A generalization of combinatorial identities
for stable discrete series constants

RiciARD EHRENBORG? SopuiE MORELfand MARGARET READDY?

November 4, 2021.

Abstract

This article is concerned with the constants that appear in Harish-Chandra’s character for-
mula for stable discrete series of real reductive groups, although it does not require any knowl-
edge about real reductive groups or discrete series. In Harish-Chandra’s work the only infor-
mation we have about these constants is that they are uniquely determined by an inductive
property. Later Goresky—Kottwitz—MacPherson and Herb gave different formulas for these con-
stants; see Theorem 3.1] and Theorem 4.2]. In this article we generalize these
formulas to the case of arbitrary finite Coxeter groups (in this setting, discrete series no longer
make sense), and give a direct proof that the two formulas agree. We actually prove a slightly
more general identity that also implies the combinatorial identity underlying the discrete series
character identities of Morel Proposition 3.3.1]. We deduce this identity from a general
abstract theorem giving a way to calculate the alternating sum of the values of a valuation on
the chambers of a Coxeter arrangement. We also introduce a ring structure on the set of valua-
tions on polyhedral cones in Euclidean space with values in a fixed ring. This gives a theoretical
framework for the valuation appearing in Appendix A]. In Appendix [B| we extend the
notion of 2-structures (due to Herb) to pseudo-root systems.
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1 Introduction

Although this paper deals exclusively with the combinatorics of real hyperplane arrangements
and Coxeter complexes, it has its origin in the representation theory of real reductive groups and
its connections with the cohomology of locally symmetric spaces, and in particular, of Shimura
varieties. We start by explaining some of this background. This explanation can be safely skipped
by the reader not interested in Shimura varieties.

Let G be an algebraic group over Q. To simplify the exposition, we assume that G is connected
and semisimple. Let Ko be a maximal compact subgroup of G(R) and K be an open compact
subgroup of G(A®), where A® = Z ®z Q is the ring of finite adeles of Q. We consider the double
quotient X = G(Q)\(G(R) x G(A™®))/(K» x K). This is a real analytic variety for K small enough,
and the projective system (Xf) KcG(ae) has an action of G(A*) by Hecke correspondences that
induces an action of the Hecke algebra at level K on the cohomology of Xx for any reasonable
cohomology theory.

We restrict our attention further to the case where the real Lie group G(R) has a discrete series.
This is the so-called “equal rank case” because it occurs if and only if the groups G(R) and K,
have the same rank. Then the L2-cohomology H (*2) (Xk) is finite-dimensional, and Matsushima’s
formula, proved in this generality by Borel and Casselman , gives a description of this
cohomology and of its Hecke algebra action in terms of discrete automorphic representations of G



whose infinite component is a cohomological representation of G(R), and in particular, either a
discrete series or a special type of non-tempered representation.

Another cohomology of interest in this case is the intersection cohomology IH*(X ) of the
minimal Satake compactification X g of Xg. In order to study this cohomology, Goresky, Harder
and MacPherson introduced in [GHM94] a family of cohomology theories called “weighted coho-
mologies” and showed that the two middle weighted cohomologies agree with TH*(X ) if Xx has
the structure of a complex algebraic variety. This result was later generalized by Saper in [Sap18].

All the cohomology theories that we discussed have actions of the Hecke algebra, and the
isomorphism of the previous paragraph is equivariant for this action. Zucker conjectured that there
should be a Hecke-equivariant isomorphism between H (*2) (Xk) and TH(X ). This conjecture was
proved by Looijenga [Loo8§|, Looijenga—Rapoport |[LR91] and Saper—Stern [SS90] if Xk has the
structure of a complex algebraic variety and by Saper [Sap18] in general. In particular, by comparing
the formulas for the action of a Hecke operator on weighted cohomology (this was calculated by
Goresky and MacPherson using topological methods in [GM03]) and on L2-cohomology (this was
calculated by Arthur using the Arthur—Selberg trace formula in [Art89]), one can obtain a formula
for averaged discrete series characters of the group G(R). One of the goals of the paper [GKM97]
of Goresky-Kottwitz—MacPherson was to prove this identity directly.

If moreover the space X is the set of complex points of a Shimura variety, then it descends to
an algebraic variety over an explicit number field E known as the reflex field, as does the minimal
Satake compactification, and so the intersection cohomology has a natural action of the absolute
Galois group Gal(E/E). We can further complicate the calculation by trying to calculate the trace
on TH*(X i) of Hecke operators twisted by elements of the group Gal(E/E), for example, powers
of Frobenius maps. In the case where X is a Siegel modular variety, this was done by the second
author in [Morll]. It requires a slightly different character identity for averaged discrete series
characters of G(R), also involving discrete series characters of the endoscopic groups of G, and
whose relationship with the Goresky—Kottwitz—MacPherson identity was not clear.

For the specialists, we give a more detailed explanation of the relevance of our main results to
cohomology calculations in Appendix [C] Let us return here to a discussion of the current article.

In a previous article of the authors [EMR19|, we investigate the character identity of Morel [Mor11].

In particular we relate it to the geometry of the Coxeter complex of the symmetric group and give a
simpler and more natural proof than the brute force calculation in the appendix of [Mor11]. The goal
of the present article is to generalize the approach of [EMR19] and to prove a combinatorial identity
(Theorem that implies the character formulas of Goresky—Kottwitz—MacPherson [GKM97]
and of Morel [Morl1] (see Subsections and [4.4). To obtain the character formula of [GKM97]
from our results, we need to use Herb’s formula for averaged discrete series characters (see for ex-
ample [Her79] and [Her00]). We also generalize, in Corollary and Lemma the geometric
result of [EMR19] (see Theorem 4.3 of that article). In fact, we prove an identity that holds not
just for root systems that are generated by strongly orthogonal roots, but for all Coxeter systems
with finite Coxeter group. The representation-theoretic interpretation of our identity in the general
case is still unclear.

‘We now describe in more detail the different sections of the article.



In Section [2] we review some background material about real hyperplane arrangements and
Coxeter arrangements.

In Section we prove our first main theorem (Theorem that concerns the calculation over
the chambers T' of a Coxeter arrangement #H of the alternating sum of quantities f(7), where f is
a valuation defined on closed convex polyhedral cones. More precisely, Theorem reduces this
calculation to a similar calculation for simpler subarrangements of  and it is the main ingredient
in the proof of our second main theorem (Theorem . The original proof of Theorem m
used an induction similar to the ones used in the proofs of the character identities of [GKM97,
Theorem 3.1] and [Her00, Theorem 4.2], but we later realized that Theorem was a particular
case of the more general identity of Theorem

In Section 4| we state and prove our second main theorem (Theorem . We first introduce
in Subsection [£.1] our main geometric construction, which we call the weighted complex, that allows
us to define the weighted sum; see Remark for an explanation of these names. The weighted
complex is the set of all the faces of a fixed hyperplane arrangement that are on the nonnegative side
of an auxiliary hyperplane H). It contains what is known as the bounded complex in the theory of
affine oriented matroids, and coincides with it if Hy is in general position. We state Theorem [4.2.2]in
Subsection [4.2] and prove it in Subsection The proof is straightforward: Using Corollary
which generalizes [GKM97, Proposition A.4], to reinterpret the weighted sum as an alternating
sum on the chambers of the arrangement of the value of a particular valuation, we are able to show
that Theorem [4.2.2] is a particular case of Theorem In Subsections and we explain
how Theorem implies the identities of [GKM97, Theorem 3.1] and of [EMR19, Theorem 6.4].

In Section 5] we study the geometric properties of the weighted complex. We prove in particular
that, under a hypothesis about the dihedral angles between the hyperplanes of the arrangement
(Condition in Subsection which always holds in the Coxeter case), the weighted complex
is shellable; see Corollary which generalizes Theorem 4.3 of [EMR19]. We consider the
case of Coxeter arrangements in Subsection [5.3] These geometric results were originally needed in
the proof of Theorem but the new proof via Theorem allows us to circumvent them.
We nevertheless decided to keep them in the article because we thought that they could be of
independent interest.

In Section [ we include concluding remarks.

We finish with three appendices. Each of the first two appendices can be read independently
from the rest of the article (except that a proof in Appendix [A| uses Lemma [2.1.3)). The goal of
our Appendix |A]is to generalize [GKM97, Proposition A.4], which is a key part in the proof of our
main theorem. In Appendix A of their article [GKM97], Goresky—Kottwitz—MacPherson show that
a certain function, which they call Yo (x, ), is a valuation (see Definition on closed convex
polyhedral cones, although they do not phrase it in these terms. We show that their function is
a special case of a general construction that takes two valuations and produces a third one, and
that this operation makes the set of valuations on closed convex polyhedral cones into a ring. See
Theorem and its corollaries for the precise definition of this operation.

In Appendix [B] we review the theory of 2-structures, due to Herb; see for example Herb’s review
article [Her00]. We believe that this will be useful to the reader for a number of reasons. The proofs
of the fundamental results of this theory are somewhat scattered in the literature and sometimes
left as exercises. Furthermore, we needed to slightly adapt a number of results so that they continue
to hold for Coxeter systems that do not necessarily arise from a (crystallographic) root system.

Finally, Appendix [C]is a continuation of the first part of the introduction, and is intended to give



specialists more information about the way the weighted sum of Definition and Theorem
appear in the calculation of the cohomology of locally symmetric varieties.

2 Hyperplane arrangements

2.1 Background material

We fix a finite-dimensional R-vector space V' with an inner product (-,-). If « € V', we write
Hy={zxeV:(azx) =0}, HY ={reV:(a,z) >0}, H, ={zeV:(a,z)<0}.

We also denote by s, the (orthogonal) reflection across the hyperplane H,,.

Let (ae)eer be a finite family of nonzero vectors in V. The corresponding (central) hyperplane
arrangement is the family of hyperplanes H = (H,,)eer. Let Vo be the intersection of all the
hyperplanes, that is, Vo = ().cp Ha.. We say that the arrangement H is essential if Vy = {0},
which means that the family (ae)ecr spans V.

Consider the map s : V — {+, —,0}¥ sending = € V to the family (sign((ae,)))ecr, where
sign : R — {+, —, 0} is the map sending positive numbers to +, negative numbers to — and zero
to 0.

Remark 2.1.1. The image of the map s : V. — {+,—,0}F is the set of covectors of an oriented
matroid (see for example [B]

textsuperscript +99, Definition 4.1.1]). This is the oriented matroid corresponding to the hyper-
plane arrangement. In fact, some of our results extend to general oriented matroids. In this article
we have chosen to concentrate on hyperplane arrangements to keep the exposition more concrete.
In particular, we do not assume that the reader knows what an oriented matroid is.

We denote by Z(H) or just £ the set of nonempty subsets of V of the form C = s~ (X),
for a sign vector X € {+,—,0}¥. The elements of .# are called faces of the arrangement. The
set . has a natural partial order given by C' < D if and only if C < D. The relation C < D
is equivalent to the fact that for every e € E we have s(C)e = 0 or s(C). = s(D).. The set &
with this partial order is called the face poset of the arrangement. Note that Vg is the minimal
element of .Z. When we adjoin a maximal element 1 to the poset .%, we obtain a lattice . U {1}
known as the face lattice. Note that under our convention faces other than Vj are not closed
subsets of V: for every C € &, the closure C is a closed convex polyhedral cone in V, and it is an

intersection of closed half-spaces Hi.. The poset .Z is graded with the rank of a face C' € .Z given
by p(C) = dim(C) — dim(Vp), where we write dim(C) for dim(Span(C)).

We denote by .7 (H) or just .7 the set of maximal faces of .Z. These elements are often called
chambers, regions or topes, and are the connected components of V' — | J,cp Ha.. f T € 7 then T
is an open subset of V', and its closure is a closed convex polyhedral cone of dimension dim(V').

If X,Y € {+,—,0}¥, their composition X oY is the sign vector defined by

X, if X, #0,

Y. otherwise.

(XoY)e—{

If C, D € £ then s(C) o s(D) is also the image of a face of .Z, and we denote this face by C o D.
This is the unique face of .Z that contains all vectors of V' of the form z + ey, with x € C, y € D



and ¢ > 0 sufficiently small (relative to z and y). Define the separation set of C' and D to be the
set
S(C,D) ={ee E:s(C)e =—s(D). # 0}.

This is the set of e € E such that C' and D are on different sides of the hyperplane H,, .

Fix a chamber B € .7. We can then define a partial order <p on .7 by declaring that T' <g T" if
and only if S(B,T) < S(B,T"). The resulting poset is called the chamber poset with base chamber B.
We will denote it by 5. It is a poset with minimal element B and maximal element —B. When
all the hyperplanes are distinct, this poset is also graded with the rank function p(T') = |S(B,T)|;
see [Bj
textsuperscript +99, Proposition 4.2.10].

If the choice of the base chamber B is understood, we write, for every face C of the arrangement,

(_1)0 _ (_1)|S(B,COB)| )

We also consider the graph with vertex set .7, where two chambers T,T7’ € .7 are connected
by an edge if and only if T n T spans a hyperplane (necessarily one of the hyperplanes H,,). In
this situation, we say that this hyperplane is a wall of the chambers T' and T”. This graph is called
the chamber graph. In the case when all the hyperplanes of the arrangement H are distinct, the
distance between two chambers T" and 7" in this graph is |S(T,T")|; see |Bj
textsuperscript +99, Proposition 4.2.3].

Consider the sphere S of center 0 and radius 1 in V/Vy. The intersections C n S, for C € .Z,
form a regular cell decomposition ¥(.Z) of S, and we will identify % with the face poset of this
regular cell decomposition.

