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We define the Dowling transform of a real frame arrangement and show how the
characteristic polynomial changes under this transformation. As a special case, the
Dowling transform sends the braid arrangement An to the Dowling arrangement.
Using Zaslavsky's characterization of supersolvability of signed graphs, we show
supersolvability of an arrangement is preserved under the Dowling transform. We
also give a direct proof of Zaslavsky's result on the number of chambers and
bounded chambers in a real hyperplane arrangement. � 2000 Academic Press

1. INTRODUCTION

A number of techniques have been developed to compute the charac-
teristic polynomial of subspace arrangements. These include Athanasiadis'
modulo q method for real arrangements with integer coefficients [1], Blass
and Sagan's lattice point counting for subarrangements of the braid
arrangement Bn [2], Stanley's theory of supersolvability [13], and Terao's
factorization theorem for free arrangements [15].

Inspired by Rota's treatment of valuations [9], the authors showed
in [6] that there is a natural valuation & extending the Euler characteristic.
It is defined on affine subspaces in kn for k an infinite field. From this
geometric viewpoint emerged a new combinatorial interpretation of the
characteristic polynomial of a subspace arrangement as the valuation &
applied to the complement of the arrangement. In particular, this applies to
complex subspace arrangements. To demonstrate the power of this method,

doi:10.1006�jcta.2000.3098, available online at http:��www.idealibrary.com on

322
0097-3165�00 �35.00
Copyright � 2000 by Academic Press
All rights of reproduction in any form reserved.



in Section 2 we give an enlightening proof of Zaslavsky's theorem on the
number of chambers and bounded chambers in a real hyperplane arrange-
ment.

The Dowling arrangement can be viewed as a natural generalization of
the braid arrangements An and Bn ; see [5; 7; 11, Example 6.29]. We con-
tinue to study this relationship by introducing a transformation which
takes a real frame arrangement with coordinate hyperplanes into a complex
one. We name this transformation the Dowling transform since it carries
the braid arrangement An into the Dowling arrangement.

We show how the Dowling transform changes the characteristic polyno-
mial. In fact, when the characteristic polynomial of a real arrangement fac-
tors, the resulting characteristic polynomial also factors. Moreover, the
Dowling transform preserves supersolvability. At the end of this paper, we
ask if there is a similar relationship between the homology groups of the
corresponding intersection lattices.

2. VALUATIONS AND SUBSPACE ARRANGEMENTS

For a subspace arrangement A=[A1 , ..., Ak] let L(A) denote its inter-
section lattice. The characteristic polynomial of A (see [10, 11, 14, 16]) is

/(A)= :

x{<
x # L(A)

+(0� , x) } t dim (x).

Let V be a set and let G be a collection of subsets of V such that G is closed
under finite intersections and the empty set < belongs to G. Denote by
B(G ) the Boolean algebra generated by G, that is, B(G) is the smallest
collection of subsets of V such that B(G) contains G and is closed under
finite intersections, finite unions, and complements. Observe that B(G )
forms a lattice where the meet and join are respectively intersection and
union.

Let S be a set and let L be the collection of subsets of the underlying set
S closed under intersection and union. A valuation & on L is a function
& : L � R, where R is a commutative ring, satisfying

&(A)+&(B)=&(A & B)+&(A _ B),

&(<)=0.

For a more detailed account of valuations, we refer the reader to [9, Chap. 2].
We now introduce a very useful valuation which was first defined in [6].

Let k be an infinite field and V an n-dimensional vector space over the field k.

323DOWLING TRANSFORM



Let G be the set of all affine subspaces of V. Then B(G ) is the set of all sets
that can be obtained by union, intersection and complement of affine sub-
spaces. In [6] the following result was proved:

Theorem 2.1. (a) There exists a unique valuation & : B(G ) � Z[t] such
that for A a nonempty affine subspace we have

&(A)=tdim(A).

