The Gaussian coefficient revisited

Richard EHRENBORG* and Margaret A. READDY ${ }^{\dagger}$

Abstract

We give new $q-(1+q)$-analogue of the Gaussian coefficient, also know as the q-binomial which, like the original q-binomial $\left[\begin{array}{c}n \\ k\end{array}\right]_{q}$, is symmetric in k and $n-k$. We show this $q-(1+q)$-binomial is more compact than the one discovered by Fu, Reiner, Stanton and Thiem. Underlying our $q-(1+q)$-analogue is a Boolean algebra decomposition of an associated poset. These ideas are extended to the Birkhoff transform of any finite poset. We end with a discussion of higher analogues of the q-binomial.

2010 Mathematics Subject Classification. Primary 06A07; Secondary 05A05, 05A10, 05A30.
Key words and phrases. q-analogue, Birkhoff transform, distributive lattice, poset decomposition.

1 Introduction

Inspired by work of Fu, Reiner, Stanton and Thiem [2], Cai and Readdy [1] asked the following question. Given a combinatorial q-analogue

$$
X(q)=\sum_{w \in X} q^{a(w)},
$$

where X is a set of objects and $a(\cdot)$ is a statistic defined on the elements of X, when can one find a smaller set Y and two statistics s and t such that

$$
X(q)=\sum_{w \in Y} q^{s(w)} \cdot(1+q)^{t(w)}
$$

Such an interpretation is called an $q-(1+q)$-analogue. Examples of $q-(1+q)$-analogues have been determined for the q-binomial by Fu, Reiner, Stanton and Thiem [2], and for the q-Stirling numbers of the first and second kinds by Cai and Readdy [1], who also gave poset and homotopy interpretations of their $q-(1+q)$-analogues.

[^0]In 1916 MacMahon [3, 4, 5] observed that the Gaussian coefficient, also known as the q-binomial coefficient, is given by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\sum_{w \in \Omega_{n, k}} q^{\operatorname{inv}(w)}
$$

Here $\Omega_{n, k}=\mathfrak{S}\left(0^{n-k}, 1^{k}\right)$ denotes all permutations of the multiset $\left\{0^{n-k}, 1^{k}\right\}$, that is, all words $w=w_{1} \cdots w_{n}$ of length n with $n-k$ zeroes and k ones, and $\operatorname{inv}(\cdot)$ denotes the inversion statistic defined by $\operatorname{inv}\left(w_{1} w_{2} \cdots w_{n}\right)=\left|\left\{(i, j): 1 \leq i<j \leq n, w_{i}>w_{j}\right\}\right|$. Fu et al. defined a subset $\Omega_{n, k}^{\prime} \subseteq \Omega_{n, k}$ and two statistics a and b such that

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\sum_{w \in \Omega_{n, k}^{\prime}} q^{a(w)} \cdot(1+q)^{b(w)}
$$

In this paper we will return to the original study by Fu et al. of the Gaussian coefficient. We discover a more compact $q-(1+q)$-analogue which, like the original Gaussian coefficients, is also symmetric in the variables k and $n-k$; see Corollary 2.6 and Theorem 3.5. This symmetry was missing in Fu et al.'s original $q-(1+q)$-analogue. We give a Boolean algebra decomposition of the related poset $\Omega_{n, k}$. Since this poset is a distributive lattice, in the last section we extend these ideas to poset decompositions of any distributive lattice and other analogues.

2 A poset interpretation

In this section we consider the poset structure on 0-1-words in $\Omega_{n, k}$. For further poset terminology and background, we refer the reader to [6].

We begin by making the set of elements $\Omega_{n, k}$ into a graded poset by defining the cover relation to be

$$
u \circ 01 \circ v \prec u \circ 10 \circ v,
$$

where \circ denotes concatenation of words. The word $0^{n-k} 1^{k}$ is the minimal element and the word $1^{k} 0^{n-k}$ is the maximal element in the poset $\Omega_{n, k}$. Furthermore, this poset is graded by the inversion statistic. This poset is simply the interval $[\widehat{0}, x]$ of Young's lattice, where the minimal element $\widehat{0}$ is the empty Ferrers diagram and x is the Ferrers diagram consisting of $n-k$ columns and k rows.