Finally, we recall the definition of the star of a face in .Z.

Definition 2.1.2. Let C € Z. The star of C in £ is {D € £ : C < D}. Geometrically it is the
set of faces of .2 whose closure contains C'. We will denote it by Z~c.

Lemma 2.1.3. Let C € £ and let E(C) ={ee E: C < H,,}. Consider the hyperplane arrange-
ment H(C) = (Ha,)eer(c) and let Ly ) be its face poset. Then the following four statements
hold:

1) FEach face D o 1s contained in a unique face 0 oy, and the map D — mduces
Each face D of £ d face D’ f,ZH() d th D D’ ind

an isomorphism of posets 1c : Lo —> Lycy- In particular, it sends the chambers of

T nZLoc to the chambers of £3ycy-

(i) The isomorphism vc of (i) sends a face D = C of H to the relative interior of the closed
convex polyhedral cone D + Span(C'). Let Co = ﬂeeE_E(C) Hee, where ¢¢ = s(C)e. The
inverse of the isomorphism vc sends a face D' of H(C) to the intersection D' n Cc.

(iii) If D1, Dy € L~ then the inclusion S(Dy,Dy) < E(C) holds. In particular, we have the
equality S(D1, D2) = S(tc(D1),tc(D2)), where the isomorphism vc is as in (1).

(iv) The isomorphism vc : Loc — L (c) preserves composition and dimension, that is, for all
D, D’ € % ¢, the identities tc(D o D') = 1c(D) o a(D') and dim (1o (D)) = dim(D) hold.

In particular, % ¢ is also isomorphic to the face poset of a regular cell decomposition of the
unit sphere in V'/ ﬂeeE(C) H,, that we denote by X(%~¢).

6



Proof of Lemma[2.1.5 Statement (i) is clear.

We prove statement (ii). Let D € Z.¢ and let D' = 1o(D). As C' < D, we have s(D), = s(C),
for every e € E — E(C), and so D < Cc. As D < D', we deduce that D' nCc > D. As D' is a
face of H(C'), hence an intersection ﬂeeE(C) Hje with s, € {0,+, —}, the intersection D' n C¢ is
either empty or a face of H. We have just proved that this intersection contains D, so it is not
empty and hence is equal to the face D of H. It remains to prove that D’ is the relative interior of
D+Span(C). We write D = (g, HooNeer, Ha, 0 (Neer Ha,, with E = EguEL uE_. We then
have Ey = E(C), and D' is equal to (e, Hao N[ eer, np(c) Ha. 0 eer_ nr(c) Ha, - So it suffices
to show that D+ Span(C) = K, where K = (.., Hao 0 Neer, nE(C) F:e N eer_nE(C) CH, . We
clearly have D = K and Span(C) < K, so D + Span(C) < K. Conversely, let z € K and let y € C.
Then (ce,y) # 0 for every e € E — E(C), so there exists A > 0 such that (ae, \y) + (ae, x) has the
same sign as (ae,y) for every e € E — E(C). We then have Az +y € D, and so x € D + Span(C).

We prove (iii). Let Dy, Dy € %~ ¢, and let e € S(D1, D3). Suppose for example that s(Dp). = +
and s(D3)e = —. (The other case is similar.) Then D; < HJ, and Dy = H,,, 50 C < D1 n Dy <
H3, n H,, = H,,, which implies that e € E(C).

The first statement of (iv) follows easily from the definitions: the composition D o D’ is defined
on the sign vectors of D and D', and the isomorphism tc just forgets the coordinates outside
of E(C) in these sign vectors.

We prove the second statement of (iv). Let D € Z~¢, and let D’ be the unique face of 2
containing D. We clearly have dim(D) < dim(D’). If dim(D’) > dim(D) then there exists e € F
such that D < H,, and D' ¢ H,,. But C = D, so this implies that e € E(C). As D’ is not
included in H,,_, it must be contained in one of the open half-spaces H , contradicting the fact

Qe?

that D’ contains D. O

Remark 2.1.4. Let C € £ and let F' = {e€ E : C ¢ H,,}. Then the set 7 n Z¢ is equal to
{T'e T :Vee F' s(T). = s(C)e}, so it is a T-convex subset of .7 in the sense of [Bj
textsuperscript +99, Definition 4.2.5]; see |Bj

textsuperscript +99, Proposition 4.2.6]. In other words, it contains every shortest path in the

chamber graph between any two of its elements, so it is a lower order ideal in 95 for every choice
of base chamber B € .7 n Z~¢.

2.2 Coxeter arrangements

Let (W, S) be a Coxeter system, that is, W is the group generated by the set S and the relations
between the generators are of the form (st)”s* = 1 where mgs = 1 and mg¢ > 2 for s # t;
see [BB05|, Section 1.1]. The corresponding Coxeter graph has vertex set S, and two generators s
and ¢ are connected with an edge if m,; > 3. If m,; > 4 it is customary to label the edge by the
integer my 4.

There are three natural partial orders on the elements of the Coxeter group W. First the strong
Bruhat order is defined by the following cover relation: z < w if there exists s € S and u € W such
that (usu™')z = w and £(z) + 1 = £(w) where £ is the length function on W; see for example [BB05,
Definition 2.1.1]. Next, we have the right (respectively left) weak Bruhat order, where the cover
relation is z < w if there exists s € S such that z-s = w (respectively s-z = w) and £(z) + 1 = £(w).
The strong Bruhat order refines both the left and right weak Bruhat orders.



Let V = @, g Rey, with the symmetric bilinear form (-,-) defined by
(es,e4) = —cos (m/mgy) .

In particular, (es,es) = 1. The canonical representation of (W, S) is the representation of W on V
given by

s(v) =v—2-(es,0) - e, (2.1)

for every s € S and every v € V. Note that this formula defines an orthogonal isomorphism of V' for
the symmetric bilinear form (-,-). We refer the reader to [Bou68, Chapitre V, § 4, Ne 8, Théoreme 2
p. 98] for the next result.

Theorem 2.2.1. Equation (2.1)) defines a faithful representation of W on V', and the form (-,-) is
positive definite if and only if W is finite.

From now on, we assume that W is finite, and we write ® = {w(es) : w € W, s € S} and
Pt =D Y _Ropes. The set @ is a pseudo-root system, its subset &+ is a set of positive pseudo-
roots, and the set &~ = —®t = & — &* is the corresponding set of negative pseudo-roots; see
Definitions [B.1.1] and [B.1.4, Then H = (Ha)qecqo+ 1S an essential hyperplane arrangement on V.
The set of chambers .7 of this arrangement is in canonical bijection with W: the unit element
1 € W corresponds to the chamber B = () e+ Hi = (\,es He., and an arbitrary element w of W
corresponds to the chamber w(DB).

More generally, a parabolic subgroup of W is a subgroup W generated by a subset I of S, and
the left cosets of parabolic subgroups of W are called standard cosets. The Coxeter complex (W)
of W is the set of standard cosets of W ordered by reverse inclusion. It is a simplicial complex,
and we have an isomorphism of posets from (W) to the face poset £ of H sending a standard
coset wWy to the cone {r € V :Vse I (x,w(es)) =0 and Vse S — 1 (z,w(es)) > 0}. The fact that
this is an isomorphism is proved in [Bou68|, Chapitre V § 4 Ne 6 pp. 96-97], since the representation
of W on V'V is isomorphic to its canonical representation on V' by Theorem [2.2.1] The fact that
Y(W) is a simplicial complex then follows from [Bou68, Chapitre V § 3 Ne 3 Proposition 7 p. 85].

The definitions of B and of the isomorphism .7 ~ W imply that, if w,w’ € W and T},, T,y € T
are the corresponding chambers, then

S(Ty, Ty) = {a € ®" : w™(a) e & and w'_l(a) ed}
u{aed® :wl(a)e ® and w/_l(a) e dt},
and in particular
S(B,T,) = {ae® :w (a)e 7},
hence, by [BB05, Proposition 4.4.4],
(=1)Tw = (=1)PBL0l = det(w).

By [BBO05, Propositions 3.1.3 and 4.4.6] this also implies that the isomorphism 7 ~ W sends the
partial order <p to the right weak Bruhat order on W.

Definition 2.2.2. Let H = (H,,)ecr be a finite hyperplane arrangement on a finite-dimensional
real inner product space V, with inner product denoted by (-,-). We say that H is a Coxeter
arrangement if a. ¢ Ray for distinct e, f € E and if for every e € E the family of hyperplanes H is
stable by the (orthogonal) reflection s,, across H,, .



Theorem 2.2.3. The hyperplane arrangement associated to a Coxeter system with finite Coxeter
group is a Coxeter arrangement. Conversely, suppose that H is a Cozeter arrangement on an
inner product space V', and that there exists a chamber B of H that is on the positive side of each
hyperplane in H. Let W be the subgroup of GL(V') generated by the set {s,, : e € E}, let F be the
set of e € E such that B 0 Hq, is a facet of B and let S = {sq, : f € F}. Then (W, S) is a Cozeter
system, the group W is finite, and the hyperplane arrangement induced by H on V /(g Ha. is
isomorphic to the arrangement associated to the Cozeter system (W, S).

Proof. The first statement is an immediate consequence of the definition of the arrangement asso-
ciated to a Coxeter system. The second and fourth statements follow from [Bou68, Chapitre V § 3
Ne 2 Théoreme 1 p. 74]. The statement that W is finite follows from [Bou68, Chapitre V § 3 Ne 7
Proposition 4 p. 80] and from the fact that the arrangement # is central. O

3 The abstract pizza quantity

3.1 2-structures and signs

Let ® < V be a pseudo-root system (see Definition [B.1.1) with Coxeter group W (see Proposi-
tion [B.1.6) and ®* < ® be a system of positive pseudo-roots (see Definition [B.1.4). Recall the
definition of 2-structures from Subsection A 2-structure for ® is a subset ¢ < ® such that:

(a) ¢ is a pseudo-root system whose irreducible components are all of type Ay, By or Io(2%) with
k> 3;

(b) for every w € W such that w(p n &%) = o N ®T, we have det(w) = 1.

Recall that 7(®) is the set of 2-structures for ®. By Proposition the group W acts
transitively on 7(®). In Definition we define the sign e(¢) = €(p, ®T) of any 2-structure
e T(P). If pe T(P), we write p* = p N dT.

We have the following proposition that extends |Her0O1l, Theorem 5.3] to the case of Coxeter
systems. Note that our proof is a simple adaptation of Herb’s proof.

Proposition 3.1.1. The sum of the signs of all 2-structures of a pseudo-root system is equal to 1,

that is,
D elp) =1
weT ()

Proof. We prove the result by induction on |®|. It is clear if ® = &, because then T (®) = {&} and
the sign of @ is 1. Suppose that |®| > 1 and that we know the result for all pseudo-root systems
of smaller cardinality. Let o € ®, and set ®, = o> n ®; this is a pseudo-root system with positive
system at N &,

Let 7" = {p € T(®) : sa(¢) = p}. By statement (0) of Lemma we have T = {p €
T(®):aep} If ¢ T, then pt < 7 — {a}, so s4(¢") € @+ by Lemma 4.4.3 of [BB05], hence
€(salp)) = —€(p) by Lemma This implies that >} cr )77 €(¢) = 0.

We define subsets 7{" and 7" of 7" by

T ={peT(®):pnd,eT(P,)},
75// — 7-// _ 7-1// .



By (3) of Lemma [B.2.11} there exists an involution ¢ of 75" such that, for every ¢ € 7}, we have
that t(¢) N @4 = ¢ N P, and €(t(p)) = —€(¢). This implies that

and so

D1 oelp) = D) elp).

eT (@) eTy!

Finally, by (1) and (2) of Lemma [B.2.11} the map ¢ — ¢ n ®, induces a bijection from 77’
to T(®,), and we have €(p) = (¢ N ) for every ¢ € T{". Hence we obtain

Z e(p) = Z e(¢o),
T, Po€T (Pa)
and this last sum is equal to 1 by the induction hypothesis. O

Remark 3.1.2. As we are using the definition of the sign of a 2-structure from [Her83|, our formula
looks a bit different from the one of [Her01, Theorem 5.3]. This is explained in [HerO1, Remark 5.1],
and we generalize the comparison between the two definitions of the sign in Corollary below.

Corollary 3.1.3. Let p € T(®), W(p,®1) ={we W :w(p") c ®T} and Wi(p, @) = {we W :
w(p®) < pt}. Then the sign e(p, ®T) is given by

1
e, ") = ————— det(w).
@) = i, 2, )

Proof. By Corollary we have a bijection W(p, @)/ Wi(p, @) — T(®), w —> w(p). By
Proposition and Lemma [B.2.10, we obtain

1 1
T w(p), 8%) = (. t) L det(w). O
|Wl(907 (I)+)| wew%’qﬁ») ‘Wl (('0’ (I>+)‘ weW%,@*)

We consider the hyperplane arrangement H = (Hy),eq+ corresponding to ®, with base chamber
B = (\,co+ Ha. For every 2-structure ¢ € T(®), we denote by H, the hyperplane arrangement
(Ha)aep+s With base chamber By = e+ Hy . If T is a chamber of #, we denote by Z,(T') the
unique chamber of H,, containing 7T'; as ot < @1, we have Z,(B) = B,.