(b) Let A=[A1 , ..., Ak] be a subspace arrangement in V. Then the
characteristic polynomial of A is given by

/(A)=& \V& .
k

i=1

Ai+ .

Recall that a function f is simple if it can be written as f =�k
i=1 :i } IA i

where :i # R and IA denotes the indicator function on the set A # B(G ). The
integral of f is then defined to be � f d&=�k

i=1 :i } &(Ai). The indicator
functions of affine subspaces form a linear basis for all simple functions
since we are working over the Boolean algebra B(G).

Let V be the vector space V1_V2 , where V1 and V2 are two vector
spaces over the field k. A simple function f defined on V can be viewed as
a function of two variables f (x, y), where x # V1 and y # V2 . For a fixed ele-
ment x in V1 and f a function on V, let fx( y) denote the function f viewed
as a function of the variable y. Moreover, let � f d&i denote the integral on
the space Vi .

Theorem 2.2. Let f be a simple function on V=V1_V2 . Then fx( y) is
a simple function on V2 , the function � fx( y) d&2 is a simple function on V1

and

| f d&=|| fx ( y) d&2 d&1 .

Theorem 2.2 is precisely the statement of Fubini's theorem in integration
theory. It allows us to compute the valuation & componentwise. As a brief
example, we can compute the characteristic polynomial of the two-dimen-
sional line arrangement x=0, y=0, y=x, y=? } x, by: we can choose x in
t&1 ways, namely x{0. Next we can choose y in t&3 ways, namely
y{0, x, ? } x. Hence the characteristic polynomial is (t&1) } (t&3).
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Using the valuation & one can prove Zaslavsky's theorem enumerating
the number of chambers, that is, maximal open regions, of a real hyper-
plane arrangement [16, Theorems A and C, Sect. 2].

Theorem 2.3. (Zaslavsky). Let H=[H1 , ..., Hk] be a hyperplane arrange-
ment in Rn. Then

(i) the number of chambers of the hyperplane arrangement H is equal
to (&1)n } /(H)| t=&1 .

(ii) the number of bounded chambers of the hyperplane arrangement
H is equal to (&1)n } /(H)| t=1 .

Zaslavsky's original proof was based upon showing that the charac-
teristic polynomial is a Tutte�Grothendieck invariant [16, Sect. 4].
Part (i) can be proved by recognizing that evaluating the valuation & at
t=&1 for an affine subspace coincides to applying the Euler characteristic
to the affine subspace; see [6] for details. For part (ii), let P denote the
collection of all intersections of half-spaces of Rn, where we allow the half-
spaces to be open or closed. Observe that an element of P is a polyhedron
and that P contains all affine subspaces. Define the valuation =� on the
Boolean algebra B(P) by

=� (A)= lim
r � �

=(A & Br),

where Br denotes the n-dimensional closed ball of radius r and = denotes
the Euler characteristic. Recall that if a set A is homeomorphic to a
k-dimensional open ball then =(A)=(&1)k, while if A is homeomorphic to
a k-dimensional closed ball then =(A)=1. For A a bounded region we
have, for large enough r, the set A & Br is the set A, which is
homeomorphic to an open n-dimensional ball. In this case the valuation is
(&1)n. When A is an unbounded region, the set A & Br , for large enough
r, is homeomorphic to the n-dimensional closed ball minus the (n&1)-
dimensional closed hemisphere. This has valuation 1&1 equals zero. Hence
=� (Rn&�k

i=1 Hi) is equal to (&1)n times the number of bounded regions.
This proof of Zaslavsky's result on the number of bounded regions has

been independently discovered by Chen [3]. In this paper Chen con-
solidates combinatorial interpretations of the characteristic polynomial
appearing in [1, 2, 6] by applying different valuations to the underlying
identity of indicator functions.

Note that from the valuation & the deletion�restriction formula [11,
Theorem 2.56] follows immediately: for a subspace arrangement A one
has /(A)=/(A$)&/(A"), where A$ is obtained by deleting a hyperplane
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H from the arrangement A and A" is the arrangement resulting from
restricting the arrangement A to the hyperplane H.

