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Abstract

In the computation of the intersection cohomology of Shimura varieties, or of the L2 co-
homology of equal rank locally symmetric spaces, combinatorial identities involving averaged
discrete series characters of real reductive groups play a large technical role. These identities
can become very complicated and are not always well-understood (see for example the appendix
of [7]). We propose a geometric approach to these identities in the case of Siegel modular
varieties using the combinatorial properties of the Coxeter complex of the symmetric group.
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1 Introduction

The goal of this paper is to give more natural and geometric proofs of some combinatorial identities
that appear when one calculates the commuting actions of the Hecke algebra and the absolute Galois
group of Q on the cohomology of a Siegel modular variety, to be more precise, on the intersection
cohomology of its minimal compactification. These identities, which appear in the calculation
of weighted orbital integrals at the real place, are the technical heart of the paper [7], but were
relegated to an appendix and proved by brute force. In this paper we present geometric proofs
of these identities which involve the Coxeter complex of the symmetric group Sn. This complex
can also be described as the boundary of the dual polytope of the permutahedron. This geometric
viewpoint also yields a strengthening of some of the original results in [7].

An overview of the paper is as follows. Section 2 contains preliminaries about the permutahedron
and shellings. Section 3 gives the definition of the weighted subcomplex Σ(λ) of the Coxeter
complex Σn of the symmetric group Sn that we wish to study. We prove Σ(λ) is a pure subcomplex
of the same dimension as Σn; see Lemma 3.6. In Section 4 we give a brief proof of the theorem
(originally due to Björner, see [2]) that any linear extension of the weak Bruhat order is a shelling
order on the facets of Σn, and deduce a similar result for Σ(λ). Section 5 yields another proof that
the weighted complex Σ(λ) is shellable using that it can be viewed as the order complex of an EL-
shellable poset. The shelling results of Sections 4 and 5 imply that Σ(λ) is always homeomorphic
to a ball or a sphere, and imply Corollary A.3 of [7], but they are much stronger than this corollary.
In Section 6 we state our main result, Theorem 6.4, which corresponds to Proposition A.4 of [7].
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Sections 7 and 8 contain the proof of this theorem: in Section 7 we give the proof in the case
λ is weakly increasing, and in Section 8 we show how to reduce the general case to this base
case. Finally, in Section 9 we derive another expression for the left-hand side of the identity of
Theorem 6.4 when λ is a weakly decreasing sequence.

2 Preliminaries

2.1 Permutations and ordered partitions

Let Sn denote the symmetric group on n elements. We write permutations τ ∈ Sn in one-line
notation, that is, τ = τ1τ2 · · · τn. Let the symmetric group Sn act upon the vector space Rn
by permuting the coordinates, that is, given a permutation τ = τ1τ2 · · · τn and the vector x =
(x1, x2, . . . , xn), we define τ(x) = (xτ−1(1), xτ−1(2), . . . , xτ−1(n)). Note that this is a left action, since
for two permutations τ and π we have that τ(π(x)) = (τ ◦ π)(x).

Define [n] to be the set {1, 2, . . . , n}. We will need the following permutation statistics. The
descent set of a permutation τ ∈ Sn is the set Des(τ) = {i ∈ [n − 1] : τi > τi+1}. The descent
composition is the list (d1 − d0, d2 − d1, . . . , dk+1 − dk) where Des(τ) = {d1 < d2 < · · · < dk} and
we tacitly assume d0 = 0 and dk+1 = n. The number of inversions of a permutation is given by
inv(τ) = |{(i, j) : 1 ≤ i < j ≤ n, τi > τj}|. Finally, denote the sign of a permutation τ by (−1)τ ,
that is, (−1)τ = (−1)inv(τ).

In the symmetric group Sn let si denote the simple transposition (i, i+ 1) where 1 ≤ i ≤ n− 1.
The weak Bruhat order on the symmetric group Sn is defined by the cover relation τ ≺ τsi where
inv(τ) < inv(τsi). More explicitly, the cover relation is

τ1 · · · τiτi+1 · · · τn ≺ τ1 · · · τi+1τi · · · τn if τi < τi+1.

With respect to this partial order, the identity element 12 · · ·n is the minimal element, the permu-
tation n · · · 21 is the maximal element, and the rank function is given by the number of inversions
of the permutation.

The permutahedron is the simple polytope defined by taking the convex hull of the n! points
(τ1, τ2, . . . , τn) ∈ Rn where τ ∈ Sn. Since these n! points lie in the hyperplane

∑n
i=1 xi =

(
n+1

2

)
,

the permutahedron is an (n − 1)-dimensional polytope. Label the vertex (τ1, τ2, . . . , τn) by the
inverse permutation τ−1. The 1-skeleton of the (n − 1)-dimensional permutahedron yields the
Hasse diagram of the weak Bruhat order of Sn, where the cover relations are oriented away from
the vertex labeled 12 · · ·n and toward the vertex labeled n · · · 21.

A partition π = {B1, B2, . . . , Bk} of the set [n] is a collection of subsets of [n], called blocks,
such that Bi 6= ∅ for 1 ≤ i ≤ k, Bi ∩ Bj = ∅ for 1 ≤ i < j ≤ k and

⋃k
i=1Bi = [n]. Let Πn denote

the collection of all the partitions of the set [n]. We make Πn into a partially ordered set (poset)
by the cover relation

{B1, B2, B3, . . . , Bk} ≺ {B1 ∪B2, B3, . . . , Bk}.