Corollary 3.1.4. For every chamber T of H, we have
(D" = > ()% De(p).

weT ()

Recall that (—1)7 = (=1)¥BDI for every T € T (H), and similarly for T € 7 (H,,).
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Proof of Corollary[3.1.7] For every ¢ € T(®), we denote the Coxeter group of ¢ by W (). We also
use the notation of Lemma Let w be the unique element of W such that T = w™!(B). Let
@ € T(®). Then ¢ nw(P®) is a system of positive pseudo-roots in ¢, so there exists a unique v €
W (¢) such that v(¢™) = g Nnw(PT); we write v = vy(w). AsT ={zx eV :Vaew(®") (z,a) > 0},
we have

Zy(T)={z eV :Vaew(@") ny (z,a) >0}
—{reV:Vaeuw)(p) (,0) >0},

and so v,(w) is the element of W (y) corresponding to Z,(7") by the bijection from W () to the
set of chambers of H,, sending v to v~ 1(Z,(B)).

For a 2-structure ¢ € T(®) we have that w™lv,(w)(p™) = w(p N w(®T)) < @T, so by
Lemma (and the fact that v,(w)(p) = ¢), we obtain that

e(w™ () = det(w™ v, (w))e().

Hence we have

Z (— >Z¢(T 2 det (v (w))e(p)
peT (D) weT (D)
= det(w) - Y e(w ' (p))
weT (D)

=det(w) - D (),

weT (®)

where in the last step we used that the map ¢ — w™'() on the set 7 (®) is bijective. The result
now follows by Proposition O

3.2 Calculating the abstract pizza quantity with 2-structures

We use the notation of Appendix [A] In particular, if K is a closed convex polyhedral cone in V, we
denote the set of its closed faces by F(K) (we include K itself in the set of its faces). The dimension
dim K of K is by definition the dimension of its span Span(K), and the relative interior K of K
is the interior of K in Span(K). We say that K is degenerate if Span(K) is strictly included in V,
equivalently, if K has empty interior.

Let H be a central hyperplane arrangement on V' with fixed base chamber B. Let Cy(V') be
the set of closed convex polyhedral cones in V' that are intersections of closed half-spaces bounded
by hyperplanes H where H € . Denote the free abelian group on Cy (V') by @ ke, (v) Z[K] and
let K4 (V) be its quotient by the relations [K|+ [K'] = [K U K'] + [K n K] for all K, K" € Cy(V)
such that K U K’ € Cy (V). For K € Cy(V), we still denote the image of K in K3(V) by [K]. For
the relative interior K we also define a class [K] € Kx(V) by

[[D{] _ dlmK Z dlmF ]

FeF(K)

We then have



by formula (A.4) on page 543 of |[GKM97].

Recall that Z(H) and 7 (H) are the set of faces and chambers of the arrangement H as in
Subsection Each C € Z(H) is the relative interior of its closure and, if T € 7 (H), then
F(T)={C :Ce ZH), C<T}. WehaveV = [ces @) € and the family ([C])cez () is a Z-
basis of K% (V). Asin Section the sign of a face C' € F(H) is defined by (—1)¢ = (—1)IS(B.CoB)l,

We consider the following quantity:

I(H) = >, (-DY[Cle Kn(V).
CeZ(H)

Let A be an abelian group. We say that a function v : Cy (V) — A is a valuation on Cy (V') if,
for all K, K’ € Cy(V) such that K U K’ € Cy(V) we have v(K U K')+ V(K n K') = v(K) + v(K').
Such a valuation v defines a morphism of abelian groups K3 (V) — A sending [K] to v(K) for
every K € Cy(V), and we still denote this morphism by v : Ky (V) — A. We set

II(H,v) = v(II(H)) € A.
If v vanishes on degenerate cones then we have

OHv)= Y, D@ = > (-)"uT)eA (3.1)

TeT (H) TeT (H)

The first main theorem of this article is the following. For Coxeter arrangements we can express
the quantity II(#) in terms of the quantities II(#,) for the arrangements #, associated to the
2-structures of the arrangement.

Theorem 3.2.1. Let ® < V be a pseudo-root system. Choose a system of positive pseudo-roots
Ot < @ and let H be the hyperplane arrangement (Hy)aep+ on V.

(i) We have the identity

weT (D)

in the quotient K3(V'), where H, is as before the arrangement (Hy)aepna+ for every o €

T(P).
(ii) If v: Cy(V) —> A is a valuation, we have

II(H,v) = Z e()(Hy, v).
weT(®)

If ¢ € T(®) then the faces of H,, are relative interiors of elements of Cy(V'), so II(#,) makes
sense as an element of Ky (V).

Remark 3.2.2. This theorem is useful in the following situation. Suppose that we have a function f
on closed convex polyhedral cones and that we wish to calculate the alternating sum over the
chambers T of a hyperplane arrangement H of the values f(T'). If H is a Coxeter arrangement and
the function f is a valuation that vanishes on cones contained in hyperplanes of H, then the theorem
says that we can reduce the problem to a similar calculation for very simple subarrangements of ‘H
that are products of rank 1 and rank 2 Coxeter arrangements.

Here are two situations when we wish to calculate alternating sums of f(7T') for such a valua-
tion f:

12



(a) The weighed sums of Section 4l These sums appear in the calculation of weighted cohomology
of locally symmetric spaces and Shimura varieties (see Appendix |C| for additional details and
references). We want to relate them to stable discrete series constants to get a spectral
description of that cohomology.

(b) The pizza problem (see for example the paper [EMR21b]). In this setting, we fix a measurable
subset K of V with finite volume, and the function f sends a cone C' to the volume of C n K.
We are interested in “the pizza quantity”, that is, the alternating sum of the volumes f(K nT).
In particular we would like to know when this alternating sum vanishes, which is to say that
the “pizza” K has been evenly divided among the two participants, + and —. This problem is
approached by analytic methods in [EMR21b|. Theorems 1.1 and 1.2 in [EMR21b] give general
sufficient conditions to guarantee that the pizza quantity vanishes. Using Theorem |3.2.1 we
can give a dissection proof; see [EMR21a].

When f is a valuation that does not vanish on cones contained in hyperplanes of H, we have
to decide how to count the contributions of lower-dimensional faces of . One possibility is given
in Theorem and another in Corollary In both cases, if H is a Coxeter arrangement,
then we can again reduce the calculation to the case of simpler subarrangements of 7. This is not
needed in situation (a), but in situation (b) it allows us to obtain versions of the pizza theorem
that hold for all the intrinsic volumes. See [EMR21a] for this.

We will provide a proof of Theorem in Subsection [3.3] First we state and prove a corollary.
For H a central hyperplane arrangement on V' with a fixed base chamber, we define

PH) =, (-)'[T]e En(V),
TeT (H)

Ro(H)= > (DT[] e Kn(V).
TeT (H)

Analogous to the pizza quantity defined in Section 2 of [EMR21b|, we call P(H) the abstract pizza
quantity of the arrangement 7.

Lemma 3.2.3. For ‘H a central hyperplane arrangement on V, we have

Py(H) = P(H).

Proof. If T € .7 (H) then we have

TeT (H) TeT (H) FeZ(H)
F<T
= > =VTI+ ) Y (-
TeT (H) Fel(H)—T(H)  TeT(H)
T>F
The last inner sum is equal to zero, yielding the result. O
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Corollary 3.2.4. If ® and H are as in Theorem [3.2.1], we have

P(H)= ), e(p)P(Hy).
peT (D)

Proof. By Lemma [3.2.3] it suffices to prove that

R(H) = D, el@)Po(Hy),
peT(®)

where Py(H) = ZTGQ(H)(—I)T[T] and Py(H,) is defined similarly. For every z € V and every
@ € T(®), let ay(z) equal (—1)7 if there exists a chamber Z of ¢ such that z € Z, and 0 otherwise.
We need to show that Y, 7 ) €(¥)ap(z) is equal to (—1)7" if there exists a chamber T of H such
that x € T, and otherwise is zero.

Consider the valuation v : Cy (V) — K(V) sending a cone C € C (V) t0 Yire 7, reclT] €
K4 (V). This valuation corresponds to the endomorphism of K4 (V') sending the class of T" to itself
if T'e J(H), and the class of F to 0 if F' € F(H) — .7 (H). The valuation v vanishes on degenerate
cones, so by statement (ii) of Theorem and equation , we have that if T" is a chamber
of H and x € T then X 7 q) €(¥)a,y(z) = (-1)T.

Now let z € V. — (e 7(H) T, and let F' be the unique face of H such that x € F. For each
© € T(®), there is at most one chamber of ¢ that contains . We denote by X the set of pairs (¢, Z),
where ¢ € T(®) and Z is a chamber of ¢ such that x € Z. As F is not a chamber, there exists e € F
such that F' ¢ H.,. We denote by s the orthogonal reflection in the hyperplane H.. As s(x) = =z,
we can make s act on X by sending (p, Z) to (s(¢),s(Z)). This is a fixed-point free involution.
Indeed, if ¢ is a 2-structure such that s(¢) = ¢, then e € ¢ by statement (0) of Lemma
so H. is a hyperplane of H,, which is impossible because x is both in H, and in a chamber of ¢.
To prove that > .7 ) €(9)ap(®) = 2, 7)ex e(p)(—1)Z is equal to 0, it suffices to show that for

every (o, Z) € X we have €(p)(—1)% = —e(s(@))(—1)*%). After applying an element of W to the
whole situation, we may assume that x is in the base chamber of H. Then Z, respectively s(Z2),
is the base chamber of ¢, respectively s(¢), so (=1)Z = (=1)*4) = 1. Also, as the reflection s
sends the base chamber of ¢ to that of s(¢), we have s(¢™) < @7, and so €(s(¢)) = —e(p) by

Lemma [B.2.100 OJ

3.3 Proof of Theorem [3.2.1]
In this subsection we prove Theorem We begin by stating and proving a lemma.

Lemma 3.3.1. Let ‘H be a central hyperplane arrangement on V', let C' be a face of H and let
x e V. We denote by Cy the unique face of H containing x. Then for D < C a face of H the
following three conditions are equivalent:

(a) x € C + Span(D) = C + Span(D);

(b) d)x(ﬁl’c) =1, where D —-Dtn C™ as in Subsection|A. 1

(¢c) DoCp<C.
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Moreover, if Cy is a chamber then these conditions can only hold if C' is also a chamber, and they
are equivalent to the following condition:

(d) DOCOZC.

Proof. We first note that Span(D) = Span(D) because Span(D) is a finite-dimensional subspace
of V', hence it is closed and so contains D. This explains the equality in condition (a).
To prove that conditions (a) and (b) are equivalent, we note that by the definition of the

valuation 1, in Lemma|A.1.10|we have 9, (EL’C) = lifandonlyifz € (EL’C)*. AsDVC =D AT

by definition, we have (ﬁl’c)* = Span(D) + C, so condition (b) is equivalent to the fact that
x € Span(D) + C, which is condition (a).

We prove that (c) implies (a). Let y € D. If ¢ > 0 then y +ex € Do Cy, so y +ex € C by (c).
Thus = = 1(y + ez — y) € C + Span(D), which is condition (a).

We prove that (a) implies (¢). By condition (a) we can write x = 1 + z2, with 21 € C' and
x9 € Span(D). Let y € D. If € > 0 is small enough then y+exs € D, s0 y+cx = (y+exs)+exy € C.
As y+ex € Doy for € > 0 small enough, this shows that D o Cy  C, that is, D o Cy < C, which
is condition (a).

Finally, suppose that Cy is a chamber. Then D o Cj is a chamber, so condition (c¢) can only
hold if C' is also a chamber, and it is equivalent to condition (d) because chambers are maximal

faces. O

Proof of Theorem[3.2.1 We first prove statement (ii) of Theorem for a valuation v : Cy (V) —
A that vanishes on degenerate cones. For every ¢ € T(®), we have by equation (3.1)):

HHev)= Y, (Dw(2)= ) ()7 > v().
ZeT (Hy) ZeT (He) TeT (H)
TcZ

Hence

Y, dPUHv) = D) ely) Y, (D)7 Y w(T)

PeT (P) eeT (D) ZeT (Hy) TeT (H)
TcZ
= > U Y ep) (=)D

TeT(H) PeT (P)

AS D er(@) (@) (=1)Ze(M) = (=1)T for every T € .7 (H) by Corollary the statement follows.

We now prove statement (i) of Theorem Fix a point x in the base chamber B of H. For
every closed convex polyhedral cone K < V', let F,(K) be the set of closed faces F' of K such that
x € K + Span(F'). Consider the function 9 : Cy (V) — Ky (V) defined by

Y(E) = Y (LI

FeFy(K)

This is the »-product in the sense of Corollary (see also Remark of the valuations
Cy(V) — Ky(V), K —> [K] and ¢, : C(VY) — Z, where V'V is the dual of V and 1), is the
valuation of Lemma More explicitly, for K < V'V a nonempty closed convex polyhedral
cone, we have ¥, (K) = 1 if and only if z € K*. Indeed, with the notation of that definition, we have
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(FHEY* = K + Span(F) for every K € C3(V) and every closed face F' of K. By Corollary |A.1.8
the function 1 is a valuation, so it induces a morphism ¢ : Ky(V) — Ky(V). Moreover, the
valuation 1 vanishes on degenerate cones in Cy (V). Indeed, if K € Cy(V) is contained in a
hyperplane H of H, then K + Span(F') c H for every F € F(K), so F,(K) = & because z is not
on any hyperplane of . Hence we can apply statement (i) that we just proved to 1.

Let H' be a subarrangement of #H, and let B’ be the unique chamber of H’ containing B. If
Te (M), wewrite Fo(T) = {C e L(H):C<Tand CoB' =T}. Asxz € B c B, we have
Fo(T) ={C : C € Fy(T)} by Lemma We deduce that

I(H, )= > (-)T(T)

TeT (H')

D G VD SN Co el
TeT(H') FeF.(T)

= > D7 > (=)0
TeT(H') Ce¥(H’), CoB'=T

= ), (=Y =nimero.