An alternative description of the poset $\Omega_{n, k}$ is that it is isomorphic to the Birkhoff transform of the Cartesian product of two chains. Let C_{m} denote the m-element chain. The poset $\Omega_{n, k}$ is isomorphic to the distributive lattice of all lower order ideals of the product $C_{n-k} \times C_{k}$, usually denoted by $J\left(C_{n-k} \times C_{k}\right)$.
Definition 2.1. Let $\Omega_{n, k}^{\prime \prime} \subseteq \Omega_{n, k}$ consist of all 0,1 -words $v=v_{1} v_{2} \cdots v_{n}$ in $\Omega_{n, k}$ such that

$$
v_{1} \leq v_{2}, v_{3} \leq v_{4}, \ldots, \quad v_{2 \cdot\lfloor n / 2\rfloor-1} \leq v_{2 \cdot\lfloor n / 2\rfloor}
$$

Observe that when n is odd there is no condition on the last entry w_{n}. Define two maps ϕ and ψ on $\Omega_{n, k}$ by sending the word $w=w_{1} w_{2} \cdots w_{n}$ to

$$
\begin{aligned}
\phi(w) & =\min \left(w_{1}, w_{2}\right), \max \left(w_{1}, w_{2}\right), \min \left(w_{3}, w_{4}\right), \max \left(w_{3}, w_{4}\right), \ldots, \\
\psi(w) & =\max \left(w_{1}, w_{2}\right), \min \left(w_{1}, w_{2}\right), \max \left(w_{3}, w_{4}\right), \min \left(w_{3}, w_{4}\right), \ldots
\end{aligned}
$$

The map ϕ sorts the entries in positions 1 and 2,3 and 4 , and so on. If n is odd, the entry w_{n} remains in the same position. Similarly, the map ψ sorts in reverse order in each pair of positions. Note that the map ϕ maps $\Omega_{n, k}$ surjectively onto the set $\Omega_{n, k}^{\prime \prime}$.

We have the following Boolean algebra decomposition of the poset $\Omega_{n, k}$.
Theorem 2.2. The distributive lattice $\Omega_{n, k}$ has the Boolean algebra decomposition

$$
\Omega_{n, k}=\bigcup_{v \in \Omega_{n, k}^{\prime \prime}}[v, \psi(v)] .
$$

Proof. Observe that the maps ϕ and ψ satisfy the inequalities $\phi(w) \leq w \leq \psi(w)$. Furthermore, the fiber of the $\operatorname{map} \phi: \Omega_{n, k} \longrightarrow \Omega_{n, k}^{\prime \prime}$ is isomorphic to a Boolean algebra, that is, $\phi^{-1}(v) \cong[v, \psi(v)]$.

For $v \in \Omega_{n, k}^{\prime \prime}$ define the statistic

$$
\operatorname{asc}_{\text {odd }}(v)=\mid\left\{i: v_{i}<v_{i+1}, i \text { odd }\right\} \mid,
$$

that is, asc $_{\text {odd }}(\cdot)$ enumerates the number of ascents in odd positions.
Corollary 2.3. The q-binomial is given by

$$
\left[\begin{array}{l}
n \tag{2.1}\\
k
\end{array}\right]_{q}=\sum_{v \in \Omega_{n, k}^{\prime \prime}} q^{\operatorname{inv}(v)} \cdot(1+q)^{\operatorname{asc}_{\mathrm{odd}}(v)} .
$$

Proof. It is enough to observe that the sum of the inversion statistic over the elements in the fiber $\phi^{-1}(v)=[v, \psi(v)]$ for $v \in \Omega_{n, k}^{\prime \prime}$ is given by $q^{\operatorname{inv}(v)} \cdot(1+q)^{\operatorname{asc} \mathrm{add}^{(v)}}$.

A geometric way to understand this $q-(1+q)$-interpretation is to consider lattice paths from the origin $(0,0)$ to $(n-k, k)$ which only use east steps $(1,0)$ and north steps $(0,1)$. Color the squares of this $(n-k) \times k$ board as a chessboard, where the square incident to the origin is colored white. The map ϕ in the proof of Theorem 2.2 corresponds to taking a lattice path where every time there is a north step followed by an east step that turns around a white square, we exchange these two steps. The statistic asc ${ }_{\text {odd }}$ enumerates the number of times an east step is followed by a north step when this pair of steps borders a white square.