In other words, Πn is ordered by reverse refinement. The poset Πn is in fact a lattice, known as
the partition lattice. Furthermore, the partition lattice Πn is a graded poset, with minimal element
0̂ = {{1}, {2}, . . . , {n}}, maximal element 1̂ = {[n]} and rank function ρ(π) = n − |π|, where |π|
denotes the number of blocks of the partition π.

An ordered partition σ = (C1, C2, . . . , Ck) of the set [n] is a list of subsets of [n] such that
{C1, C2, . . . , Ck} is a partition of [n]. Let Πord

n denote the set of all ordered partitions on the
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set [n]. The set Πord
n forms a poset by letting the cover relation be merging two adjacent blocks,

that is,
(C1, . . . , Ci, Ci+1, . . . , Ck) ≺ (C1, . . . , Ci ∪ Ci+1, . . . , Ck).

Observe that the maximal element of Πord
n is the ordered partition consisting of one block ([n]).

However there are n! minimal elements, one for each permutation τ = τ1τ2 · · · τn in the symmetric
group Sn, namely the ordered partitions of the form ({τ1}, {τ2}, . . . , {τn}). We identify these
minimal elements with permutations in Sn written in one-line notation. Let |σ| denote the number
of blocks of the ordered partition σ. Also observe that every interval in Πord

n is isomorphic to a
Boolean algebra, that is, the interval [σ1, σ2] is isomorphic to the Boolean algebra B|σ1|−|σ2|. For
recent work regarding ordered partitions, see [3, 4].

When we adjoin a minimal element 0̂ to Πord
n the resulting poset is a lattice, called the ordered

partition lattice. In fact, it is the face lattice of the (n− 1)-dimensional permutahedron.
A composition of n is a list (c1, c2, . . . , ck) of positive integers such that

∑k
i=1 ci = n. Let

Comp(n) denote the set of all compositions of n. The set Comp(n) forms a poset by letting the
cover relation be adding two adjacent entries, that is,

(c1, . . . , ci, ci+1, . . . , ck) ≺ (c1, . . . , ci + ci+1, . . . , ck).

The poset Comp(n) is isomorphic to the Boolean algebra Bn−1. Define the map type : Πord
n −→

Comp(n) by reading off the cardinalities of the blocks, that is,

type((C1, C2, . . . , Ck)) = (|C1|, |C2|, . . . , |Ck|).

This is an order-preserving map.

2.2 Shellable and decomposable simplicial complexes

For a face F of a simplicial complex ∆ let F denote the subcomplex {G : G ⊆ F}. Recall that a
pure simplicial complex ∆ of dimension d is said to be shellable if it is either 0-dimensional, or there

is an ordering of the facets F1, F2, . . . , Fs such that the complex Fj ∩
(⋃j−1

i=1 Fi

)
is a pure simplicial

complex of dimension d − 1 for 2 ≤ j ≤ s. For a facet Fj let R(Fj) be the facet restriction, that

is, the smallest dimensional face of Fj that does not appear in the complex
⋃j−1
i=1 Fi. The shelling

condition implies that the face poset of ∆ can be written as the disjoint union
⋃s
j=1[R(Fj), Fj ]. We

call the facet Fj a homology facet if R(Fj) = Fj . It is only for homology facets that the topology of
the complex changes in the jth shelling step from F1 ∪ · · · ∪Fj−1 to F1 ∪ · · · ∪Fj . The subcomplex
F1 ∪ · · · ∪ Fj is said to be a partial shelling of the complex ∆. See [1, 8] and its references for
background on shellability.

Recall that a pure simplicial complex ∆ is decomposable if every facet Fj has a face R(Fj) such
that we can write ∆ as a disjoint union

∆ =

s⋃
j=1

[R(Fj), Fj ]. (2.1)

A shellable complex is decomposable, but the reverse is not true in general. However, the following
lemma yields a condition which implies shellability.
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Lemma 2.1. Let ∆ be a decomposable simplicial complex with the decomposition given by (2.1).
The ordering of the facets F1, F2, . . . , Fs is a shelling order if for every face G of the facet Fj there
exist an index i ≤ j such that the face G belongs to the interval [R(Fi), Fi].

Proof. We proceed by induction on j. When j = 1 the condition implies that R(F1) is the empty
face, and hence F1 is a shellable complex. Assume now that F1 ∪ · · · ∪ Fj−1 is a shellable complex,

that is, F1∪· · ·∪Fj−1 =
⋃j−1
i=1 [R(Fi), Fi]. Then any face of Fj is either already a face of F1∪· · ·∪Fj−1

or a face of Fj − F1 ∪ · · · ∪ Fj−1 Hence the intersection (F1 ∪ · · · ∪ Fj−1) ∩ Fj is the complement
of the interval [R(Fj), Fj ] in Fj , proving that F1, F2, . . . , Fj is a shelling order and completing the
induction.

For further background on combinatorial structures and posets, see [9]. For more on the com-
binatorics of simplicial complexes, see [8].

3 The weighted complex Σ(λ)

Let λ be a sequence of n real numbers, that is, λ = (λ1, λ2, . . . , λn) ∈ Rn. For a subset S ⊆ [n]
we introduce the shorthand notation λS =

∑
i∈S λi. Define the subset P(λ) of the set of ordered

partitions Πord
n by

P(λ) =

{
σ = (C1, C2, . . . , Ck) ∈ Πord

n :

j∑
i=1

λCi > 0 for 1 ≤ j ≤ k

}
.

Note that if λ1 + λ2 + · · ·+ λn ≤ 0 then the set P(λ) is empty.

Lemma 3.1. The set P(λ) is an upper order ideal (filter) in the poset Πord
n .

This follows directly from the definitions since by merging two adjacent blocks there is one less
inequality to verify.