3. THE DOWLING TRANSFORM

We now study a transformation which takes a real hyperplane arrange-
ment into a complex one. We call this transformation the Dowling trans-
form since as a special case it sends the braid arrangement An to the
Dowling arrangement [4, 5]. Following the language of Zaslavsky [17],
we call a subspace arrangement a frame arrangement with coordinate hyper-
planes if it contains the coordinate hyperplanes and every subspace not
contained in the coordinate hyperplanes is constructed by intersecting
hyperplanes of the form xi=a } xj , where a is a nonzero constant.

Let W be a subspace of dimension n& p not contained in any coordinate
hyperplane and determined by the intersection of the p hyperplanes

xi1 =a1 } xj 1 ,

{ b

xi p=ap } x j p .

Such a subspace W is called a frame subspace and the constants ai the
defining constants. One may view a frame subspace W as a directed graph
on the vertices 1, ..., n. A directed edge from vertex i to vertex j is labeled
a if W is contained in the hyperplane xi=a } xj . Observe that the graph is
the disjoint union of cliques and the number of cliques is the dimension of
W. Also, the product of the labels along a directed cycle is equal to 1.

Let ` be a primitive mth root of unity. The Dowling transform of the
frame subspace W, denoted Dm(W ), is the collection of subspaces described
by

xi1 =`h1 } a1 } xj1
,

{ b

xip=`hp } ap } xjp ,

and indexed by (h1 , ..., hp) # [0, ..., m&1] p. Note these m p subspaces are
distinct. We let the Dowling transform of the coordinate hyperplane xi=0
be itself. The Dowling transform of the frame arrangement is simply the
union of the Dowling transform of each subspace.
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Example 3.1. A frame hyperplane arrangement with coordinate hyper-
planes is described by

{x i=ai, j, l } xj ,
x i=0,

1�i< j�n and 1�l�k(i, j ),
1�i�n,

where the k(i, j ) are constants depending on i and j. This hyperplane
arrangement is best encoded as a gain graph on the vertices 1, ..., n, where
the hyperplane xi=ai, j, l } x j is encoded by a directed edge from vertex i to
vertex j labeled ai, j, l . The Dowlingization of this hyperplane arrangement
is then

{x i=`h } ai, j, l } x j ,
x i=0,

1�i< j�n, 1�l�k(i, j ) and 0�h�m&1,
1�i�n.

The Dowlingization corresponds to replacing each edge in the gain graph
with m copies and having the label of each copy multiplied by a distinct
power of the unit root `.

We are now ready to state our main theorem.

Theorem 3.2. Let A be a frame arrangement with coordinate hyper-
planes where the defining constants are positive real numbers. Then the
characteristic polynomial of the Dowlingization Dm(A) is given by

/(Dm(A))=mn } f ((t&1)�m),

where f (t&1) is the characteristic polynomial of A.

Corollary 3.3. Let A be a frame arrangement with coordinate hyper-
planes where the defining constants are positive real numbers. If the charac-
teristic polynomial of A has the roots

r1+1, r2+1, ..., rn+1,

then the characteristic polynomial of the Dowlingization Dm(A) has the
roots

m } r1+1, m } r2+1, ..., m } rn+1.

We first prove a result about the characteristic polynomial of a frame
subspace arrangement which will be used in the proof of Theorem 3.2.
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Proposition 3.4. Let ' be a valuation defined by '(A)=&(A & k*n).
Then for W a frame subspace we have

'(W )=(t&1)dim W.

Moreover, let [A1 , ..., Ak] be a collection of frame subspaces and let L be
the intersection lattice of the subspace arrangement

A=[A1 , ..., Ak] _ [xi=0]n
i=1 .

Let K be the sublattice of the lattice L consisting of all frame subspaces.
Then the characteristic polynomial of the subspace arrangement A is given
by

/(A)= :
z # K

+(0� , z) } '(z).