Let er (n, k) denote the cardinality of the set $\Omega_{n, k}^{\prime \prime}$. Then we have
Proposition 2.4. The cardinalities $\operatorname{er}(n, k)$ satisfy the recursion

$$
\operatorname{er}(n, k)=\operatorname{er}(n-2, k-2)+\operatorname{er}(n-2, k-1)+\operatorname{er}(n-2, k) \quad \text { for } n, k \geq 2
$$

with $\operatorname{er}(n, n)=1$ and $\operatorname{er}(n, k)=0$ whenever $k>n, k<0$ or $n<0$.
Proof. A word in $\Omega_{n, k}^{\prime \prime}$ begins with either 00,01 or 11 , yielding the three cases of the recursion.

Directly we obtain the generating polynomial.
Theorem 2.5. The generating polynomial for $\operatorname{er}(n, k)$ is given by

$$
\sum_{k=0}^{n} \operatorname{er}(n, k) \cdot x^{k}=\left(1+x+x^{2}\right)^{\lfloor n / 2\rfloor} \cdot(1+x)^{n-2 \cdot\lfloor n / 2\rfloor} .
$$

We end with a statement concerning the symmetry of the $q-(1+q)$-binomial.
Corollary 2.6. The set of defining elements for the $q-(1+q)$-binomial satisfy the following symmetric relation:

$$
\left|\Omega_{n, k}^{\prime \prime}\right|=\left|\Omega_{n, n-k}^{\prime \prime}\right| .
$$

Proof. This follows from the fact that the generating polynomial for $\operatorname{er}(n, k)$ is a product of palindromic polynomials, and thus is itself is a palindromic polynomial.

3 Analysis of the Fu-Reiner-Stanton-Thiem interpretation

A weak partition is a finite non-decreasing sequence of non-negative integers. A weak partition $\lambda=$ $\left(\lambda_{1}, \ldots, \lambda_{n-k}\right)$ with $n-k$ parts and each part at most k where $\lambda_{1} \leq \cdots \leq \lambda_{n-k}$ corresponds to a Ferrers diagram lying inside an $(n-k) \times k$ rectangle with column i having height λ_{i}. These weak partitions are in direct correspondence with the set $\Omega_{n, k}$.

Fu, Reiner, Stanton and Thiem used a pairing algorithm to determine a subset $\Omega_{n, k}^{\prime} \subseteq \Omega_{n, k}$ of 0 -1-sequences to define their $q-(1+q)$-analogue of the q-binomial; see [2, Proposition 6.1]. This translates into the following statement. The set $\Omega_{n, k}^{\prime}$ is in bijection with weak partitions into $n-k$ parts with each part at most k such that
(a) if k is even, each odd part has even multiplicity,
(b) if k is odd, each even part (including 0) has even multiplicity.

Definition 3.1. Let $\operatorname{frst}(n, k)$ be the cardinality of the set $\Omega_{n, k}^{\prime}$.
Lemma 3.2. The quantity $\operatorname{frst}(n, k)$ counts the number of weak partitions into $n-k$ parts where each part is at most k and each odd part has even multiplicity.

Proof. When k is even there is nothing to prove. When k is odd, by considering the complement of weak partitions with respect to the rectangle of size $(n-k) \times k$, we obtain a bijective proof. The same complement proof also shows the case when k is even holds.

Theorem 3.3. The frst-coefficients satisfy the recursion

$$
\begin{array}{ll}
\operatorname{frst}(n, k)=\operatorname{frst}(n-1, k-1)+\operatorname{frst}(n-1, k) & \\
\operatorname{frst}(n, k)=\operatorname{frst}(n-2, k-2)+\operatorname{frst}(n-2, k-1)+\operatorname{frst}(n-2, k) & \\
\text { for } k \text { oven, },
\end{array}
$$

where $1 \leq k \leq n-1$.

Proof. We use the characterization in Lemma 3.2. When k is even there are two cases. If the last part is k, remove it to obtain a weak partition counted by $\operatorname{frst}(n-1, k)$. If the last part is less than k, then the weak partition is counted by $\operatorname{frst}(n-1, k-1)$.

When k is odd there are three cases. If the last two parts are equal to k, then removing these two parts yields a weak partition counted by frst $(n-2, k)$. Note that we cannot have the last part equal to k and the next to last part less than k since k is odd. If the last part is equal to $k-1$, we can remove it to obtain a weak partition counted by $\operatorname{frst}(n-2, k-1)$. Finally, if the last part is less than or equal to $k-2$, the weak partition is counted by $\operatorname{frst}(n-2, k-2)$.