Lemma 3.2. Given an ordered partition σ = (C1, C2, . . . , Ck) ∈ P(λ), assume that Cj is a non-
singleton block. Let a be an element of the block Cj with maximal λ-value, that is, λa = maxb∈Cj

(λb).
Let σ′ be the ordered partition

σ′ = (C1, C2, . . . , Cj−1, {a}, Cj − {a}, Cj+1, . . . , Ck).

Then the cover relation σ′ ≺ σ holds. Furthermore, σ′ belongs to the set P(λ).

Proof. The cover relation σ′ ≺ σ is immediate. To verify that σ′ ∈ P(λ) it is enough to verify that∑j−1
i=1 λCi + λa ≥ 0. If λa ≥ 0 this is immediately true. If λa < 0 then the inequality follows by

noticing that all the λ-values associated to the elements in the block Cj are negative and we have

that
∑j−1

i=1 λCi + λa ≥
∑j−1

i=1 λCi + λCj > 0.

Similar to the previous lemma we have the next result. This lemma will be used in the proof
of the main result in Section 8.
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Lemma 3.3. Given an ordered partition σ = (C1, C2, . . . , Ck) ∈ P(λ), assume that B is a non-
trivial subset of Cj, that is, ∅ ( B ( Cj. Let σ′ be the ordered partition

σ′ =

{
(C1, C2, . . . , Cj−1, B,Cj −B,Cj+1, . . . , Ck) if λB > 0,

(C1, C2, . . . , Cj−1, Cj −B,B,Cj+1, . . . , Ck) if λB ≤ 0.

Then the cover relation σ′ ≺ σ holds. Furthermore, σ′ belongs to the set P(λ).

Proof. Again, the cover relation is immediate. The fact that σ′ ∈ P(λ) follows by the two cases:
In the case λB > 0 it is enough to observe that

∑j−1
i=1 λCi + λB > 0. In the second case, we have∑j−1

i=1 λCi + λCj−B =
∑j

i=1 λCi − λB > 0.

Let A(λ) denote the subset of the symmetric group Sn defined by

A(λ) =

{
τ ∈ Sn :

j∑
i=1

λτ(i) ≥ 0 for 1 ≤ j ≤ n

}
.

Since permutations correspond to ordered partitions having all singleton blocks, we observe that
the set A(λ) is a subset of P(λ). In fact, it is the subset of minimal elements of P(λ).

Lemma 3.4. Let λ ∈ Rn be a sequence such that λ1 + λ2 + · · · + λn > 0. Then the set A(λ) is
nonempty. Especially, any permutation τ satisfying λτ1 ≥ λτ2 ≥ · · · ≥ λτn belongs to A(λ).

Proof. Since the sum
∑n

i=1 λi is positive, the ordered partition ([n]) belongs to P(λ). Now iterat-
ing Lemma 3.2 we obtain that the ordered partition corresponding to the permutation τ belongs
to P(λ).

Lemma 3.5. The upper order ideal P(λ) is generated by the set A(λ), that is, for every ordered
partition σ ∈ P(λ) there is a permutation τ ∈ A(λ) such that τ ≤ σ in Πord

n .

Proof. Begin with the ordered partition σ and iterate Lemma 3.2. This procedure yields the
permutation τ .

Recall that P(λ) is an upper order ideal in the poset Πord
n , where each interval is isomorphic to

a Boolean algebra. Hence by reversing the order relations of Πord
n we can view the set P(λ) as a

simplicial complex Σ(λ). We call Σ(λ) the weighted complex. The maximal element 1̂ of P(λ) is the
empty face of the simplicial complex Σ(λ) and the minimal elements A(λ) are the facets of Σ(λ).
This idea of turning an upper order ideal upside-down in order to view it as a simplicial complex
appears in [3, 4]. See Figure 1 for an example. Note that if λ1 + λ2 + · · ·+ λn ≤ 0 then Σ(λ) is the
empty simplicial complex, which has no faces, not even the empty face.

Lemma 3.5 can now be reformulated as follows.

Lemma 3.6. Let λ ∈ Rn be a sequence such that λ1 + λ2 + · · · + λn > 0. Then the weighted
complex Σ(λ) is a pure simplicial complex of dimension n− 2.

Reordering the entries of the sequence λ does not change the complex as the following lemma
shows.

Lemma 3.7. If τ ∈ Sn, then the complexes Σ(λ) and Σ(τ(λ)) are isomorphic under the bijection
Σ(λ) −→ Σ(τ(λ)) defined by σ 7−→ τ(σ).

Proof. It is enough to observe that τ(λ)τ(B) = λB for all subsets B ⊆ [n].
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Figure 1: The simplicial complex Σ(λ) for λ = (5, 1,−2,−3) consisting of 7 vertices, 12 edges and
6 triangles. The empty face, labeled 1234, is not depicted.

4 Shellings of the Coxeter complex

Let Σn be the simplicial complex formed by the boundary of the dual of the (n − 1)-dimensional
permutahedron. This is the type A Coxeter complex. The face poset of Σn is the dual poset (Πord

n )∗

with the order relation of the faces in Σn by ≤∗. The permutations in Sn correspond to the facets
of Σn. We begin by showing that Σn is a decomposable complex.

Recall that the descent set for a permutation τ ∈ Sn is the set Des(τ) = {d1 < d2 < · · · < dk}
such that

τ1 < τ2 < · · · < τd1 > τd1+1 < τd1+2 < · · · < τd2 > τd2+1 < · · · < τdk > τdk+1 < τdk+2 < · · · < τn.

Define the ordered partition R(τ) to be

R(τ) = ({τ1, τ2, . . . , τd1}, {τd1+1, τd1+2, . . . , τd2}, . . . , {τdk+1, τdk+2, . . . , τn}).

