumptions on Q guarantee that the operator
I −G−zQ̃ is invertible.

To establish the second part, we can begin with the identity

(I −QGz)Q = Q(I −GzQ)

and then apply (I −GzQ)−1 on the right and (I −QGz)
−1 on the left.

We now find the relation between T (Q) and T (Q̃). This is of some interest and the
techniques we develop are needed to find the tangent maps.

We begin with the definition of the scattering map, which may be expressed using
the form 〈·, ·〉1 as

T (Q)(z) = −J 〈A−z, Qm〉1
= −J 〈A−z, (I −QGz)

−1(QI2)〉1
= J 〈Q̃(I +Gτ

zQ̃)−1(A−z), I2〉1
= J 〈(Q̃(I −G−z̄Q̃)−1(I2))A−z, I2〉1
= J 〈(Q̃m̃(·,−z̄)A−z, I2〉1 (21.6)

In this calculation, we have used F τ for the transpose of an operator F with respect
the form 〈·, ·〉1. The second equality uses Lemma 21.5. The fourth equality depends on
(21.4) to rewrite the transpose of Gτ

z .

Now, we compute the action of the map T on the potential Q̃. We have

T (Q̃) = −J 〈A−z, Q̃m̃〉1
= −J (〈(Q̃m̃), A−z〉1)t

= +(J 〈Q̃m̃, A−z〉1)t

= +(J 〈Q̃m̃Az̄, I2〉1)t

= S(−z̄)t.

Where the last equality depends on (21.6). Thus, we have

T (Q̃)(z) = T (Q)(−z̄)t.
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Our next goal is to compute the tangent maps for T and T −1. Thus, we suppose that
we have a curve t→ Q(t) where Q(t) is in the Schwartz class and we have that the time
derivative Q̇ exists in L2

k. Thus we have

lim
h→0+

‖Q(t+ h)−Q(t)

h
− Q̇‖L2

k
= 0.

Now if we note that the estimate for the operator GzQ and use Lemma A.5, we obtain
that

˙(Qm) = Q̇m+Q(I −GzQ)−1GzQ̇m = (I −QGz)
−1(Q̇m).

The last equality uses the identity that I +B(I − AB)−1A = (I −BA)−1.
Thus, with S = T (Q), we have

Ṡ(z) = −J 〈A−z, ˙(Qm)〉1
= −J 〈A−z, (I −QGz)

−1(Q̇m)〉1
= −J 〈(I −Gτ

zQ
τ )−1(A−z), (Q̇m)〉1

= −J 〈(I −G−z̄Q̃)−1(I2)A−z, Q̇m〉1
= −J 〈m̃A−z, Q̇m〉1

Thus, we have proven that if Q(t) is a curve in S which satisfies our standard hy-
potheses for the invertibility of (I − GzQ), and is differentiable in L2

k, then we have
that

˙T Q(z) = −J 〈m̃A−z, Q̇m〉1.

Next, we consider the tangent map to the map T −1. To do this, we will recall T
which is defined using the scattering data S by Tm(x, z) = m(x, z̄)S(z)A(x,−z̄). Now
assuming that S is a curve in the Schwartz class which is differentiable in L2

k, we may
differentiate m to obtain

ṁ = (I − gT )−1(gṪ )(I − gT )−1(I2) = g(I − Tg)−1(Ṫm). (21.7)

Here, we have used the operator identity in Lemma 21.5 Differentiating Tm and using
(21.7) we obtain

˙(Tm) = Ṫm+ Tṁ = Ṫm+ Tg(I − Tg)−1(Ṫm) = (I − Tg)−1(Ṫm). (21.8)

Then according to Exercise 20.10, we have

T −1(S)(x) = J 〈Tm, I2〉2
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Differentiating the right-hand side with respect to t and using our expression for ˙(Tm)
in (21.8), we obtain

Ṡ = J 〈(I − Tg)−1(Ṫm), I2〉2.

From here, we use that transpose of T with respect to the form 〈·, ·〉2 is T̃ defined using
S̃(z) = S(−z̄)t and the transpose of g is again g. Thus, we obtain the tangent map for
T −1,

Q̇ = 〈Ṫm, m̃〉2 (21.9)

We have proven.

Theorem 21.10 Let t→ Q(t) be a matrix-valued function defined on an interval in the
real line. Suppose that for each t, Q(t) lies in S and either ‖Q‖L2

k
is small for each t or

that Q = Q∗ for each t. If Q is differentiable as a map from the real line into L2
k, then

we have that S(t) = T (Q(t)) is (pointwise) differentiable with respect to t.
Similarly, if S(t) lies in S and either ‖S‖L2

k
is small or S(z) = S∗(z̄) and S is

differentiable as a function in L2
k, then Q(t) = T −1(S)(t) is (pointwise) differentiable

with respec to t.

Exercise 21.11 Show that Ṡ lies in the Schwartz class.