Lemma 3.4. The inequality $\operatorname{frst}(n, k) \leq \operatorname{frst}(n+1, k+1)$ holds.
Proof. The weak partitions which lie inside the rectangle $(n-k) \times k$ and satisfy the conditions of Lemma 3.2 are included among the weak partitions which lie inside the larger rectangle $(n-k) \times$ $(k+1)$ and satisfy the same conditions.
Theorem 3.5. For all $0 \leq k \leq n$ the inequality $\left|\Omega_{n, k}^{\prime \prime}\right|=\operatorname{er}(n, k) \leq \operatorname{frst}(n, k)=\left|\Omega_{n, k}^{\prime}\right|$ holds.
Proof. We proceed by induction on n. The induction base is $n \leq 3$. Furthermore, the inequality holds when k is $0,1, n-1$ and n. When k is odd we have that

$$
\begin{aligned}
\operatorname{er}(n, k) & =\operatorname{er}(n-2, k-2)+\operatorname{er}(n-2, k-1)+\operatorname{er}(n-2, k) \\
& \leq \operatorname{frst}(n-2, k-2)+\operatorname{frst}(n-2, k-1)+\operatorname{frst}(n-2, k) \\
& =\operatorname{frst}(n, k) .
\end{aligned}
$$

Similarly, when k is even we have

$$
\begin{aligned}
\operatorname{er}(n, k) & =\operatorname{er}(n-2, k-2)+\operatorname{er}(n-2, k-1)+\operatorname{er}(n-2, k) \\
& \leq \operatorname{frst}(n-2, k-2)+\operatorname{frst}(n-2, k-1)+\operatorname{frst}(n-2, k) \\
& \leq \operatorname{frst}(n-1, k-1)+\operatorname{frst}(n-2, k-1)+\operatorname{frst}(n-2, k) \\
& =\operatorname{frst}(n-1, k-1)+\operatorname{frst}(n-1, k) \\
& =\operatorname{frst}(n, k),
\end{aligned}
$$

where the second inequality follows from Lemma 3.4. These two cases complete the induction hypothesis.

See Table 1 to compare the values of $\operatorname{frst}(n, k)$ and $\operatorname{er}(n, k)$ for $n \leq 10$.

4 Concluding remarks

Is it possible to find a $q-(1+q)$-analogue of the Gaussian coefficient which has the smallest possible index set? We believe that our analogue is the smallest, but cannot offer a proof of a minimality. Perhaps a more tractable question is to prove that the Boolean algebra decomposition of $\Omega_{n, k}$ is minimal.

1											1										
1	1										1	1									
1	1	1									1	1	1								
1	2	2	1								1	2	2	1							
1	2	4	2	1							1	2	3	2	1						
1	3	6	5	3	1						1	3	5	5	3	1					
1	3	9	8	8	3	1					1	3	6	7	6	3	1				
1	4	12	14	16	9	4	1				1	4	9	13	13	9	4	1			
1	4	16	20	30	19	13	4	1			1	4	10	16	19	16	10	4	1		
1	5	20	30	50	39	32	14	5			1	5	14	26	35	35	26	14	5	1	
1	5	25	40	80	69	71	36	19		1	1	5	15	30	45	51	45	30	15	5	1

Table 1: The frst- and er-triangles for $n \leq 10$.
We can extend these ideas involving of a Boolean algebra decomposition to any distributive lattice. Let P be a finite poset and let A be an antichain of P such that there is no cover relation in A, that is, there is no pair of elements $u, v \in A$ such that $u \prec v$. We obtain a Boolean algebra decomposition of the Birkhoff transform $J(P)$ by defining

$$
J^{\prime \prime}(P)=\{I \in J(P): \text { the ideal } I \text { has no maximal elements in the antichain } A\} .
$$

The two maps ϕ and ψ are now defined as

$$
\begin{aligned}
& \phi(I)=I-\{a \in A: \text { the element } a \text { is maximal in } I\}, \\
& \psi(I)=I \cup\{a \in A: I \cup\{a\} \in J(P)\} .
\end{aligned}
$$

Then we have the following decomposition theorem
Theorem 4.1. For P any finite poset the distributive lattice $J(P)$ has the Boolean algebra decomposition

$$
J(P)=\bigcup_{I \in J^{\prime \prime}(P)}[I, \psi(I)]
$$

Yet again, how can we select the antichain A such that the above decomposition A has the fewest possible terms? Furthermore, would this give the smallest Boolean algebra decomposition?