CeZ(H)

Using statement (i) for the valuation ¢, we get that

Y, (DOEDERCCI = Y elw) D (=DC(=)TOC]. (3.2)

CeZ(H) PeT (P) CeZ(Hy)

By the top of page 544 of |[GKM97|, there exists an endomorphism of Ky/(V) sending [K] to
(—1)dim K [K], for every K € Cy(V). Applying this endomorphism to the identity yields
statement (i).

Finally, the general case of statement (ii) immediately follows from applying the morphism
v: Ky (V) — A to both sides of the identity of statement (i). O

4 The weighted sum

4.1 The weighted complex and the weighted sum

We return to the situation of Subsection In particular, we fix a finite-dimensional real inner
product space V' and a central hyperplane arrangement H = (H,, )ecg on V', and we denote by £
and 7 the sets of faces and chambers of H.

Definition 4.1.1. Let A € V. We consider the following subset of the face poset .Z:
A ={Ce%:CcH}.

In other words, the set %) is the collection of faces on the nonnegative side of the hyperplane Hj.
More generally, if Cj is a fixed face of £, we also consider the intersection

D%A’;CO = f)\ M .,%200.
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Remark 4.1.2. (See |Bj

textsuperscript +99, Section 4.5] for definitions.) If A # 0 then the hyperplane arrangement
{H)} u {H,, : e € E} defines an affine oriented matroid with distinguished hyperplane H). If H)
is in general position relative to the H,,, that is, if A is not in the span of any family (a.)eer for
|F| < dim(V) — 1, then %, coincides with the bounded complex of this affine oriented matroid. In
general, %) is larger.

The basic properties of the subsets %\ and %) >¢, are given in the following proposition.
Proposition 4.1.3. The following two statements hold:
(i) For a fized face Cy of L the set L) >c, s a lower order ideal in Z~c,.

(ii) Let C € £y. Then there exists T € T n 2\ such that C < T.

Proof. 1t suffices to prove (i) when Cp is the minimal face of .Z. Let C, D € £ such that C < D
and D € Z\. The hypothesis implies that C = D and D ¢ H ;r . As H;\r is closed, this immediately
gives C' — Hi", hence C € A

To show (ii) let Dy, Ds, ..., D, be the chambers of .7 that are larger than C' with respect to
the partial order <. If one of them is contained in H;\r, then we are done. Otherwise, for every
1 < i < p, we can find a point z; € D; such that (\,z;) < 0. Let H' be the subarrangement
of H where we remove all the hyperplanes of H that contain the cone C. In the arrangement H’
all the points x; are contained in the same chamber C’. In particular, the convex hull P of the
points x1, Z2, ..., , is contained in C’. The convex hull P intersects the linear span of the cone C'
in a point x. Since all the points z; are in the open half-space H,, so is the point x, that is,
(A, z) < 0. By inserting the hyperplanes of H that contain the cone C back in the arrangement #’,
we subdivide the region C’ into regions Ci, Cs, ..., C,. But the point z belongs to the closure of
each region Cj, thus the point x belongs to the cone C. This is a contradiction since C'is contained
in the half-space H)", so (), z) = 0. O

Definition 4.1.4. The subcomplex of the cell decomposition ¥(.Z), respectively ¥(%~¢,), whose
face poset is the lower order ideal .2\, respectively .2 >c,, is called the weighted complex and
denoted by (%)), respectively X(% >¢,). By Proposition it is pure of the same dimension
as X(Z)), respectively X(Z >c,)-

We are interested in the following quantity.

Definition 4.1.5. Let A be a vector in V and B a chamber of H, that is, B € 7. The weighted
sum is defined to be

ba(BA) = Y (-1 ) (-)lSEeBL (4.)
De %\

More generally, if C' is a face of the arrangement H, that is, C € .Z, and if B is a chamber whose
closure contains the face C, that is, B € 9 n % ¢, we define the weighted sum to be

(BN = Y (=1)ImP) . (—1)ISBDB) (4.2)
De£y >c
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Remark 4.1.6. This definition seems very arbitrary and mysterious. We try to give some context
for it in Appendix [C| Without getting into too much detail here, the weighted sum (in the situation
of Example plays a role in the calculation of the trace of Hecke operators on the weighted
cohomology of locally symmetric varieties that is very similar to the role played by stable discrete
constants (see for example pages 493 and 498-500 of |[GKM97]) in the calculation of the trace
of Hecke operators on L? cohomology of these varieties. It is because of this that we chose the
names “weighted complex” and “weighted sum”. In fact, in that situation we only really need
the “absolute” version where C' is the minimal face of H. The “relative” version, where C' is not
minimal anymore, appears when the locally symmetric variety is a Shimura variety defined over a
number field E and we are considering the trace of a Hecke operator multiplied by an element of
the absolute Galois group of F.

Remark 4.1.7. In our previous paper, we used the notation S(A) (see [EMR19, Equation (6.1)]) to
denote what turns out to be a particular case of the sum in equation in the type B Coxeter
case; see equation in Subsection for the precise relation between the two. In this paper,
we decided to follow the notation of [GKM97] in order to avoid overuse of the letter S.

We state the following lemma. It reduces the calculation of 14, (B, A) to the case of an essential
arrangement.

Lemma 4.1.8. Let Vi be the intersection of all the hyperplanes of H, that is, Vo = (oep Hae-
Let 7 denote the projection V.— V /Vi. Let H/Vy be the hyperplane arrangement (He,/Vo)ecE
on V/Vy. Note that 7 induces an isomorphism between the face poset of H and H/Vy. Let C € L,
let B be a chamber of H such that B € Z~c and let A€ V. Then the following identity holds:

w’H/C(Bv )‘> =

(=140 - gy vy m(ey (T(B), m(N)  if e Vi,
if A ¢ Vit

Proof. Note that A € V5= if and only if Vo = Hy. If A ¢ Vb then the linear functional (},-) takes
both positive and negative values on Vy. As Vy < D for every D € %, this linear functional also
takes both positive and negative values on D, so D ¢ %\. This shows that £\ = @ if A ¢ VOL
and gives the second case. Now suppose that \ € VOL. Then Vy € H), and it is easy to see that

D e £, respectively D € %~ ¢, if and only if 7(D) < H;r()\), respectively m(D) = w(C), and that

dim(7(D)) = dim(D) — dim(Vp). This yields the first case. O

Suppose that V = Vi x -+ x V. with the V; mutually orthogonal subspaces of V' and that H
also decomposes as a product H; x --- x H,. By this, we mean that there is a decomposition
FE = F; u---u E, such that, for 1 < i < r and every e € E;, we have o, € V;. The arrangement
Hi = (Vi n Hy, )ecR, is a hyperplane arrangement on the subspace V;, and each hyperplane of # is
of the form H x H#i Vj, where 1 <4 < r and H is one of the hyperplanes of H;.

Let . be the face poset of H; for 1 < i < r. Then the faces of .Z are exactly the products
Ci x ---x Cp where C; € .%;, and the order on .Z is the product order. In particular, C' is a chamber
in .Z if and only if all the C; are chambers in .%;.

Lemma 4.1.9. Assume that the arrangement H factors as Hy x --- x H, as described in the two
previous paragraphs. Let C = Cy x --- x C}. be a face in £, and let B = By X --- x B, be a chamber
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in Z~c. Finally, let A\e V. Then

Vs (B,A) wac (Bi, M),
=1

where, for 1 <1 < r, A\; is the orthogonal projection of X on V;.

Proof. The expression for 13;,c(B, \) follows from the fact that £ = £} x - -+ x %, as posets once
we prove the following statement: Let D = Dy x --- x D, € &, with D; € .%;. Then D € £, if and
only if D; € &, for 1 <i <.

We prove this last fact. Note that A = (Aq,...,A\;) in Vi x --- x V. = V because the V; are
pairwise orthogonal. If D; € %, for every 1 < i < r then for every z = (z1,...,2,) € V we
have (\,z) = >/_;(N\i, ;) = 0. Conversely, suppose that D € %. Let xj € D; for 1 < j < r.
As all the D; are cones, for every € > 0 the element ex; is in D;. Fix 1 < i < r and consider

the element z. = (ex1,...,exi—1, %, €Tit1,...,€2,). Then z. is in D. Thus we have the inequality
0 < (Aze) = (Niyxi) + €2.,(Aj, ). Letting € tend to 0, we obtain (A;,2;) > 0 and hence
Di € 9%7)\2.. ]

4.2 Calculating the weighted sum for some arrangements with many symme-
tries

We continue to use the notation of Subsections [2.1| and . Suppose that £ = EMW 1 E?) | with
HW = (H,,).cp0) a Coxeter arrangement whose Coxeter group W stabilizes H? = (Hy,,) cp@,
and that C = ((Nepw Ha.) 0 (Neep@ HL), so that E(C) = {e€ E : C < Ha } = EM. To
simplify some of the notation, without loss of generality we may assume that the vectors a., where
e € F, are all unit vectors. We assume that there exists a chamber B of H that is on the positive
side of every hyperplane of H (not just H(1); in particular, we have C' < B. This also defines a
chamber of the arrangement H(), and we denote by (W, S) the associated Coxeter system, as in

Theorem [2.2.3]

The set ® = {+a, : e € EW} is a normalized pseudo-root system (see Definition [B.1.1)), the
subset @ = {a. : e € EM} is a system of positive pseudo—roots in ® (see Definition [B.1.4), and

(W, S) is the corresponding Coxeter system. See Proposition

Our main example of such arrangements is the following.

Ezample 4.2.1. Let (W, S) be a Coxeter system, let V' be the canonical representation of W, and
let H = (Hy)aea+ be the associated hyperplane arrangement on V as in Section [2.2] n Let I be a
subset of S, set @) = @~ (3 ., Ra) and @2 = &+ —dW. Then HV = (H,),cq0) is a Coxeter
arrangement with associated Coxeter system (W7p,I), where Wy is the subgroup of W generated
by I, and Wy preserves the arrangement H?) = (Hy) cp@- If C = (Nuco® Ha) 0 (Nocae HE)
as before, then the chamber B corresponding to 1 € W is in .Z~¢.

We use again the notion of 2-structures for ®; see Subsection If ¢ € T(®) we write
ot = ¢ n ®*, and we denote by H, the hyperplane arrangement (Ha)ae<p+uE(2) and by B,
respectively C,, the unique chamber of H, containing B, respectively C. By the choice of B, the
chamber B, is also the unique chamber on the positive side of every hyperplane in H,,.

Theorem 4.2.2. Let H = HY UHP be an arrangement in V with base chamber B. Assume that
the subarrangement HY is a Cozeter arrangement with pseudo root system ® and its Cozeter group
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stabilizes H. Let C be the intersection of the base chamber of H? and the hyperplanes in HW.
Then for every A € V. we have

Yajc(B,A) = Y €(9) -ty o, (Bp M.
weT (®)

This is the second main theorem of this article. It will be proved in Subsection See Defini-
tion for the description of the terms and Remark for an explanation of their significance.
Theorem states that the weighted sum for a Coxeter arrangement can be expressed as an
alternating sum of weighted sums for much simpler subarrangements (the 2-structures) that are
direct products of rank one and rank two Coxeter arrangements. As weighted sums for these sub-
arrangements can be calculated directly (see Corollary and Proposition for the case
where C' is the minimal face), this gives a way to calculate the weighted sum for the original Cox-
eter arrangement, and thus, as explained in Appendix [C] to relate weighted cohomology of locally
symmetric varieties to the spectral side of the Arthur-Selberg trace formula.

We first give some applications of Theorem

4.3 First application: the case of Coxeter arrangements

We specialize Theorem to the case where H = H() is a Coxeter arrangement. In particular,
C is the minimal face of &, so ¥yc(B,A) = ¥ (B, ) for every A e V.

Let ¢ € T(®), and let ¢ = 1 L Y2 L -+ U @, be the decomposition of ¢ into irreducible
pseudo-root systems. Let Vi, = Span(y;) for 1 < i < 7. Then V = Vy, x Vi, x -+ x V.,
where Vy, = ¢. The dimension of Vg, is equal to dim(V) — rank(y), so it is independent of ¢
by Proposition Let H;, be the hyperplane arrangement given by ¢; n ®* on V;, where
1 <4 < r. For a fixed index i let B;, be the chamber of the arrangement H; , that is on the
positive side of every hyperplane, and let ); , be the orthogonal projection of A on V.

Combining Theorem with Lemmas and we obtain:
Corollary 4.3.1. For every A€V, we have

Yu(B,A) = (1) OE N (o) - [ [ e, (Biggs M),
PeT () i=1
AeSpan(p)

where R is the rank of any ¢ € T (P).

To finish the calculation of 1% (B, \) in this case, we use the following proposition, whose proof
is a straightforward calculation.

Proposition 4.3.2. In types A1, By = I2(4) and I5(2%) for k = 3, the function v is given by the
following expressions:

(1) Type Ay: Suppose that V = Rey and that ®* = {e1}. Then 1) is given by

0 ifc>0,
wH(Bacel) =41 ch = Oa
2 ife<0.
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Figure 1: The function 1y (B, \) in the dihedral pseudo-root system I2(8). The origin is assigned
the value 1 and the unmarked faces are assigned the value 0.

(2) Type I5(2F), where k > 2: Let V. = Re; ® Rey with the usual inner product. For every
v eV —{0}, let O(v) € [0,27) be the angle from ey to v. Suppose that ® is the set of unit
vectors that have an angle of rm/2F with ey, where v € Z, and that B is the set of nonzero
vectors v € V such that 0 < 0(v) < 7/2%. Then 1 is given by

if A =0,
2 if A#0 and O(\) = ro/2% with 251 + 1 <r <3281,
Yu(B,A) =<4 if X#0 and rm/2F < O(\) < (r + 1)7/2"
with r odd and 281 +1 <r <3281 -1,

0 otherwise.