Note that the blocks of R(τ) consist of the maximal ascending runs in the permutation τ .
Define the map f : Σn −→ Sn by taking an ordered partition, ordering the elements in each

block in increasing order and then recording the elements as a permutation by reading from left to
right.

The next two results are due to Björner; see [2, Theorem 2.1].

Proposition 4.1 (Björner). The simplicial complex Σn is decomposable, that is, Σn is given by
the disjoint union

Σn =
⋃
τ∈Sn

[R(τ), τ ]. (4.1)
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Proof. Define the map r : Σn −→ Σn by iterating the following procedure. If Ci and Ci+1 are
two adjacent blocks in the ordered partition σ such that max(Ci) < min(Ci+1) then merge these
two blocks together. It is clear that we have the inequalities r(σ) ≤∗ σ ≤∗ f(σ). Also we have
that f(r(σ)) = f(σ) and r(f(σ)) = r(σ). Furthermore for a permutation (facet) τ we have that
R(τ) = r(τ). Hence each ordered partition σ appears only in the interval [r(f(σ)), f(σ)]. Thus each
ordered partition σ appears exactly once in the union (4.1), and hence this union is disjoint.

Theorem 4.2 (Björner). Any linear extension of the weak Bruhat order is a shelling order of the
simplicial complex Σn.

Proof. Fix a linear extension of the weak Bruhat order. Denote it by <e. Consider a permuta-
tion τ ∈ Sn. Let σ be an ordered partition such that σ ≤∗ τ , that is, σ is a face of the facet τ .
Now consider the permutation f(σ). Note that the permutation f(σ) is obtained from the permu-
tation τ by merging elements together to form blocks and then sorting the elements in each block
in increasing order. Hence in the weak Bruhat order we have f(σ) ≤ τ . Hence f(σ) appears earlier
in the linear extension than τ , that is, f(σ) ≤e τ . The result follows by Lemma 2.1.

We now consider our complex Σ(λ).

Theorem 4.3. Let λ = (λ1, . . . , λn) be a sequence of n real numbers such that λ1+λ2+· · ·+λn > 0.
Then the complex Σ(λ) is shellable. Furthermore, the complex Σ(λ) is homeomorphic to a sphere
or a ball according to

Σ(λ) ∼=

{
Sn−2 if λ1, λ2, . . . , λn > 0,

Bn−2 otherwise.

The proof of Theorem 4.3 will appear directly after the proof of Proposition 4.7.

Proposition 4.4. Let λ ∈ Rn be a sequence such that λ1 ≥ λ2 ≥ · · · ≥ λn and λ1+λ2+· · ·+λn > 0.
Then the elements A(λ) form a lower order ideal with respect to the weak Bruhat order on the
symmetric group Sn.

Proof. Assume that we have the following cover relation in the weak Bruhat order:

τ = τ1 · · · τjτj+1 · · · τn ≺ τ1 · · · τj+1τj · · · τn = τ ′ ∈ A(λ),

where τj < τj+1, and suppose that τ ′ ∈ A(λ). To verify that τ belongs to A(λ), it is enough to

verify that
∑j

i=1 λτi is nonnegative. Note that τj < τj+1 implies λτj ≥ λτj+1 . However
∑j

i=1 λτi ≥
λτj+1 +

∑j−1
i=1 λτi which is positive by our assumption. Hence A(λ) is closed under the cover relation

and hence it is a lower order ideal in the weak Bruhat order.

Remark 4.5. A similar proof also shows that A(λ) is a lower order ideal with respect to the strong
Bruhat order.

Proposition 4.6. Let λ ∈ Rn be a sequence such that λ1 ≥ λ2 ≥ · · · ≥ λn. Then the weighted
complex Σ(λ) has the decomposition

Σ(λ) =
⋃

τ∈A(λ)

[R(τ), τ ].
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Proof. Note that the intersection Σ(λ) ∩ [R(τ), τ ] is empty if τ is not in A(λ) and otherwise is the
entire interval [R(τ), τ ]. Hence the result follows from Proposition 4.1.

Proposition 4.7. Let λ ∈ Rn be a sequence such that λ1 ≥ λ2 ≥ · · · ≥ λn and λ1+λ2+· · ·+λn > 0.
Then the weighted complex Σ(λ) is a partial shelling of Σn and hence Σ(λ) is shellable. Furthermore,
the complex Σ(λ) is homeomorphic to a sphere or a ball according to

Σ(λ) ∼=

{
Sn−2 if λn > 0,

Bn−2 if λn ≤ 0.

Proof. The first statement follows by combining Theorem 4.2 and Propositions 4.4 and 4.6. The
second statement follows from the fact that Σn is a sphere. The only homology facet of the
complex Σn is the permutation n · · · 21 and it only appears as a facet in Σ(λ) if λn > 0.

The proof of Theorem 4.3 now follows directly by combining Lemma 3.7 and Proposition 4.7.
By taking the reduced Euler characteristic of the simplicial complex Σ(λ) in Theorem 4.3, we obtain
the following result that appears in [7, Corollary A.3] :

Corollary 4.8. Let λ ∈ Rn. Then

∑
σ∈P(λ)

(−1)|σ| =

{
(−1)n if λ1, λ2, . . . , λn > 0,

0 otherwise.

This corollary can also be proven by a sign reversing involution on the set P(λ). Furthermore,
such a sign reversing involution could also be made into a discrete Morse matching; see [5]. However,
the discrete Morse matching would only give the weaker topologicial result that Σ(λ) is either
contractible when λi ≤ 0 for some index i or homotopy equivalent to a sphere when λ1, λ2, . . . , λn >
0.