Exercise 21.12 If t → Q(t) is differentiable as a map into the Schwartz class, is T Q
differentiable as a map into the Schwartz class?

21.3 The evolution equations

Finally, we show how the map T is connected to a family of evolution equations. Thus,
suppose that φ is a diagonal matrix-valued function and let Φ(f)(x, z) = f(x, z)φ(z).
Let T be the operation in the ∂̄ equation, Tm(x, z) = m(x, z)A(x, z)S(z) for some off-
diagonal function S.

We let Ṫ be the derivative as operator on Lp̃−k and consider the evolution equation

Ṫ = [Φ, T ] (21.13)

where [A,B] = AB −BA is the commutator of the operators A and B.
If we write out [Φ, T ], we obtain

[Φ, T ] = f(x, z̄)φ(z̄)S(z)A(x,−z̄)− f(x, z̄)S(z)A(x,−z̄)φ(z).
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As the diagonal matrices A and φ commute, we have that the operator equation (21.13)
is equivalent to the evolution for the function S

Ṡ(z) = φ(z̄)S(z)− S(z)φ(z).

If we have that the time derivative Ṡ exists in L2
k, then the operator T will be differentiable

as an operator on Lp̃−k, for example.
If we write Q = T −1(S) = 〈Tm, I2〉2, then we have shown in (21.9) that

Q̇ = J 〈Ṫm, m̃〉2
= J 〈(Tm)φ, m̃〉2 − J 〈T (mφ), m̃〉2
= J 〈(Tm)φ, m̃〉2 − J 〈(mφ), T̃ m̃〉2

where the last equality uses that the transpose of T with respect to 〈·, ·〉2 is T̃ defined
using the scattering data S̃ associated with m̃. If we assume that φ has polynomial
growth at infinity, then integrals in the above are well-defined when the scattering data
S and S̃ are in S(R2). We will write Tm = ∂

∂z̄
m and T̃ m̃ = ∂

∂z̄
m̃ and then integrate

by parts. As the leading term of m and m̃ is the matrix I2 we have to be careful if we
want our integrals to make sense. Thus we introduce a cutoff function ηR, which is one
if |z| < R and 0 for |z| > 2R. Thus, we have

Q̇ = lim
R→∞

J 〈( ∂
∂z̄
m)ηRφ, m̃〉2 − J 〈mφηR,

∂

∂z̄
m̃〉2

= lim
R→∞

J 〈m ∂

∂z̄
(ηRφ), m̃〉2 (21.14)

where we have integrated by parts. In the special case that φ(z) = zkI2, the last limit
becomes

lim
R→∞

J 〈m ∂

∂z̄
(ηRφ), m̃〉2 = [Jm(x, z)m̃(x,−z)t]k+1.

Where [Jm(x, z)m̃(x,−z)t]` denotes the coefficient of z−` in the asymptotic expansion
of Jm(x, z)m̃(x,−z)t.

If we let

S(z, 0) =

(
0 s(z)
s̄(z̄) 0

)
then for φ(z) = zk, we have that S(z, t) = exp(it(z̄k − zk))S(z, 0).

When k = 2, a rather lengthy calculation using the asymptotic expansion of Theorem
20.5 gives that

Q(x, t) = T (S)(t) =

(
0 q(x, t)

q̄(x, t) 0

)
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where  q̇ = i( ∂2

∂x1∂x2
q − 4qφ)

∆φ = ∂2

∂x1∂x2
|q|2

Thus, to solve this system with a specified initial value, q(x), we may write

Q(x, t) = T −1(exp(−4itz1z2)T (

(
0 q
q̄ 0

)
))

and then the solution q(x, t) will be the 1,2 entry of Q.
We could go on to talk about Lax pairs, the infinite-dimensional Hamiltonian structure

and lots more. But not this year.

Exercise 21.15 Find the evolutions corresponding to zk for k = 0 and 1.



Appendix A

Some functional analysis

A.1 Topologies

Below we summarize a few results from functional analysis.

We begin by recalling the standard topologies for linear operators between Banach
spaces. If B and C are Banach spaces, we let L(B,C) denote the collection of all
continuous linear maps from B to C. If T ∈ L(B,C), then we define

‖T‖L(B,C) = sup{‖Tx‖C : x ∈ B‖x‖B ≤ 1}.

It is well-known that ‖ · ‖L(B,C) is a norm. The topology induced by this norm is called
the norm topology.

However, there are two weaker topologies which are commonly used. The first is
called the strong topology. This is the coarsest topology which makes the maps T → Tx
continuous for each x in B. There is also the weak topology which is the coarsest topology
for which we have that T → λ(Tx) is continuous for all λ ∈ C∗ and x ∈ B.