Remark 4.3.3. If (W, S) arises from a root system ® and —1 is an element of W (or, equivalently, the
root system is generated by strongly orthogonal roots), then Goresky—Kottwitz—MacPherson [GKM97,
Theorem 3.1] and Herb [Her00, Theorem 4.2] give two different expressions for the coefficients ap-
pearing in the formula for the averaged discrete series characters of a real reductive group with
root system ®. Corollary asserts the equality of these two formulas. In general, although
there no longer exist discrete series in this setting, the formulas of Goresky—Kottwitz—MacPherson
and Herb still make sense, and Corollary says that they are still equal. Also, Corollary
implies that ¥y (B, ) = 0 if A is not in the span of any 2-structure for ®, so it implies [GKM97,
Theorem 5.3]. It is not clear whether this is an easier proof than the one given in |[GKM97].

4.4 Second application: the type A identity involving ordered set partitions
We now show how to deduce [EMR19, Theorem 6.4]E| from Theorem We take V = R" with

the usual inner product, and we denote by (eq,...,e,) the standard basis of V. We consider the

>This is a reformulation of [Mor11} Proposition A.4].
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hyperplane arrangement H of type B, on V, that is, H = (Ha)aecbjgv where @5 = {e; e : 1<

i<j<n}ulen...,en). We write &5 = @1 1 &) where @) = {e; —¢; : 1 < i < j < n}
and we denote by H = HM) 1 H® the correspondlng decomposition of #. The arrangement H (!
is a Coxeter arrangement of type A,_i, and we denote by ® = &) ¢ (—<I>( )) the associated
root system. Let C' be the intersection ((,cp) Ha) N ((Naco@ Ha). Then C is the open ray
R>Q-(61+62+"'+6n).

Recall that .Z is the face poset of H. We will now give a description of .Z in terms of signed
ordered partitions. See also [ER99, Section 5] for this description. A signed block is a nonempty
subset B of {+1,...,+n} such that, for every i € {1,...,n}, at most one of +i is in B. We then
denote by B the subset of {1,...,n} defined by B = {| | i€ B}. A signed ordered partition of
a subset I of {1,...,n} is a list (Bl, ..., B,) of signed blocks such that (By,...,B,) is an ordered
partition of I.

We consider the poset 11945 whose elements are pairs m = (7, Z), where Z < {1,...,n} and 7
is a signed ordered partition of {1,...,n} — Z, and the cover relation is given by the following two
rules:

—

((Blv"' 7BT')7Z) < ((B17' : 'aéT*1)>B7’ Y Z)7
((Bl,... ,Br),Z) < ((Bl,. . .,éifl,gi ) §i+17§i+27"'7B7’)7Z)'

The set Z is usually called the zero block of . N R
Let 7 = (%, Z) be an element of TP with & = (B, ..., B,). We define the cone Cy to be

the set of (z1,...,2,) € V such that (with the convention that x_; = —z; for 1 <i < n):
(i) if Z = {i1,...,im} then the equalities x;, = --- = z;,, = 0 hold,;
(i) for every block B = {i1,...,im} in 7, the equalities and inequality z;, = --- = 2;,, > 0 hold;

(iii) for every two consecutive blocks B, and §S+1 in % with i € By and jE §S+1, the inequality
|l‘l| > |£L‘]| holds.

It is easy to see that the map ¢ : II9? — ¢ sending 7 to C; is a bijection, and that it induces
an order-reversing isomorphism between the poset H%rd’B and the face poset .Z. The inverse image
of the ray C' = Roq-(e1+e2+- - -+¢,) by this bijection is the element o = (({1,...,n}), @) of Hy5,
so the elements of 2% ¢ correspond exactly to the (unsigned) ordered partitions of {1,...,n}. In
other words, the bijection ¢ induces an order-reversing isomorphism between the poset H%rd of
ordered partitions of {1,...,n} defined in [EMR19, Section 2] and the poset %~ ¢.

Let A = (A1,...,\,) € R™ For a signed block é, we set Ay = Dcp Ai, with the convention

that A_; = —\; for 1 < i < n. Define the subset H?er’B()\) of Ty by
P () = {((él,%,...,é ), Z) e TrE ZA > 0forl<s < }

Then an element 7 of I is in TIT?(A) if and only if Cy is in Z\. Moreover, the subset Lsc
corresponds to the set TI"4(\) of ordered partitions (By, ..., B,) of {1,...,n} such that, for every
1 < s <, we have 37 ; Ap, = 0. This is almost the set P(\) of [EMR19, Section 3|; the only
difference is that the inequalities defining P()\) are strict. We can give the following identity relating
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these two sets: For every e e R, let A\ = (A1 —¢,..., Ay, —¢). Then if € > 0 is sufficiently small, we
have TI9"4()\.) = P(N).

Let B be the unique chamber of .Z that is on the positive side of every hyperplane, that is,
B ={x1 > x93 > - >z, > 0}. As we already observed, %~ ¢ is isomorphic to the face poset of
the arrangement H1), which is a Coxeter arrangement of type A,_;. The unique chamber of this
arrangement containing B corresponds to the identity element in the symmetric group &,. It then
follows from Proposition that the function fp : Loc — T n Lo sending C' € Yo to
C o B corresponds via ¢ : 119 =5 2 ¢ to the function f : 194 — &,, of [EMR19, Section 4].
We obtain the equality:

breB N = S ()l (—1)f®),

mellgrd ()

where || denotes the number of blocks of the ordered partition = = (By, ..., B;), in other words,
|r| = 7. Let X denote the reverse of A, that is, A = (\,,...,\1). For € real we let A be (\, —
€,...,A1 —¢). By [EMR19, Lemma 7.1}, we have

Yo(B,3) = (1) Nl (—1ye@),

wellord(N)

where ¢ : H%rd —> &, is the function defined at the beginning of [EMR19, Section 6]E| Finally,
using the fact that I12"4()\.) = P(A) for sufficiently small £ > 0, then the sum S(\) of [EMR19,
Section 6] is given by the expression:

SO = (~1)G) - gyy0(B, ) (4.3)

for any sufficiently small € > 0.

We now find an expression for the sum 7'(\) of [EMR19, Section 6] in terms of 2-structures.
As in [EMR19], we denote by M, the set of maximal matchings on {1,2,...,n}. Then we have
a bijection M,, — T(®) sending a matching p = {p1,...,pm}, where p1 = {i1 < j1},...,Pm =
{im < Jm} are the edges of p, to the 2-structure p, = {£(e;; —¢€j,), ..., * (e, —€j,.)}. Moreover, we
have (—1)P = €(¢p). We can calculate Y, /C.,, (By,,A) using Lemma for the decomposition
V =Vox Vi x---xVp,, where V}, = Re;, +Rej, for 1 <k <m, Vo = {0} if n is even, and Vj = Re;
if n is odd and i is the unique unmatched element of {1,...,n}. By Lemma we have

1 if n is even,

By, A) = | | da(Niys Aj,) -
Uy, /Cpy (Bioys A) ﬂ 2(Xigs A ) {dl(/\i) if n is odd,

where:

(a) The function d; : R — R is defined by di(a) = ¥y, )¢, (Bi1,a), where H; is the hyperplane
arrangement (H.) on Re and B; = C; = R-ge.

(b) The function dy : R? — R is defined by da(a,b) = ty,,c, (B, (a,b)), where Hy is the
hyperplane arrangement (He, Hy, He—f, Hey f) on Re®@Rf, Cy = {ae + ff : o = 3 > 0} and
By ={ae+ Bf:a> >0}

3The map f : I9¢ — &,, takes an ordered partition, orders the elements in each block in increasing order and
then maps them to the permutation formed by reading the elements from left to right. The map g is similarly defined,
except the elements in each block are reordered in decreasing order.
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In other words, the functions d; and dy are precisely the function 13,/ (B, A) that we are trying to
determine in the cases n = 1 and n = 2. A direct calculation yields:

1 fa>0 -1 ifa,b=0,
dy(a) = PEZYand dalab) =4 -2 ifb>—a>0,
0 if a <0, .
0 otherwise.

Comparing this with the formula defining ¢(p, A) in [EMR19, Section 6], we see that, for all a,b € R,
if € > 0 is sufficiently small relative to a and b, we have di(a —¢) = —c;i(a) and da2(a —e,b —¢) =
—ca(b,a), and hence

_ (—1)”/2 if n is even,
B, . )X:) =c(p, \) -
Q’Z)pr/ctf’p( #p ) c(p ) {(_1)(714-1)/2 if n is odd
= (1" ()& - e(p, V),

if € > 0 is sufficiently small relative to the ;. Combining all these calculations, we see that if € > 0
is sufficiently small, then

N e9) o, (B he) = (1" (~D)E) - ST (=17 e(p,A) = (—1)" - (~1)E) - T().

peT (P) pEMy,

The identity S(A) = (=1)"-T'(}) in [EMR19, Theorem 6.4] now follows from Theorem applied
to A: for € > 0 sufficiently small.

4.5 Proof of Theorem [4.2.2]

We assume for now that H = (H,,)cer is an arbitrary central hyperplane arrangement on V. The
following definition will be useful.

Definition 4.5.1. Let C' € Z and Ae V. If D, D" € Z~¢, we define 1p,c(D’, \) by the sum
oo )= Y (—1m@),

C’Gf)uzc
C'oD'<D

where .iﬂ;)\@' = .,E,ﬂ)\ M .,%20.
Remark 4.5.2. Suppose that D’ is a chamber. Then C’ o D’ is a chamber for every C' € £, so

Ypjc(D',A) = 0 unless D is also a chamber. If D is a chamber, we have

Ypio(D,N) = Y, (1),
C/GXA,zc
C'oD'=D

The functions ¢ p (D', A) are related to 13;/c(B,A) by the following lemma.
Lemma 4.5.3. Let C € £ and Be T n Z~c. Then for every A € V the following identity holds:

Yrue(BN) = D (=D)IFED g0 (B, ).
Teﬂmf;c
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Proof. Indeed, if D € %~ ¢ then the chamber D o B is also in %~ ¢. Hence, using equation (4.2)) in
Definition and Remark we obtain:

Yre(BA) = > (—pSBEDL A pdm@) = A () ISED g (B, ).
TeTnL>c De? >c TeTnL>c
DoB=T

O]

Before Corollary of Appendix [A] we define, for K a closed convex polyhedral cone in V,
a function ¥ : V x V¥V — R. For fixed (z,¢) € V x V'V, the function K — ¢k (z,¢) is a
valuation on the set of closed convex polyhedral cones in V' (see Definition . This function is
related to the functions ¢ p (D', A) in the following way.

Lemma 4.5.4. Let C € £, let D € Z~c and let A € V. Denote by £ € V'V the linear func-
tional (-, ). Then for every D' € %~ ¢ the following identity holds:

'(Z)D/C'(D/a )‘) = %(.’L‘,f),
where x is any point in D} = (—C)o D'.

Proof. As before we write E(C) = {e € E : C < H,,}. Note that s(D}). = s(D’). for e € E(C),
and s(D}) = —s(C)e # 0 for e e E—E(C). Also, by definition of %~ ¢, if e is any index of E— E(C)
and C' € % ¢ then s(C)e = s(C’). # 0.

We claim that for every C' € £ we have C' o D} < D if and only if ' € % and C’ o
D’ < D. Suppose first that ¢’ € Zs¢ and C' o D' < D. Then for every e € E(C) we have
s(C"oD})e = s(C' o D). < s(D). Moreover, if e € E— E(C) then s(C"). = s(C)e = s(D)e # 0, so
s(C"o DY)e = 8(C")e = 8(D),. This shows that C" o D} < D. Conversely, suppose that C’ is a face
of £ such that C'o D} < D. If ee E— E(C) then 0 # s(C). = s(D)e = —s(D})e, thus s(C")e # 0,
and so s(C"). = s(C" o D). = s(D)e. This implies that C’ € £~ . Moreover, if e € E(C') we have
s(D})e = s(D’)e, thus s(C" o D), = s(C" o D}), < s(D).. Hence we conclude that C' o D" < D.

By the claim, we obtain

pe(D'A) = 3 (=) = (D), ).
CIE‘ZA
C’oD{<D
We wish to show that this is equal to ¢5(x, (), if z € DIL‘ Asin Appen(iix we denote by F (D) the
set of closed faces of the closed convex polyhedral cone D. We have F(D) = {C": C" € £, C' < D},
and the set {C" € £ : C" o D} < D} is included in the set {C’" € £ : C' < D}. To prove the equality
above, it suffices to show that the two following statements hold for C’ € .Z such that C" < D (see
Lemma for the definition of 1, and 1y, and the beginning of Section for the notation

@L’E):

(a) The face C’ belongs to % if and only 1, (C") = 1.
(b) The inequality C’ o D} < D holds if and only if ¢, (C”L’D> = 1.
Statement (a) is just a direct translation of the definition of .Z), and statement (b) is proved

in Lemma [3.3.11
O
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We are now ready to prove Theorem [£.2.2] so we assume that we are in the situation of that
theorem.