Proof. To compute '(W )=&(W & k*n) for W a frame subspace, we
need to consider the corresponding directed graph of W. We choose the
values for the variables xi clique by clique. In a given clique, once we
choose the value of one of the variables, the values of the other variables
in the same clique are determined. For each clique, this can be done in
t&1 ways. Hence, the result is (t&1)k, where k is the number of cliques,
that is, the dimension of W.

To obtain the second statement, begin to observe that

kn& .
A # A

A=k*n& .
A # A

A.

Apply now the valuation &. The characteristic polynomial of the subspace
arrangement A is equal to

/(A)=& \k*n& .
A # A

A+
=' \k*n& .

A # A

A+
= :

z # L

+(0� , z) } '(z).

Since for elements z not belonging to K we have '(z)=0, the result
follows. K

A balanced cycle in the gain graph is a directed cycle such that the
products of the labels are equal to 1. Recall that we view the directed edge

328 EHRENBORG AND READDY



from i to j labeled with a to be equivalent to the directed edge from j to
i labeled with a&1.

Example 3.5. The generic arrangement G with parameters (k(i, j ))1�i< j�n

is the frame hyperplane arrangement

{x i=ai, j, l } xj ,
x i=0,

1�i< j�n and 1�l�k(i, j ),
1�i�n,

such that there are no balanced cycles in the associated gain graph. For
instance, one can obtain such an arrangement by choosing the defining
constants ai, j, l so that no algebraic relations hold between them. By apply-
ing Proposition 3.4 we know that the characteristic polynomial is given by

/(G)=:
F

(&1)n&|F | } kF } (t&1)n&|F |, (3.1)

where the sum is over all forests F on the vertices 1 through n, |F | denotes
the number of edges in the forest, and kF=>(i, j ) # F ki, j . See, for instance,
Postnikov and Stanley [12].

To prove Theorem 3.2, we need to introduce a new valuation on a new
Boolean algebra. Let S be an infinite multiplicative subgroup of an infinite
field k and let V be the vector space kn. A frame subspace W of V is called
an S-subspace if W is the intersection of hyperplanes x i=a } xj , where a
belongs to S. Let B be the smallest Boolean algebra containing all S-sub-
spaces and the coordinate hyperplanes. Observe that the valuation ' is
defined on the Boolean algebra B.

Proof of Theorem 3.2. Set SR to be the positive reals viewed as an open
ray in the complex plane. Similarly, set SC to be S=�m&1

i=0 `i } SR . For the
two corresponding Boolean algebras BR and BC there is a natural map
. : BC � BR sending the hyperplane xi=a } xj in BC to the hyperplane
xi=|a| } x j in BR . Moreover, the coordinate hyperplane xi=0 is mapped to
itself. Now extend . by the Boolean operations.

Let 'R and 'C be the valuation ' on the Boolean algebras BR , respec-
tively BC . Let KR denote the SR -subspaces in the intersection lattice of A

and let +R denote the Mo� bius function of the intersection lattice. Similarly,
let KC and +C denote the corresponding notions in the intersection lattice
of the Dowlingization Dm(A).

Let w be an element in KR of rank k. That is, w is an SR-subspace of
codimension k. Since w is determined by the k equations describing the k
hyperplanes intersecting to form w, under the map .&1 there are mk ways
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to sign these k equations. Observe also that for all of these complex sub-
spaces z we have +C(0� , z)=+R(0� , w). Define the linear map 8 on polyno-
mials of degree at most n by 8( f (t&1))=mn } f ((t&1)�m). We have that
8((t&1)n&k)=mk } (t&1)n&k and hence �z'C(z)=8('R(w)) where the
sum ranges over all subspaces z such that .(z)=w. Now we have

/(Dm(A))= :
z # KC

+C(0� , z) } 'C(z)

= :
w # KR

:
.(z)=w

+C(0� , z) } 'C(z)

= :
w # KR

mcodim(w) } +R(0� , w) } 'R(w)

= :
w # KR

+R(0� , w) } 8('R(w))

=8(/(A)),

which completes the proof. K

Example 3.6. The braid arrangement An is given by

xi =xj , 1�i< j�n,

xi =0, 1�i�n.