5 The lexicographic shelling

In this section we assume that the entries of λ are pairwise distinct. We can always perturb λ
slightly to make this condition true. Note that this does not change the complex Σ(λ). We also
assume that λ1 + λ2 + · · ·+ λn > 0.

Let P be a graded poset that has a minimal element 0̂ and a maximal element 1̂ and where
every saturated chain has the same length. Let C(P ) be the set of all cover relations of P , that is,

C(P ) = {(x, y) ∈ P 2 : x ≺ y}.

An R-labeling of the poset P is a map κ from the set of cover relations C(P ) to a linearly ordered
set such that in each interval [x, y] there is a unique chain x = x0 ≺ x1 ≺ · · · ≺ xk = y where the
labels are rising, that is, κ(x0, x1) ≤ κ(x1, x2) ≤ · · · ≤ κ(xk−1, xk). An EL-labeling is an R-labeling
with the extra condition that the unique rising chain is also lexicographic least among all chains in
the interval. It is well-known that a poset having an EL-labeling implies that the order complex
∆(P − {0̂, 1̂}) is a shellable simplicial complex; see [1, Section 2].
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Let Bn denote the Boolean algebra, that is, the collection of subsets of the set [n] ordered by
inclusion. Define the subposet B(λ) by

B(λ) = {S ∈ Bn : λS > 0} ∪ {∅}.

Note that the full set [n] belongs to B(λ) and it is the maximal element of B(λ).
We view this definition geometrically as follows. Identify the vertices of the n-dimensional cube,

that is, {0, 1}n with the Boolean algebra Bn. The subposet B(λ) then consists of those vertices
(x1, x2, . . . , xn) that satisfy the linear inequality λ1x1 + λ2x2 + · · · + λnxn > 0 as well as the zero
vector.

Lemma 5.1. Let S and T be two subsets in the poset B(λ) such that T ( S. Let a be the element
in the set difference S − T with the maximal λ-value. Then the set T ∪ {a} also belongs to B(λ).

Proof. The proof is the same as the proof of Lemma 3.2. If λa ≥ 0 then λT∪{a} = λT + λa ≥ 0. If
λa ≤ 0 then all the elements in S − T have non-positive λ-values, hence λT∪{a} ≥ λS ≥ 0.

From this straightforward observation we have the following consequences.

Proposition 5.2. The poset B(λ) is graded of rank n. Furthermore, by labeling the cover relation
T ( S, where |T |+ 1 = |S|, by −λa, where a is the unique element in the set difference S − T , we
obtain an EL-labeling of the poset B(λ).

Proof. By repeatedly applying Lemma 5.1 we obtain that every interval [T, S] has a saturated chain
consisting of |S|− |T | steps. Thus the poset B(λ) has cardinality as a rank function. Note that the
labels of any saturated chain in the interval [T, S] are the negatives of the λ-values of a permutation
of elements in the set difference S−T . Also, the chain obtained by repeatedly applying Lemma 5.1
has its labels in increasing order. It is the only such increasing chain. Furthermore, it is also the
lexicographically least chain. Hence the labeling is an EL-labeling.

Finally observe that the order complex of B(λ), that is, ∆(B(λ)− {0̂, 1̂}) is the complex Σ(λ).
Thus we obtain that we can shell the facets of Σ(λ) in lexicographic order.

6 The main result

Define the map g : Σ(λ) −→ Sn by taking an ordered partition σ, ordering the elements in each
block in decreasing order, and then recording the elements as a permutation by reading from left to
right. This is similar to the map f defined before Proposition 4.1. The signs of the two permutations
f(σ) and g(σ) are related by

(−1)g(σ) = (−1)
∑k

i=1 (ci2 ) · (−1)f(σ),

where σ = (C1, C2, . . . , Ck) and ci = |Ci|.
Define S(λ) to be the sum

S(λ) =
∑

σ∈Σ(λ)

(−1)|σ| · (−1)g(σ). (6.1)
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Let Mn be the set of all maximal matchings on the set {1, 2, . . . , n}. We say that two edges
{a, c} and {b, d} of a matching p cross if a < b < c < d. Let cross(p) denote the number of crossings.
Define the sign of a matching p in Mn by

(−1)p = (−1)cross(p) ·

{
1 if n is even,

(−1)i−1 if n is odd,

where i is the unique isolated vertex if n is odd.

Remark 6.1. When n is odd there is a sign-preserving bijection between Mn and Mn+1 by joining
the isolated vertex i to the new vertex n+ 1.

Define two functions c1 : R→ R and c2 : R2 → R in the following manner:

c1 = 11R>0 , and c2(a, b) =


1 if a, b > 0,
2 if a > −b ≥ 0,
0 otherwise.

If e = {i, j} is an edge with i < j, we set c(e, λ) = c2(λi, λj).
Let m be the number of edges of a maximal matching, that is, m = bn/2c. Let p be a maximal

matching in Mn. If n is even, we write p as the collection of edges {e1, e2, . . . , em}. If n is odd, the
matching p is of the form {e1, e2, . . . , em} together with an isolated vertex i. We set

c(p, λ) =
m∏
j=1

c(ej , λ) ·

{
1 if n is even,

c1(λi) if n is odd.

Finally, let

T (λ) =
∑
p∈Mn

(−1)p · c(p, λ). (6.2)

Remark 6.2. Following [6] let S∗∗n be the set of all permutations τ in the symmetric group Sn

satisfying the inequalities τ2j−1 < τ2j for 1 ≤ j ≤ m and τ1 < τ3 < · · · < τ2m−1. Then there
is a bijection S∗∗n

∼→ Mn by sending τ to the matching p = {{τ1, τ2}, {τ3, τ4}, . . . , {τ2m−1, τ2m}}.
Note that when n is odd, the isolated vertex is τn. This bijection preserves the sign, that is,
(−1)τ = (−1)p.