Let ¢ be the linear functional (-,A) on V, let z € (—C) o B, and consider the valuation v
on the set of closed convex polyhedral cones in V' sending such a cone K to . z(z,¢), where
C = Cc = (epe HS,. The function K ~— ¢k (z,¢) is a priori defined only on the set of
closed convex polyhedral cones. However, as it is a valuation, we can extend it to the set of all
finite intersections of closed and open half-spaces in V. See Remark As x is not on any
hyperplane of H, the valuation 1, vanishes on any cone contained in a hyperplane of H. It follows
from the definition of the function K —— ¢ (z,¢) in the discussion before Corollary that
we have i (z,¢) = 0 if K is contained in a hyperplane of H. In particular, for D a face of H, we
have v(D) = 0 unless D is a chamber, and if D is a chamber then v(D) = v(D).

Let ¢ € @ be a pseudo-root system (we do not assume that ¢ is a 2-structure), let o = p N ®+
and H, = (Hae)eequ@), and denote by B, and C, the unique faces of H, containing B and C.

We have Cp = (et Hae 0 [ ecpe Ha,. We also set Hfol) = (Hae)eept> Lo = L(H,) and
Ty = T (Hy).
. . 1) .

As in statement (i) of Lemma we denote by ¢ : £, >c, — ZL(H,’) the map sending a
face D > C, of H,, to the unique face of 7—[8) that contains it. By the lemma we just cited, we know
that this is an order-preserving bijection, and that its inverse sends a face D) of ’HS) to DM A C,
where C = (,cpe He as before. We claim that, if D) is a face of ’HS), then D) A C = DM A C.

Indeed, let s € {+,—,0}*" be the sign vector of D). Then the sign vector ¢ € {+, —, 0}£ of DD ~C
is given by t, = s, if e € p*, and t, = + if e € E?). We set R, = Rsp, R_ = Ry and Ry = {0}.

Let y € V. Then y € D) if and only if (e, y) € Ry, for every e € T, while y € DM A C if and
only (ae,y) € Ry, for every e € E and y € C if and only if (ae,y) = 0 for every e € E?). This
immediately implies the claim.

Let D be a face of Hfol). By Lemma we have

Yoy, (B A) = ¥parg(#:6) = Up (. ) = v(DW),
because xz € (—C) o B < (—C,) o B,. Moreover, by Lemma we have

Vi, (B, A) = > (—1)15BeD o (B, A).

Teﬂpmf%zcw

So, using statements (i) and (iii) of Lemma we get that

Uroo,(Bo N = Y, (FDEEITONy ) o (By, )
TWe7(HY)
=Y (c1)SEBDTO, )
TWe7(HY)
= > (—1)IS@B),COeuBo,(cD).,
cWegHP)

In other words, using the notation of Subsection [3.2] we obtain
Y, i, (Bp, A) = T(Hy, v). (4.4)
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Applying this identity to ¢ = ®, we have ¥y,c(B,\) = II(#,v). By Theorem we deduce
that
TZJH/C(Ba)‘) = Z €(¢)H(H¢7V)~
weT (D)

The conclusion of Theorem follows from this equality and from equation (4.4) for all ¢ € T(®).

5 Properties of the weighted complex

This section is independent of Sections [3] and [d except for Definition and Remark
We prove that the weighted complex is shellable for Coxeter arrangements, or more generally for
arrangements satisfying some condition on the dihedral angles between their hyperplanes (Condi-
tion [(A))). This implies that the weighted complex is a PL ball for arrangements satisfying Condi-
tion [(A)l

5.1 Shellable polytopal complexes

We introduce the following definition. For instance, see |Bj
textsuperscript +99, Definition 4.7.14].

Definition 5.1.1. A pure n-dimensional polytopal complex A is shellable if it is O-dimensional
(and hence a collection of a finite number of points), or if there is a linear order of the facets
Py Fs, ... Fp of A, called a shelling order, such that:

(i) The boundary complex of F} is shellable.

(i) For 1 < j < k the intersection of F; with the union of the closures of the previous facets is
nonempty and is the beginning of a shelling of the (n — 1)-dimensional boundary complex
of F}, that is,

Em(EuEu'--qu,l) =GiuGau---uUG,,
where G1,G2,...,G,,...,Gy is a shelling order of 0F; and r > 1.
We then have the following result.

Theorem 5.1.2. (/By

textsuperscript +99, Theorem 4.3.3].) Let ‘H be a central hyperplane arrangement on V', let £ =
ZL(H) and T = T (H), and let B be a chamber in 7. Then any linear extension of the chamber
poset with base chamber B is a shelling order on the facets of 3(.ZL).

Let H be a central hyperplane arrangement on V. We write £ = £ (H) and . = J(H). Let
Be Z,and let B=1T,T5,...,T, = —B be a linear ordering of .7 refining the partial order <p.
By Theorem the linear order T4, T5, ..., T, is a shelling order of the chambers of X(.Z). In
particular, the shelling order defines a partition of the faces of ¥(.%):

Z=|[{Ce2:C<Tiand C £Tjfor 1 <j <i}.
=1

We will give a formula for the blocks of this partition (see Proposition [5.1.5) which implies in
particular that the partition is independent of the linear refinement of <p.
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Definition 5.1.3. Given a chamber B € .7, we define a function fp from the face poset .Z to the
set of chambers .7 by fp(C) = Co B.

The next proposition gives some basic properties of the function fg.
Proposition 5.1.4. The following two statements hold:

(i) Fiz a face C € £ and consider the poset isomorphism ic : Lsc — Ly of Lemma .
If Be I n Zc then for every D € Z~c we have 1c(fp(D)) = fio)(ta(D)).

(ii) Suppose that H is a Coxeter arrangement with a chamber B that is on the positive side
of every hyperplane, and let (W,S) be the associated Cozeter system. Identify £ with the
Cozeter complez S(W) as in Subsection [2.9 If the face C € £ corresponds to a standard
coset ¢ © W, then the element w € W corresponding to the chamber fp(C) is the shortest
element of ¢ and also the minimal element of the coset ¢ in the right weak Bruhat order.

In particular, part (ii) implies that, for the type A Coxeter complex, the function fp defined
here (for B the chamber corresponding to 1 € W) is equal to the function f defined at the beginning
of [EMR19, Section 4]. Note that the existence of a minimal element in every standard coset is
proved in [BB05, Proposition 2.4.4].

Proof of Proposition[5.1.7. Statement (i) follows immediately from Lemma [2.1.3

We now prove (ii). By definition of the composition o, the chamber fg(C) = C o B is the
element of .7 N Z¢ closest to B in the chamber graph; in other words, it is the minimal element
of 7 n % for the order <p; see Subsection As we know that <p corresponds to the right
weak Bruhat order on W (see the discussion after Theorem , and as the elements of W
corresponding to the chambers of 7 N % ¢ are the elements of the coset ¢, the result follows. [

The link between the function fp and the shellings of Theorem [5.1.2] is established in the
following proposition. For the type A Coxeter complex, this result appeared implicitly in the proof
of [EMR19, Proposition 4.1].

Proposition 5.1.5. Let B€ 7, and let B =T1,Ts,...,T. = —B be a linear ordering of 7 refining
the partial order <p. Then for every index 1 < i < r the fiber of fp over T; is given by

fgl(ﬂ)Z{CEZCCTZ*(Tl UTQU"'UTifl)} (51)
={CeZ:C<Tyand C £T; for1<j<i}.

Proof. The equivalence between equalities and is an immediate consequence of the
definition of the order < on .Z. Let us prove equality .

Let C € fgl(Ti), that is, C o B = T;. In particular, we have C < C o B = T;. Suppose that
T € .7 is another chamber such that C' < T. Then for every e € S(B,T;) we have s(T;)e # s(B)e,
but s(C o B), = $(T;)e, s0 0 # s(C)e = s(T;)e. As C < T, this implies that s(T). = s(C). =
s(Ti)e # s(B)e, hence that e € S(B,T). So we have proved that S(B,T;) < S(B,T'), which means
that T; <p T'. In particular, if 1 < j <14 — 1 then C £ T}.

Conversely, let C' € .Z be such that C < T; and C € Tj for 1 < j <i¢,andlet T = Co B. If
e € S(B,T) then 0 # s(C)e = s(T).. As C < T;, this implies that s(C) = $(T3)e, s0 $(T3)e =
s5(C)e = s(T)e # s(B)e, that is, e € S(B,T;). So we have proved that S(B,T) < S(B,T;), which
means that T" <g T;. Hence there exists an index 1 < ¢’ < ¢ such that T'= Ty. As C < T and
C « T} for 1 < j <1, we must have i’ =4, that is, fp(C) =CoB =T =T;. O
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5.2 A condition on hyperplane arrangements

We now introduce a geometric condition on the hyperplane arrangement H that will imply the
shellability of the weighted complex.

Condition (A). Denote by (A) the following condition on the family (ce)eer (or the corresponding
arrangement): For every T € 7 and for every e € E such that S = T n H,, is of dimension
dim(V) — 1, that is, S is a facet of the conver cone T, the following inclusions hold:

T <8+ Regae if T < HY,
T < S+ Regae if T < Hy,

where S is the relative interior of the cone S, that is, the interior of S in Span(S).

Geometrically, Condition |(A)| means that if 7" € 7 then the dihedral angle between any two
adjacent facets (facets whose intersection is a face of dimension dim (V') —2) of the convex polyhedral
cone T is acute, that is, less than or equal to /2.

Proposition 5.2.1. Suppose that the arrangement H satisfies Condition . Let T, T" € F and
e € E such that S(T,T") = {e}, the inner product (., ) is nonnegative and the inclusion T' < H,
holds. Then T' € £\ implies that T € Z.

Proof. The hypothesis implies that TnT =T nHa, =T ~ Ha,. We denote this intersection by S.
It is a facet of both T and T". By Condition we have T' < S + Rogae and TV < S + Rgare.
In particular, if 2 € T then there exists ¢ > 0 such that x — ¢+ a, € T’. Then we have (z,\) =

(x —c-ae,A) + ¢ (@, A) = 0. This implies that 7" < H}", that is, T € .Z). O

Corollary 5.2.2. Suppose that the arrangement H satisfies Condition . If (N, ae) = 0 for every
e € E and if there exists B € .7 such that B < HJ for every e€ E, then T n %) is a lower order
ideal in Ip. More generally, if C € £ and E(C) = {ee E:C < Hqa,}, if (\,ap) =0 for every
f e E(C) and if there exists B € T n%~¢ such that B H;rf for every f € E(C), then T n % >c
1 a lower order ideal in Ip.

Proof. Tt suffices to prove the second statement. Let T,T" be such that S(B,T) < S(B,T") and
T' € L\>c. We want to show that T € £ >c. As Jp is a graded poset and the intersection
T N Zsc is a lower order ideal in I (see Remark [2.1.4)), we know that T € .7 n Z¢, and it
suffices to treat the case where S(T”,B) — S(T, B) is a singleton. Let f be the single index of
S(B,T")—S(B,T). As B,T' € T n % ¢, we have f € E(C) by Lemmam(iii), so B c H;rf. As
feS(B,T") — S(B,T), we have T" = Hy, and T' < Hg . Also, as f € E(C), we have (A, ay) > 0.
So we may apply Proposition and we obtain that T € %4). O

Corollary 5.2.3. Suppose that the arrangement H satisfies Condition. Then the complex X(£))
1s shellable. Moreover, there exists a shelling order on its chambers which is an initial shelling
of 2(L). In particular, if X # 0 then (%) is a shellable PL ball of dimension dim(V /Vj) — 1.

Proof. If A = 0 then %) = . and X(£4)) = X(£), and the corollary is just Theorem [5.1.2}
We now assume that A # 0. By Theorem and Corollary it suffices to find a family
of signs (e.) € {£1}¥ such that:
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— for every e € E, we have (A, e.a.) = 0;
— there exists a chamber B € %) with B < HY , for every e€ E.

Indeed, Corollary will then imply that 7 n %) is a lower order ideal in g, so it will be an
initial segment for at least one linear extension of <p.

Let FF={ee E: (A a¢) # 0}. For every e € F, we choose €. € {1} such that (A, e.a.) > 0.
Let zp be a point in V' not on any hyperplane of H, that is, zo € V — | J.cp Ha.. Then for every
e € F, the inner product (zg + ¢\, gce) = (g, Ecte) + ¢+ (A, €cte) tends to +00 as ¢ tends to +oo,
so it is positive for ¢ large enough. Similarly, the inner product (xg + ¢ A\, A) = (2o, A) + ¢+ (A, A)
is positive for ¢ large enough. On the other hand, if e € E' — F', then (zg + ¢+ A\, @) = (zo, ) # 0
for every ¢ € R. So, if ¢ € R is large enough, then 2 = zg + ¢- A€ V — J,cp Ha,, and z is in HY
for every e € F' and in H;\r In particular, there exists a chamber B € .7 such that x € B, and B
is included in H,,_ for every e € F and in Hy. Now, if e € E — F, we choose ¢, € {£1} such that
Bc H,. . As (A a.) =0, we clearly have (X, ecae) = 0. O

5.3 The case of Coxeter arrangements

Lemma 5.3.1. Every Cozeter arrangement H satisfies Condition |(A).

Proof. In a Coxeter arrangement, the dihedral angle between any two adjacent facets is 7/n, with
n > 2. [

In particular, Corollaries [5.2.2] and [5.2.3] apply to Coxeter arrangements. But we can actually
prove a stronger result in this case.

We fix a Coxeter arrangement H on an inner product space V', and we use the notation intro-
duced above. We say that a vector A € V' is dominant if (A, ) = 0 for every o € ®+.

Lemma 5.3.2. Suppose that A € V' is dominant. Denote by B the chamber of H corresponding to
1eW. Let z,we W such that z < w in the strong Bruhat order of W. Then for every x € B the
following inequality holds:

('), ) = (W™ (A), 2).