We are interested in operator valued functions z → Tz where z is a complex parameter
and Tz ∈ L(B,C) for each z. We say that an operator valued function Tz is differentiable
in the strong operator topology if we have partial derivatives ∂Tz/∂z and ∂Tz/∂z̄ which
lie in L(B,C) and so that for each f in C,

lim
h→0

1

|h|
‖Tz+hf − Tzf − h

∂Tz
∂z

f − h̄∂Tz
∂z̄

f‖C = 0.
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A.2 Compact operators

Our goal here is to state the Fredholm theorem for operators on a Banach space X. We
begin by defining compact operators. An operator T : X → Y on a Banach space is said
to be compact if whenever {xi} is a bounded set in X, then {Txi} contains a convergent
subsequence.

We state a few elementary properties of compact operators.

Lemma A.1 If T is a compact and S is bounded, then TS and ST are compact.
The set of compact operators is closed in the operator norm.

Exercise A.2 Prove the above Lemma.

Exercise A.3 If the image of T is finite dimensional, then T is compact.

We state a version of the Fredholm alternative.

Theorem A.4 If T : X → X is a compact operator, then . . .

A.3 Derivatives

Our main goal is the following Lemma which gives conditions that guarantee that the
family of inverse operators is differentiable.

Lemma A.5 Let Tz be a family of operators in L(B) and suppose that z → Tz is a
family of operators which is differentiable at z0 in the strong operator topology, that T−1

z

exists for z near z0 and that the operator norms ‖T−1
z ‖ are uniformly bounded for z near

z0. Then, the family T−1
z is differentiable at z0 and we have

∂

∂z
T−1
z0

= −T−1
z0

(
∂

∂z
Tz0)T

−1
z0

and
∂

∂z̄
T−1
z0

= −T−1
z0

(
∂

∂z̄
Tz0)T

−1
z0
.

Proof. The proof is more or less the same as the proof of the quotient rule in calculus.
We begin by observing that under these conditions, we have that z → T−1

z is continuous
at z0 as a map from the complex plane into operators in the strong operator topology.
Towards this end, we write

(T−1
z0+h − T−1

z0
)f = T−1

z0+h(Tz0 − Tz0+h)T
−1
z0
f.
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From the strong continuity of the family Tz, we have that limh→0 ‖(Tz0−Tz0+h)T
−1
z0
f‖B =

0. Our hypothesis that the norm of T−1
z is bounded near z0 allows us to conclude that

lim
h→0
‖T−1

z0+h(Tz0 − Tz0+h)T
−1
z0
f‖B = 0.

Thus, z → T−1
z is strongly continuous at z0.

To establish the differentiability, we begin by writing

T−1
z0+hf − T−1

z0
f + T−1

z0
(h

∂

∂z
Tz0 + h̄

∂

∂z̄
Tz0)T

−1
z0
f

= (T−1
z0
− T−1

z0+h)(h
∂

∂z
Tz0 + h̄

∂

∂z̄
Tz0)T

−1
z0
f

+T−1
z0+h(Tz0+h − Tz0 + h

∂

∂z
Tz0 + h̄

∂

∂z̄
Tz0)T

−1
z0
f.

Recalling the strong continuity of T−1
z , it follows that

lim
h→0

1

|h|
‖(T−1

z0+h − T−1
z0

)(h
∂

∂z
Tz0 + h̄

∂

∂z̄
Tz0)T

−1
z0
f‖B = 0.

The differentiability of Tz implies that

lim
h→0

1

|h|
‖T−1

z0
(Tz0+h − Tz0 + h

∂

∂z
Tz0 + h̄

∂

∂z̄
Tz0)T

−1
z0
f‖B = 0.

The differentiability of T−1
z follows from the previous displayed equations.



178 APPENDIX A. SOME FUNCTIONAL ANALYSIS



Index

adjoint, 88

Banach space, 1

Calderón-Zygmund kernel, 52
Calderon-Zygmund operator, 52
conormal derivative, 104
cubes, 54

derivative, 153
derivative, distribution, 18
Dirichlet problem, 100
Dirichlet to Neumann map, 104
divergence, 26, 93
divergence theorem, 93
dual space, 15
dyadic cubes, 54

Fourier transform, 1
Fréchet space, 13

gamma function, 9
gradient, 26

Hardy-Littlewood maximal function, 41

inverse conductivity problem, 106

Jost solutions, 136

Laplacian, 60
Lebesgue measure, notation, 41
length of a multi-index, 12

Littlewood-Paley function, 63
locally integrable , 42

maximal function, 41
mutiplier operator, 27

normed vector space, 1

partition of unity, 92
principal value, 19

Riesz potentials, 68

scattering theory, 136
Schwartz space, 12
Sobolev inequality, 74
Sobolev space, 28
square function, 64
sub-linear operator, 38
symbol, 27
symbols of order k, 57

tempered distributions, 15

weak derivative, 93
weighted Lp space, Lpk, 16
Wiener algebra, 7
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