Remark 6.3. When n is even we can express the sum T (λ) as the Pfaffian of a skew-symmetric
matrix. Let A be the skew-symmetric matrix of order n with the upper triangular entries given by
Ai,j = c2(λi, λj). The Pfaffian of A is then the sum T (λ). (See Remark 6.2.)

Similarly, when n is odd, we use the bijection in Remark 6.1. In this case let A be the skew-
symmetric matrix of order n+ 1 where the upper triangular entries are

Ai,j =

{
c2(λi, λj) if 1 ≤ i < j ≤ n,
c1(λi) if 1 ≤ i ≤ n, j = n+ 1.

Again the Pfaffian of A is the sum T (λ).

We can now state the main result. This is Proposition A.4 of [7].

Theorem 6.4. For every λ ∈ Rn, we have

S(λ) = (−1)n · T (λ).

The proof of Theorem 6.4 will be given at the end of Section 8.
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7 The base case

Let λ denote the reverse of λ, that is, λ = (λn, . . . , λ2, λ1).

Lemma 7.1. The sum S(λ) can be expressed as∑
σ∈Σ(λ)

(−1)|σ| · (−1)g(σ) = (−1)(
n
2) ·

∑
σ∈Σ(λ)

(−1)|σ| · (−1)f(σ).

Proof. Let τ0 denote the longest permutation in Sn, that is, τ0 = n · · · 21. Note that (−1)τ0 =

(−1)(
n
2) and λ = τ0λ. For any ordered partition σ ∈ Πord

n we have the following equality between

permutations: τ0g(σ) = f(τ0σ). Especially, their signs agree, that is, (−1)(
n
2)·(−1)g(σ) = (−1)f(τ0σ).

Now apply Lemma 3.7 using the permutation τ0. The result follows after summing over all faces
σ ∈ Σ(λ).

Proposition 7.2. Let λ ∈ Rn be a sequence such that λ1 ≤ λ2 ≤ · · · ≤ λn. Then the sum S(λ) is
given by

S(λ) =

{
(−1)n if λ1 > 0,

0 otherwise.

Proof. Lemma 7.1 asserts that

S(λ) = (−1)(
n
2) ·

∑
σ∈Σ(λ)

(−1)|σ| · (−1)f(σ).

Moreover, the entries of λ are in weakly decreasing order. Hence we can use the decomposition in
Proposition 4.6 for the complex Σ(λ), that is, we have

Σ(λ) =
⋃

τ∈A(λ)

[R(τ), τ ].

Observe the function (−1)f(σ) is constant on the interval [R(τ), τ ]. Hence the sum∑
σ∈[R(τ),τ ]

(−1)|σ| · (−1)f(σ)

is zero unless R(τ) = τ . But we can only have R(τ) = τ when τ is the longest permutation n · · · 21.

For this permutation the sum is (−1)n · (−1)(
n
2). This permutation occurs in A(λ) if and only if

λ1 > 0. Hence the result follows.

Lemma 7.3. The following two evaluations of T (λ) hold:

(1) If λ1, λ2, . . . , λn > 0, then T (λ) = 1.

(2) If λ1 ≤ 0, then T (λ) = 0.
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Proof. We begin by proving the first statement. By the hypothesis on λ, for every maximal match-
ing p, we have c(p, λ) = 1. We prove T (λ) = 1 for all even n by induction. The induction basis
n = 2 is straightforward to check since there is only one maximal matching on two vertices. As-
sume now it is true for n− 2. Observe that the parity of the number of crossings to which the edge
{1, j} contributes is the same as the parity of j. Let q ∈ Mn−2 be the matching obtained from p
by removing the vertices 1 and j, and then applying the unique order preserving relabeling of the
vertices. This gives a bijection from the set of maximal matchings p ∈ Mn such that 1 and j are
matched and the set of maximal matchings q ∈ Mn−2, and we have (−1)p = (−1)j(−1)q. Hence
the sum is given by

T (λ) =
∑
p∈Mn

(−1)p =

n∑
j=2

(−1)j ·
∑

q∈Mn−2

(−1)q =

n∑
j=2

(−1)j = 1,

where the third step is the induction hypothesis.
Assume now that n is odd. By using the sign-preserving bijection in Remark 6.1 between Mn

and Mn+1, we obtain that the two sums
∑

p∈Mn
(−1)p and

∑
r∈Mn+1

(−1)r are equal, and we have
already seen that the second sum is equal to 1.

We next prove the second statement. Suppose that λ1 ≤ 0. Then for every maximal matching p,
we claim c(p, λ) = 0. Indeed, if the vertex 1 is isolated then c1(λ1) = 0 is a factor of c(p, λ). If
not, let e = {1, j} be the edge of p containing the vertex 1. The contribution of e to c(p, λ) is
c2(λ1, λj) = 0 which is independent of the value of λj . In both cases, c(p, λ) has a factor equal to 0,
so it is 0.

By combining Proposition 7.2 and Lemma 7.3, we obtain the following corollary.

Corollary 7.4. If λ1 ≤ λ2 ≤ · · · ≤ λn, then S(λ) = (−1)n · T (λ).

8 Permuting the entries of λ

We now give a way to reduce the general case to the case treated in the previous section, assuming
that we know the identity for smaller values of n. This reduction is directly inspired by Herb’s
paper [6] on discrete series characters.