Proof. We may assume that w covers z, so that there exists s € S and v € W such that w =
(usu~')z. Let a be the unique pseudo-root of ®* such that u(e,) is a multiple (positive or negative)
of a. If s, is the reflection across H,, we have usu™! = s,, and so w = s,z and sqw = 2. Since
the elements of ®T are unit vectors, s, is given by the following formula: s, () = p—2- (p, ) - «
for e V. Hence

(s0w)7H(A) = (W sa)(N) =w TN =2 (N @) - w T Ha),
and so, if x € B,
((Saw>_l)\,$) = (w_l(A)vr) -2 (/\,Oz) ’ (w_l(a),m).

As X is dominant, we have (A\,a) > 0. By [BB05, Equation (4.25)], we have the equivalence
wl(a) € & = f(wts,) > L(w™!), and [BBO5, Proposition 1.4.2(iv)] states that £(v™!) = £(v)
for every v € W. Using these two facts and the condition ¢(sqw) < £(w), we see that w™(a) € ®.
Thus (w™!(a),z) < 0 by definition of B. Hence the term —2 - (\,a) - (w™!(a),z) is nonnegative,
that is, (271(\),z) = ((saw)"1(A),2) = (w™L(N), 2). O
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Proposition 5.3.3. Let (W,S) be a Coxeter system, and let H = (Hq)qeco+ be the associated
hyperplane arrangement on the space V' of the canonical representation of (W,S). Let A € V be
a dominant vector. Then the set Wy of w € W such that the corresponding chamber of H is in
T L\ is a lower order ideal with respect to the strong Bruhat order on W.

Proof. We denote by B the chamber of H corresponding to 1 € W. By definition of W), an
element w of W is in W), if and only if for every z € B we have (A, w(x)) = (w™}(\),z) = 0. By
Lemma[5.3.2] if z,w € W and w is greater than z in the strong Bruhat order then for every z € B,
we have (z71(\),z) = (w™'()\), ). If moreover w € Wy, this immediately implies that z € Wy. [

6 Concluding remarks

As mentioned in the introduction, we are not aware of whether there is a representation-theoretic
interpretation of the identity in Theorem [£.2.2]in general. More precisely, what is the meaning of
the constants vy,,c(B, A) for different values of \?

The main results in this paper are in the setting of Coxeter arrangements. However, the
sum 1y makes sense for general hyperplane arrangements, our original proof of Theorem
used an induction formula that linked the sum 4 to similar sums for subarrangements of the
restricted arrangements on the hyperplanes of H, and this induction formula is valid for general
hyperplane arrangements, and with some adaptions, for oriented matroids. In the paper [EMR21b],
we use a similar type of induction argument, this time to calculate the alternating sum of another
valuation on the chambers of a hyperplane arrangement, that is, the volume of the intersection
of the chamber with some set of finite volume. Is there is some analogue of 2-structures for more
general hyperplane arrangements?

It is natural to ask is there some analogue of Theorem [3.2.1] for Coxeter systems with possible
infinite Coxeter groups?

In Section [5| we prove that the weighted complexes of a hyperplane arrangement are shellable
under a geometric condition on the arrangement that we call Condition This implies that
the weighted complexes are PL balls for arrangements satisfying Condition Are the weighted
complexes always PL balls? By Remark this extends a conjecture of Zaslavsky (see [Zas75,
Chapter I, Section 3C, p. 33]) that the bounded complex of a simple hyperplane arrangement is
always a PL ball. As a consequence to Corollary we have the following result.

Corollary 6.1. Zaslavsky’s conjecture holds for affine arrangements obtained by intersecting an
affine hyperplane with an arrangement satisfying Condition |(A).

In a paper of Dong (see [Don0§|) he claims to have proven Zaslavsky’s conjecture. However,
we do not understand the proof of the crucial Lemma 4.7 in that paper: In the second paragraph
of case 2, Dong chooses a linear extension < of 7(.Z/g, d;) such that [d;,d;] is an initial segment.
This linear extension is a shelling order, and Dong deduces that there exists dj, € [d;, d;) such that
di A dj < dj. But the only thing that we can deduce from the fact that we have a shelling order
is that d; < dj, < d;, which does not imply that dj, € [d;, d;) for the order on T(.Z/g,d;). If we do
not know that dj, € [d;, d;), the rest of the argument fails.

In Appendix[A]we construct a ring structure on the set of valuations on convex closed polyhedral
cones with values in a fixed ring. Are there other products of valuations that also yield valuations?
For instance, can the ring structure of Corollary be extended to valuations on (not necessarily
polyhedral) cones in Euclidean space?
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In Appendix [B] the proof of Proposition that the group W acts transitively on the set of
2-structures T consists of verifying the result for all irreducible pseudo-root systems. Is there a
general proof that does not use the classification of irreducible pseudo-root systems?

A Extending the construction of a valuation by Goresky, Kottwitz
and MacPherson

We introduce a ring structure on the set of valuations defined on closed convex polyhedral cones
in a finite-dimensional real vector space with values in a fixed ring. As a special case we obtain
in Corollary a valuation due to Goresky, Kottwitz and MacPherson; see [GKM97, Proposi-
tion A.4].

Subsection of this appendix contains definitions and statements of results. The proofs are
relegated to Subsection

A.1 The ring of valuations

Let V be a finite-dimensional real vector space and V'V its dual. A closed convex polyhedral cone
in V is a nonempty subset of the form Rygv; + Rxgva + - - - + Ry gug, where vy, v9,..., v € V and
k>=0.

For a subset X of the space V, define X+ = {a € VV : Vo € X (o,z) = 0} and X* = {a €
VYV :Vx e X {a,x) = 0}. Note that X1 is a subspace of V'V and depends only on the linear span
of X, and that X™ is a convex cone in V'V and depends only on the closed convex polyhedral cone
generated by X.

For F a fac of a closed convex polyhedral cone K, define FLX = FL ~ K* The map
F —— FL5K is an order-reversing bijection from the set F(K) of faces of K to the set of faces
of K*. This statement and other basic properties of closed convex polyhedral cones are proved
in [Ful93, Section 1.2].

Remark A.1.1. For two closed convex cones X; and X5 such that X; u X5 is convex then the set
X{ u X3 is also convex and we have the two identities

(X1 U Xg)* = Xik N Xék and (X1 N XQ)* = Xik U X;

Definition A.1.2. We denote by C(V') the set of closed convex polyhedral cones in V. Denote
the free abelian group on C(V) by @ gec(v) Z[K] and let K(V) be its quotient by the relations
[K K|+ [KnK'| =[K]+ [K'] for all K,K'e C(V) such that K u K’'. For K € C(V), we still
denote its image in K (V') by [K].

For A € V'V, we define the hyperplane H) and the two open half-spaces Hj\r and H, by
Hy={zeV:(\z)y=0}, Hf ={zeV:(\z)>0} and H, ={zecV:{\z)<0}.

The closed half-spaces are given by Hi;\’ ={zeV:(\z)>0}and Hi)f ={reV:(\z)<0}.

4In this appendix, we take all faces to be closed faces, unlike in the rest of the article.
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Definition A.1.3. A waluation on C(V) with values in an abelian group A is a function f :
C(V) — A such that f(&) = 0 and that for any K, K’ € C(V) such that K U K’ € C(V), we have

JUK UK + [(K A K') = f(K) + f(K"). (A.1)

By the definition of K(V), saying that a function f : C(V) — A is a valuation is equivalent
to saying that there exists a morphism (necessarily unique) K (V) — A sending [K] to f(K) for
every K € C(V). We also denote this morphism K (V) — A by f.

Ezample A.1.4. By Remark the function ¢ : C(V) — K(V'V) sending K € C(V) to [K*] is
a valuation. Thus it induces a morphism ¢ : K (V) — K(V*).

We have the following criterion for recognizing valuations on closed convex polyhedral cones.
This is known as Groemer’s first extension theorem and is proved in |Gro78, Theorem 2].

Theorem A.1.5 (Groemer). Let A be an abelian group and f : C(V) — A be a function such
that f(2) = 0. Suppose that for every K € C(V) and every u€ V'V the following holds:

FK)+ f(KnH,) = f(Kn H) + f(K ~ Hy). (A.2)
Then the function f is a valuation.

The main result of this appendix is the following theorem whose proof is in Subsection
To make the notation more compact in this appendix, we denote the linear span of a subset S of
vector space by (S).

Theorem A.1.6. (i) Consider the function A : C(V) — K(V)®z K(V) defined by
AK) = Y ()" FF@ [(F) + K],
FeF(K)

for every K € C(V). Then A is a valuation and it induces a morphism A : K(V) —
K(V)®z K(V). Moreover this morphism A is coassociative, that is, we have

(i) Consider the function ¢ : C(V) —> Z defined by e(K) = (—1)3™E if K is a vector subspace
of V and e(K) = 0 otherwise. Then ¢ is a valuation and it induces a morphism e : K(V) —
Z. This morphism is a counit of A, in other words, we have

(€®idK(V)) oA = idK(V) = (idK(V) ®€) o A.
In short, Theorem says that the morphisms A : K(V) — K(V)®z K(V) and ¢ :
K (V) — Z are well-defined and make K (V') into a Z-coalgebra.
Corollary A.1.7. Let A be a ring. Let f1, fo : C(V) — A be two valuations. Then the function
fix fa:C(V) — A defined by

(e o)) = Y (=)W fi(F) fo((F) + K)

FeF(K)

is also a valuation. This operation * makes the group of valuations C(V) — A into a ring. The

unit element of this ring is the composition of € : C(V) —> Z and the canonical ring morphism
7 — A.
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Proof. The valuations f; and fs induce two morphisms fi, fo : K(V) — A, hence a morphism
I®f: KV)®zK(V)— A, 2®y+— fi(x)® fao(y). As we have

(f1* fo)(K) = (i ® f2)(A([K]))

for every K € C(V), this shows that f; # fo descends to a morphism K(V) — A, hence is a
valuation.

The operation * is clearly linear in each variable, and it is associative by the coassociativity
of A. The last statement follows immediately from the fact that ¢ is a counit of A. O

Corollary A.1.8. Let A be a ring, and let f1 : C(V) — A and g2 : C(VY) — A be valuations.
Then the function f1 x go : C(V) — A defined by

(fixg)(K) = D, (=)W fi(F)ga(FHF)

FeF(K)
1s also a valuation.

Proof. Consider the valuation ¢ : C(V) — K(V'V) of Example Then the map fo = g2 09 :
C(V) — A is also a valuation. As F-X = ((F) + K)* for every K € C(V) and every face F of K,
we have fi x g3 = f1 * fo, so the statement follows from Corollary O

Remark A.1.9. Let H be a central hyperplane arrangement on V', let Cy (V') be the set of closed
convex polyhedral cones that are intersections of closed half-spaces bounded by hyperplanes of H,
and let K/(V') be the quotient of the free abelian group @ yec,, (1) Z[K] on C3 (V) by the relations
[@] =0and [K]+[K'] = [KUK']|+[KnK'] for all K, K’ € Cy (V) such that K UK’ € Cy(V'). Then
the formulas of Theorem also define a coalgebra structure on Ky (V). Indeed, if K € Cy(K)
and F' € F(K), then F and (F) + K are also in Cy (V).

In particular, the products in Corollaries [A.1.7] and [A.1.§] also make sense if the first valuation
is only defined on Cy (V).

We now explain how to use Corollary to recover [GKM97, Proposition A.4].

Lemma A.1.10. Let X be a subset of V' such that the complement V — X is convex. Then the
function ¢x : C(V) —> Z defined by

1 fg< KcX,

0  otherwise,

ox(K) = {
is a valuation. In particular, if A€ V'V then the function ¥y = ¢F+ is a valuation.
A

Proof. Let K € C(V) be nonempty and let 4 € VY. Let Ky = K n H,, Ky = K n H,f and
K_ = K n H,. We must check Criterion in Theorem that is, ¢x(K) + ¢x(Ko) =
ox(K4) + ox (K-).

If K € X then Ky, K+ and K_ are also included in X, and the equality above is clear. If
K, € X but K_ & X, then Ko € X and K & X, so again the desired equality holds. The case
where K_ € X and K ¢ X is symmetric. Finally, suppose that K, K_ &€ X. Then K ¢ X, and
so we must show that Ko & X. Take x € K, — X and y € K_ — X. Then the segment [z,y] is
contained in the convex set V' — X. As this segment intersects Ky, this shows that Ky ¢ X. ]
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Given z € V and A € V'V, we have two valuations ¢ : C(V) — Z and ¢, : C(VY) — Z
defined in Lemma [A.1.10, Let K — 9 (2, A) be the function defined by

Vi (T, A) = (P * e ) (K)
for every K € C(V'). This function is defined in [GKM97, Appendix A] (at the top of page 540).

Corollary A.1.11. For every x € V and every A € V'V, the function K — g (x,\) from C(V)
to R is a valuation.

Since any valuation satisfies the additivity property, we obtain the next corollary [GKM97,
Proposition A.4].

Corollary A.1.12 (Goresky—Kottwitz—MacPherson). Let K be a closed convez polyhedral cone.
Suppose that its relative interior K° is the disjoint union of the relative interiors Ky, K5, ..., K;
of r closed convex polyhedral cones Ky, Ko, ..., K,. Then for every x € V and every Ae VY

T

¢K(I’ )‘) = Z(_l)dim(K)idim(Ki) : /l/]Ki (xv >‘)

i=1

Remark A.1.13. Valuations on C(V') can be extended to relatively open cones as well. Let G be a
collection of sets that is closed under finite intersections. Define B(G) to be the Boolean algebra
generated by G, that is, the smallest collection of sets that contains G and is closed under finite
unions, finite intersections and complements. Groemer’s Integral Theorem states that a valuation
on G can be extended to a valuation on the Boolean algebra B(G); see [Gro78] and also [KR97,
Chapter 2]. In the case where G = C(V), that is, the collection of closed convex polyhedral cones
in E, the associated Boolean algebra B(C(V')) contains all cones that are obtained by intersecting
closed and open half-spaces.