It is well-known that the characteristic polynomial of An has the roots
1, ..., n. The Dowlingization of An is the Dowling arrangement:

xi =`h } x j ,
xi=0,

1�i< j�n and 0�h�m&1,
1�i�n.

Thus by Corollary 3.3 we know that the characteristic polynomial of the
Dowling arrangement has the roots 1, m+1, ..., (n&1) } m+1. There are
many computations of this fact. See, for instance, [4�7].

Example 3.5 revisited. Let G be a real generic arrangement, that is,
the defining constants are real. Observe that the products of the labels
along a directed cycle in the gain graph associated with the Dowlingization
Dm(G) is a power of ` times the product along the underlying cycle in the
original gain graph. Hence the Dowlingization of a real generic arrange-
ment is again a generic arrangement. The characteristic polynomial of
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Dm(G) is given by Eq. (3.1) with the term kF replaced with m |F | } kF. This
agrees with Theorem 3.2.

4. SUPERSOLVABILITY AND A CONCLUDING REMARK

In this section we show that the Dowling transform preserves super-
solvability. For readers not familiar with this concept, see [13]. We begin
by discussing further properties the valuation & satisfies.

For T a subset of kn recall that the valuation of & of T can be calculated
by

&(T )=| IT d&=| } } } | IT dx1 } } } dxn ,

where IT is the indicator function of the set T. Let Ti be the projection of
the set T onto the linear subspace spanned by the variables xi , ..., xn , for
i=1, ..., n. That is, Ti is given by

Ti=[(xi , ..., xn) : there exist elements x1 , ..., xi&1 # k such that (x1 , ..., xn) # T ].

We say that the valuation & of the set T can be evaluated coordinatewise in
the order x1 , ..., xn if

| ITi dxi=bi } ITi+1
(4.2)

for a suitable sequence b1 , ..., bn of polynomials in t of degree at most one.
Observe that both sides of this identity are functions in the variables
xi+1 , ..., xn . In this case we have &(Ti)=b i } } } bn and especially &(T )=
b1 } } } bn . Finally, we say that &(T ) can be evaluated coordinatewise if there
is an ordering of the coordinates such that &(T ) can be evaluated in that
order.

Theorem 4.1. If the frame hyperplane arrangement H is supersolvable
then so is the Dowlingization Dm(H).

Proof. By [17] a hyperplane arrangement H is supersolvable if and
only if the characteristic polynomial /(H)=&(kn&�H # H H ) can be com-
puted coordinatewise. We tacitly assume that the order is x1 , ..., xn . In this
case we have bi=t&1&ri and

/(H)= `
n

i=1

(t&1&ri). (4.3)
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Here the ri count the number of hyperplanes of the form x i=a } xp where
p is less than i. Moreover, the 1 occurring in each term corresponds to the
hyperplane xi=0.

Observe that Eq. (4.2) is equivalent to the following condition: If the
hyperplanes xi=a } xp and xi=b } xq , with p, q<i, belong to the arrange-
ment then so does the hyperplane xp=b�a } xq . But if H satisfies this con-
dition so does the Dowlingization Dm(H) and the result follows. We also
obtain that the characteristic polynomial of Dm(H) is

/(Dm(H))= `
n

i=1

(t&1&m } ri). K (4.4)

Gottlieb and Wachs [8] computed the homology of the Dowling lattice
and gave a basis for the non-trivial top homology. This is an extension of
what is known for the partition lattice. We ask if their computations can
be extended to supersolvable lattices coming from frame arrangements H.
Moreover, could a basis for the homology of the intersection lattice of
Dm(H) be determined from knowing a basis of the homology of H?
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