Let λ ∈ Rn with no ordering hypothesis on λ. Suppose that n ≥ 2, and fix 1 ≤ i ≤ n − 1.
Recall that si is the simple transposition (i, i + 1) in the symmetric group Sn. Also, we write
µ = (λ1, . . . , λi−1, λi+2, . . . , λn) ∈ Rn−2.

Proposition 8.1. The following two identities hold:

S(λ) + S(siλ) = −2 · 11λi+λi+1>0 · S(µ), (8.1)

T (λ) + T (siλ) = 2 · 11λi+λi+1>0 · T (µ). (8.2)

Proof. We begin by proving (8.1). For σ ∈ Σn, let siσ denote the ordered partition where we
exchange the elements i and i + 1. Note that si is an involution on Σn and that it preserves the
number of blocks. We write Σ(λ) = Σ′(λ) t Σ′′(λ), where Σ′′(λ) is the set of fixed points of si
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in Σ(λ), that is, Σ′(λ) is the set of σ ∈ Σ(λ) such that i and i+ 1 are in different blocks of σ and
Σ′′(λ) is the set of σ ∈ Σ(λ) such that i and i+ 1 are in the same block of σ.

Note that the action of si gives a bijection between Σ′(λ) and Σ′(siλ). Furthermore, for an
ordered partition σ in Σ′(λ) we have g(siσ) = si · g(σ). We obtain∑

σ∈Σ′(λ)

(−1)|σ| · (−1)g(σ) +
∑

σ∈Σ′(si(λ))

(−1)|σ| · (−1)g(σ) = 0. (8.3)

We next consider Σ′′(λ). Note that Σ′′(λ) = Σ′′(siλ), so it remains to show that∑
σ∈Σ′′(λ)

(−1)|σ| · (−1)g(σ) = −11λi+λi+1>0 · S(µ). (8.4)

Suppose first that λi + λi+1 ≤ 0. Define a matching on Σ′′(λ) in the following manner. If
σ = (C1, C2, . . . , Cr) ∈ Σ′′(λ) satisfies i, i+ 1 ∈ Cs and |Cs| ≥ 3, match it with

σ′ = (C1, . . . , Cs−1, Cs − {i, i+ 1}, {i, i+ 1}, Cs+1, . . . , Cr).

The hypothesis that λi + λi+1 ≤ 0 and Lemma 3.3 imply that σ′ ∈ Σ′′(λ). Furthermore, this is a
perfect matching since no ordered partition in Σ′′(λ) can begin with the block {i, i+ 1}. It is easy
to see that (−1)g(σ) = (−1)g(σ

′) if σ and σ′ are matched. So we obtain∑
σ∈Σ′′(λ)

(−1)|σ| · (−1)g(σ) = 0.

Now assume that λi + λi+1 > 0. We consider another matching on Σ′′(λ), defined as follows. If
σ = (C1, C2, . . . , Cr) ∈ Σ′′(λ) satisfies i, i+ 1 ∈ Cs and |Cs| ≥ 3, match it with

σ′ = (C1, . . . , Cs−1, {i, i+ 1}, Cs − {i, i+ 1}, Cs+1, . . . , Cr).

The hypothesis that λi+λi+1 > 0 and Lemma 3.3 imply that σ′ ∈ Σ′′(λ). The unmatched elements
are the ordered partitions whose last block is {i, i + 1}. Again, it is straightforward to see that
(−1)g(σ) = (−1)g(σ

′) if σ and σ′ are matched. Denote by Σ′′′(λ) the set of unmatched elements
in Σ′′(λ). We obtain ∑

σ∈Σ′′(λ)

(−1)|σ| · (−1)g(σ) =
∑

σ∈Σ′′′(λ)

(−1)|σ| · (−1)g(σ).

Identify [n− 2] and [n]− {i, i+ 1} using the unique order-preserving bijection between these sets.
We note that σ = (C1, . . . , Cr, {i, i+ 1}) ∈ Σn is an element of Σ(λ) if and only if τ := (C1, . . . , Cr)
is an element of Σ(µ). This induces a bijection Σ′′′(λ)

∼→ Σ(µ). Also, we have |σ| = |τ | + 1 and
(−1)g(σ) = (−1)g(τ). So finally we find that∑

σ∈Σ′′′(λ)

(−1)|σ| · (−1)g(σ) = −
∑

τ∈Σ(µ)

(−1)|τ | · (−1)g(τ) = −S(µ).

Identity (8.1) follows by combining equation (8.3) with twice equation (8.4) in the two cases Σ′′(λ)
and Σ′′(siλ).
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Identity (8.2) is proved as in Case I of Lemma 2.14 in [6]. Let M ′′n be the set of maximal
matchings in Mn where {i, i + 1} is an edge and let M ′n be the complement, that is, where the
vertices i and i+ 1 are not matched with each other.

For p ∈Mn, let sip denote the matching where we exchange the vertices i and i+ 1. Note that
si is an involution on the set Mn and that M ′′n is the set of fixed points of si. Furthermore, for a
matching p ∈M ′n we have (−1)sip = −(−1)p and c(sip, siλ) = c(p, λ). Hence we obtain∑

p∈M ′n

(−1)p · c(p, λ) +
∑
p∈M ′n

(−1)p · c(p, siλ) = 0. (8.5)

Again we use the unique order-preserving bijection [n−2]
∼→ [n]−{i, i+1}. Thus if p is a matching

in M ′′n , we can view p−{i, i+ 1} as a matching on the vertex set [n−2], which we will denote by q.
This gives a bijection between M ′′n and Mn−2. Note that the two matchings p and q have the same
sign, that is, (−1)p = (−1)q. Furthermore

c(p, λ) + c(p, siλ) = (c2(λi, λi+1) + c2(λi+1, λi)) · c(q, µ)

= 2 · 11λi+λi+1>0 · c(q, µ).