Another way to extend the ideas of Theorem 2.2 is as follows. Define $\Omega_{n, k}^{r}$ to be the set of all words $v \in \Omega_{n, k}$ satisfying the inequalities

$$
v_{1} \leq v_{2} \leq \cdots \leq v_{r}, v_{r+1} \leq v_{r+2} \leq \cdots \leq v_{2 r}, \cdots, v_{r \cdot\lfloor n / r\rfloor-r+1} \leq v_{r \cdot\lfloor n / r\rfloor-r+2} \leq \cdots \leq v_{r \cdot\lfloor n / r\rfloor}
$$

For $1 \leq i \leq\lfloor r / 2\rfloor$ define the statistics $b_{i}(v)$ for $v \in \Omega_{n, k}^{r}$ to be

$$
b_{i}(v)=\left|\left\{j \in[\lfloor n / r\rfloor]: v_{r j-r+1}+v_{r j-r+2}+\cdots+v_{r j} \in\{i, r-i\}\right\}\right| .
$$

Theorem 4.2. The distributive lattice $\Omega_{n, k}$ has the decomposition

$$
\Omega_{n, k}=\bigcup_{v \in \Omega_{n, k}^{r}} \Omega_{r, 1}^{b_{1}(v)} \times \Omega_{r, 2}^{b_{2}(v)} \times \cdots \times \Omega_{r,\lfloor r / 2\rfloor}^{b_{\lfloor r / 2\rfloor}(v)} .
$$

Corollary 4.3. The q-binomial is given by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\sum_{v \in \Omega_{n, k}^{r}} q^{\operatorname{inv}(v)} \cdot\left[\begin{array}{l}
r \\
1
\end{array}\right]_{q}^{b_{1}(v)} \cdot\left[\begin{array}{c}
r \\
2
\end{array}\right]_{q}^{b_{2}(v)} \cdots\left[\begin{array}{c}
r \\
\lfloor r / 2\rfloor
\end{array}\right]_{q}^{b_{\lfloor r / 2\rfloor}(v)}
$$

The least complicated case is when $r=3$, where only one term appears in the above poset product. This term is $\Omega_{3,1}$ which is the three element chain C_{3}. The associated Gaussian coefficient is $1+q+q^{2}$. Thus Corollary 4.3 could be called a $q-\left(1+q+q^{2}\right)$-analogue. As an example we have

$$
\left[\begin{array}{l}
6 \\
3
\end{array}\right]_{q}=1+q \cdot\left(1+q+q^{2}\right)^{2}+q^{4} \cdot\left(1+q+q^{2}\right)^{2}+q^{9}
$$

On a poset level this a decomposition of $J\left(C_{3} \times C_{3}\right)$ into two one-element posets of rank 0 and rank 9, and two copies of $C_{3} \times C_{3}$, where one has its minimal element of rank 1 and the other of rank 4.

Acknowledgements

This work was partially supported by a grant from the Simons Foundation (\#206001 to Margaret Readdy).

References

[1] Y. Cai and M. Readdy, q-Stirling numbers: A new view, arXiv:1506.03249 [math.C0], 30 pp .
[2] S. Fu, V. Reiner, D. Stanton and N. Thiem, The negative q-binomial, Electron J. Combin. 19 (2012), 36 pages.
[3] P. A. MacMahon, The Indices of Permutations and the Derivation Therefrom of Functions of a Single Variable Associated with the Permutations of any Assemblage of Objects, Amer. J. Math., 35 (1913), 281-322, in Collected papers. Vol. I. Combinatorics. Mathematicians of Our Time. Edited and with a preface by George E. Andrews. With an introduction by Gian-Carlo Rota, MIT Press, Cambridge, Mass.-London, 1978, pp. 508-549.
[4] P. A. MacMahon, Two applications of general theorems in combinatory analysis, Proc. London Math. Soc., 15 (1916), 314-321, in Collected papers. Vol. I. Combinatorics. Mathematicians of Our Time. Edited and with a preface by George E. Andrews. With an introduction by Gian-Carlo Rota, MIT Press, Cambridge, Mass.-London, 1978, pp. 556-563.
[5] P. A. MacMahon, Combinatory Analysis, Chelsea Publishing Co., New York, 1960.
[6] R. P. Stanley, Enumerative Combinatorics, Vol 1, second edition, Cambridge University Press, Cambridge, 2012.

[^0]: *Corresponding author: Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, USA, richard.ehrenborg@uky.edu.
 ${ }^{\dagger}$ Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, USA, margaret.readdy@uky.edu.