Now summing over all p ∈M ′′n we obtain∑
p∈M ′′n

(−1)p · c(p, λ) +
∑
p∈M ′′n

(−1)p · c(p, siλ) = 2 · 11λi+λi+1>0 ·
∑

q∈Mn−2

(−1)q · c(q, µ). (8.6)

Identity (8.2) now follows by summing equations (8.5) and (8.6).

We now include the proof of Theorem 6.4.

Proof of Theorem 6.4. We proceed by induction on n ≥ 1. The induction basis is n ≤ 2, and is
straightforward to verify. Assume the theorem is true for n − 2 ≥ 1 and let us prove it for n.
Proposition 8.1 and the induction hypothesis imply that for every λ ∈ Rn and i ∈ [n − 1] the
theorem is true for λ if and only if it is true for siλ. As the transpositions s1, s2, . . . , sn−1 generate
the symmetric group Sn, we deduce that the theorem is true for λ if and only if there exists a
permutation τ ∈ Sn such that the theorem is true for τλ. But for every λ ∈ Rn, we can find a
τ ∈ Sn such that the entries of τλ are in weakly increasing order. The result for τλ is exactly
Corollary 7.4, and so we finally deduce the result for our original λ, completing the induction
step.

9 An expression for decreasing λ

The base case of the proof of Theorem 6.4 is when the sequence λ is weakly increasing. In this
section we consider the other extreme, that is, when the sequence λ is weakly decreasing. We give
an expression for S(λ) using a permutation statistic on the facets of Σ(λ), that is, the set A(λ).

We begin by defining two sequences ai and bi by ai = (−1)(
i
2)+1 for i ≥ 1, b0 = b1 = 1 and

bi = 2 for i ≥ 2.

14



Lemma 9.1. The following identity holds:∑
~c∈Comp(n)

ac1 · ac2 · · · ack = (−1)n · bn,

where the sum is over all compositions ~c = (c1, c2, . . . , ck) of n.

Proof. It is enough to note that

a(x) =
∑
n≥1

an · xn =
−x · (1− x)

1 + x2

and

1

1− a(x)
=

1 + x2

1 + x
= 1 +

∑
n≥1

(−1)n · bn · xn.

Proposition 9.2. Let id = 12 · · ·n be the identity permutation. Then the following identity holds:∑
σ∈[R(id),id]

(−1)|σ| · (−1)g(σ) = (−1)n · bn.

Proof. The interval [R(id), id] ∈ Σ(λ) is isomorphic to the poset Comp(n). Hence we view the
elements of this interval as compositions ~c = (c1, c2, . . . , ck) of n where σ is the ordered partition
σ = (C1, C2, . . . , Ck) and Ci is the interval [c1 + c2 + · · · + ci−1 + 1, c1 + c2 + · · · + ci]. Note that
|Ci| = ci. Now the sum is given by

∑
~c∈Comp(n)

(−1)k ·
k∏
i=1

(−1)(
ci
2 ) =

∑
~c∈Comp(n)

k∏
i=1

(−1)(
ci
2 )+1 =

∑
~c∈Comp(n)

k∏
i=1

aci = (−1)n · bn,

where the last equality is by Lemma 9.1.

For a permutation τ with descent set composition (c1, c2, . . . , ck) define

b(τ) =
k∏
i=1

bci .

In other words, b(τ) is 2 to the power of the number of maximal ascent runs in τ which have size
greater than or equal to 2.

Theorem 9.3. When λ ∈ Rn is such that λ1 ≥ λ2 ≥ · · · ≥ λn the following identity holds:

S(λ) = (−1)n ·
∑

τ∈A(λ)

(−1)τ · b(τ).
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Proof. Let τ be a permutation in A(λ) with descent composition ~c = (c1, c2, . . . , ck). Let τ (i) be
the ith descent run of the permutation τ , that is, τ (i) is a partial permutation and τ can be written
as the concatenation of τ (1) through τ (k). We sum over all σ in the interval [R(τ), τ ]. In order
to do so, we write σ as a concatenation of ordered partitions σ(1), σ(2), . . ., σ(k), where σ(i) is an
ordered composition of the set of elements of τ (i). The ordered partition σ(i) belongs to the interval
[R(τ (i)), τ (i)] in the ordered partition lattice defined on the elements of τ (i).

Let ~d = (d1, d2, . . . , dm) be the block sizes of σ, that is, type(σ) = ~d. Note that ~d ≤ ~c in the
poset Comp(n). Hence we write ~d as the concatenation ~d(1) ◦ ~d(2) ◦ · · · ◦ ~d(k) where type(σ(i)) = ~d(i).

Rewrite the sum over the elements in the interval [R(τ), τ ] as follows:∑
σ∈[R(τ),τ ]

(−1)|σ| · (−1)g(σ) =
∑

σ∈[R(τ),τ ]

(−1)f(σ) · (−1)|σ|+
∑m

j=1 (dj
2
)

= (−1)τ ·
∑

σ∈[R(τ),τ ]

m∏
j=1

adj

= (−1)τ ·
k∏
i=1

∑
σ(i)∈[R(τ (i)),τ (i)]

|~d(i)|∏
j=1

a
d
(i)
j

.

By Proposition 9.2 the sum is (−1)ci · bci . Finally, the product is (−1)n · (−1)τ · b(τ). By using the
decomposition of Σ(λ) in Proposition 4.6 and summing over all permutations τ in A(λ), the result
follows.
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