Remark A.1.14. The results of this appendix extend to oriented matroids without much change.
Let E be a finite set and consider an oriented matroid .# on E with set of covectors .2 < {+, —, 0} .
This set of covectors forms a graded poset with the partial order given by componentwise comparing
the entries by 0 < + and 0 < —. We denote its rank function by p. For every F' € E and every
s € {+,—, 0}, we write L<s = {x € £ : z|p < s}. Let # be the set of lower order ideals of &
of the form Z¢;. We order J# by inclusion. If % is the oriented matroid corresponding to a
central hyperplane arrangement H on V', then JZ is the set cones obtained by intersecting closed
half-spaces bounded by hyperplanes of H. In general, every element of .# is of the form Z, . for
some x € .Z and F € E.

We say that an element a of " is a vector subspace if a # @ and a is of the form £, for
some x € .Z and some F' € E such that x, = 0 for every e € F'.

A waluation on £ with values in an abelian group A is a function f : # — A such that
f(@) = 0 and, for all a,b € # such that a U b€ # ', we have f(a ub)+ f(anb) = f(a) + f(b).
Giving such a valuation is equivalent to giving a function w : . — A; the corresponding valuation
then sends a € J# to ), ., w(x).

The analogue of K(V') is the quotient of the free abelian group @,. , Z[a] by the relations
[@] =0and [a ub]+ [anb] =[a] +[b] if a ube #. We denote this group by K(.Z). We have

an isomorphism K (%) — @, » Z[z] sending [a] to > ., [x]-

:L'Ea[
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Let ' < E. We denote the set of covectors of the deletion .#Z — (E — F) by Zr and the rank
function of Zr by pp. Let y € L. If F(y) = {e € F : yo = 0}, then we have an order-preserving
bijection Lr =, —> ZLp(y) sending any z > y in LF to z|p(,. This is the analogue of Lemma

We define the comultiplication A : K (%) — K(Z) ®z K(Z) by sending [L<,,.] to

AL ) = Y (—DFOLLY)® [ L)y, )

yefF,sle

Let a € .. The counit ¢ sends [a] to 0 if a is not a vector subspace. If a = Z,),, with r € &
and F € F such that z, = 0 for every e € F, then we set £([a]) = (—1)PFlr),

Remark A.1.15. Let # = @,,5( K(R"). We make %" into a coalgebra using the direct sum of the
morphisms A and e of Theorem There is a product on % defined by [K] - [L] = [K x L] if
K € C(R™) and L € C(R™), where we identity R™ x R™ and R"*™ in the usual way. This product
is associative, and the class of the cone {0} € C(R?) is a unit. It is then straightforward to see that
J is actually a bialgebra. However, it is not a Hopf algebra because if V' is a vector subspace of R"
with n > 1, then the element (—1)3™V[V] of J# is group-like but not invertible.

If K € C(R") and F is a face of K, then the poset of faces of (F') + K is isomorphic to the
interval [F, K| in the poset of faces of K. So the bialgebra .# is related to the incidence Hopf
algebras defined by Joni and Rota in [JR79] and further studied by Schmitt in [Sch94], although,
unlike those Hopf algebras, it has signs in the definition of its coproduct. Let us make this relation
more precise. For every n > 0, we denote by K¢(R") the free abelian group on the set of convex
polyhedral cones in R"; if K € C(R"), we denote its class in K¢(R"™) by [K]s. The formulas for
A and ¢ also define a coalgebra structure on K;(R") and, if we set £ = @,,~ K(R"), then the
product on 5 defined by [K]; - [L]f = [K x L]; makes %7 into a coalgebra. Let & be the set
of isomorphism classes of finite posets, and let Z[Z?] be the free abelian group on & equipped
with the Hopf algebra structure defined in Sections 3 and 4 of [Sch94]. Then we have bialgebra
morphisms 71 : &y — K and m : Ky —> Z[Z?] defined as follows: if K € C(R"™) then 7 sends
[K]; to [K] and 72 sends [K]; to (—1)¢ times the class of the poset of faces of K, where d is the
dimension of the largest vector subspace contained in K.

A.2 Proofs
Before proving Theorem we state and prove the following lemma.

Lemma A.2.1. Let K =V be a closed convex polyhedral cone, let F' be a closed face of the cone K
and let pe V. Wewrite Ko = K n H,, K, =KnH! and K. =K n H,,.

a) Assume that F € H; but F & H,,, that is, F is a face of K4 but not of Ky. Then the equality
H I
(Fy+ K ={(F)+ Ky holds.

(b) Assume that F n H:[ # & and F n H, # &, in other words, the hyperplane H,, cuts the face
F in two. Then the equality (F) + K = (F') + K¢ holds.

(¢) In the situation of (b), let Fy = F n H,. Then the equality (Fy) + K = (F) + K holds.

(d) Let X be a subset of V. Then X + K = (X + Ky) u (X + K_). If moreover X < H,, we
also have X + Ko = (X + K4) n (X + K_).
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K,
Ist term of S;,)

K, H, 3rd term of S,y Siii)

K_

Figure 2: A two-dimensional representation of a five-sided three-dimensional cone K. In (b) the
four different contributions to g(Ky) are marked.

Proof. We first prove (a). The inclusion (F) + K, < (F)+ K clearly holds, so we just need to show
the reverse inclusion. Let x € (F') + K, and write = y + 2, with y e (F) and z € K. As F & H,
there exists ¢y’ € F' such that (u,3’) > 0. Then for a € R~ large enough we have (u,ay’ + z) > 0,
hence ay’ +z€ K. Asx = (y — ay’) + (ay’ + z), this shows that x € (F) + K.

We now prove (b). The inclusion (F) + Ky < (F') + K clearly holds, so we just need to verify
the reverse inclusion. Let x € (F) + K, and write z = y + z with y € (F') and z € K. By the
assumption on F, the image of F' by p is not contained in R>¢ or in R¢q; as this image is a cone
in R, we conclude that it is equal to R. In particular, we can find y’ € F such that {u,y") = —{u, 2).
Then z = (y—y') + (¥ + 2) withy — ' € (F), ¥y + z € K and {u,y + z) = 0, hence z € (F) + K.

We prove (c). The inclusion (Fp) + K < (F) 4+ K is clear, so we need to show the reverse
inclusion. By the proof of (b), the image of F by u is equal to R, so we can find 3’ € F such that
Qu, 'y = {pyyy. Thenx = (y—vy')+ (' +2) withy—y € (F), ¥ + 2 € K and (u,y —y') = 0, hence
x € <F0> + K.

Finally, we prove (d). The inclusion (X + Ky) u (X + K_) € X + K is clear. Conversely, let
xr € X+K, and write x = y+z withy € X and z € K. Then either z € K, in which casex € X+ K,
or z € K_, in which case x € X + K_. The inclusion X + Ky € (X + K;) n (X + K_) is also clear
and holds without any condition on X. Assume that X < H,,, and let z € (X + K;) n (X + K_).
Write x = y1 + 21 = Y2 + 22, with y1,y2 € X, 21 € Ky and 29 € K_. Then (u,y1) = {u,y2) = 0, so

(s 21) = () = s yn) = s ) = (o y2) = s 22)-
As {p,z1) = 0 and (i, z9) < 0, this implies that {u, z1) = {u, z2) = 0, hence that z1, zo € Ko, and
sox e X + K. L]

Proof of Theorem[A.1.6. We first show that A : C(V) — K (V) ®z K(V) and ¢ are valuations.
We check the criterion of Theorem Let K € C(V) and let pe V. We define as before three

closed convex polyhedral cones K, = K n H,f, K_=KnH,, K=K n H, Weshow that

e(K) +¢e(Kp) =e(K4) +e(K-). (A.3)
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If K, = Ky then K = K_ so equation is clear. The case where K_ = Kj is similar. Suppose
that K, # Kgand K_ # Ky. Then the image of K, by uis R>g, so K cannot be a vector subspace
of V, and similarly K_ cannot be a vector subspace of V. This implies that (K1) = e(K_) =0,
so equation holds if and only if ¢(K) = —e(Kp). As K is strictly included in K, we have
dim(Kp) = dim(K) — 1, so we need to prove that K is a vector subspace if and only if Ky is. If K
is a vector subspace of V' then so is Ky. Suppose that Ky is a vector subspace of V. We want
to prove that K also is a vector subspace of V. Without loss of generality we may assume that
(K)=V.As K, # Ko and K_ # K, the hyperplane H, meets the relative interior of K, and so
(Koy = Hy, hence H, = Ko < K. As K contains points in both open half-spaces cut out by H,
this implies that K = V.

We now treat the case of A. The faces F' of the cone K come in four disjoint categories. For
each category, we consider the contribution to the sum defining A(K).

(i) F is a face of Ky, but not of Ko, that is, F* < H,". Then by Lemma [A.2.1(a) we have
(Fy+ K =(F) + K. Hence the contribution is

Sp= Y (DO [F@F) + K]
FeF(K)nF(Ky)
F¢F(Ko)
- D (~)F) - [F] @ [(F) + K]

Fe(F(K+)nF(K))—F(Ko)

(ii) F'isafaceof K_, but not of Ko, thatis, F'* < H, . Asin case (i), we have (F)+K = (F)+K_,

and the contribution is

Sy = Z (-1 [Pl @ [(F) + K]
FeF(K)nF(K_)
F¢F(Ko)
- ) (1A [F] @ [(Fy + K]

Fe(F(K-)nF(K))-F(Ko)

(iii) F is a face of all three cones K, K_ and K, that is, we have F' < H,,. Here the contribution
is

Sty = Z (‘Udim(F) [FI®[(F) + K]
FeF(K)
FCH,

= >, (~)TE - [Fl@ (KF) + K4 + [(F) + K-] = [(F) + Ko))),

FeF(K4)nF(K_)nF(Ko)

since (F)+ K = ((F)+ Ky) v ((F)+ K_)and (F) + Ky = (F)+ K+)n ((F)+ K_) by
Lemma[A.2.1}(d).

(iv) The face F' gets cut into three faces: Fy, = Fn K; in Ky, F©. = Fn K_ in K_ and
Fy = F n Ky in Ko. Then we have (F) = (Fy) = (F_). By Lemma [A.2.1(b), we have
(Fy+ K =(F) + Ky, and so

(F)+ K=(Fi)+ Ky =(F_)+ K_={(F) + K.
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By Lemma [A.2.1}c), we also have (F) + K = (Fy) + K, and by Lemma |[A.2.1{d) we have
[{(Fo) + K| = [{Fo) + K;] + [{Fo) + K_] — [{Fo) + Ko]. So the contribution is

Sy =, ()MOLFIQUF) + K]
FeF(K)
F being cut
= > ()R 4 [F] - [R) @ [(F) + K]
FeF(K)
F being cut
= ) 0O (R [FY) + K]+ [FL@ (L) + K- - [Fo] ® [(Fo) + K])

FeF(K)
F being cut

- Y <—1>dim<F>-([F+]®[<F+>+K+]+[F_]®[<F_>+K_]
iy

— [Fo] ® [(Fo) + K+ ] = [Fo] ® [(Foy + K] + [Fo] ® [(Fo) + K0]> :

Now expand A(K) as S(;) + Sis) + S(iisi) + Sgiv)- We use use the fact that (—1)dim(F) — _(_7)dim(Fb)
in the third, fourth and fifth terms of S;,). The contributions to A(K ), respectively A(K_), are
given by the sum S(;), respectively S(;;), the first term in the sum S;;), respectively the second
term, and the first and third terms in the sum S;,), respectively the second and fourth terms. See
Figure [2[ (b). Finally, the third term of the sum S(;;;) and the fifth term of the sum S;, yield the
sum for —A(Kj), which proves that A(K) = A(K;) + A(K_) — A(K)).

We now prove that A is coassociative. Let K € C(V). Then

(A®idgw)(AK)) = (A®idgwy) | Y, (D™ F[FI@[(F) + K]
FeF(K)
= Z Z d1mF+d1mG[ ]®[<G>+F]®[<F>+K]

FeF(K) GeF(F

We want to compare this expression with (idg 1) ®A)(A([K])). To calculate this last expression,
we need a description of the faces of the cone (G) + K, where G is a face of K. Let H be the
collection of hyperplanes containing a facet of K. Then H is a finite central hyperplane arrangement
on V and, as in Subsection we write £ = Z(H) and .7 = T (H). Let C and T be the relative
interiors of G and K respectively. We have C € £ and T € J n %, and there is a bijection
{De Zoc:D<T}— {FeF(K):Gc F}sending D to D. Let H(C) be the subarrangement
of H whose hyperplanes are the ones containing C' (or equivalently GG). By Lemma the cone
{(G) + K is the closure of the unique chamber of H(C) containing 7', and there is a bijection from
the set {D € % : D < T} to the set of faces of (G) + K sending D to (G) + D. We deduce
that there is a bijection from the set {F € F(K) : G < F} to F({(G) + K) sending F to (G) + F.
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Moreover, Lemma iv) states that this bijection preserves dimensions. Thus we obtain

(idre(v) ®A)(A(K)) = (idy®A) [ Y (1) C[GI@ [(G) + K]

GeF(K)

_ Z Z (_1>dimF’+dimG[G] ® [F/] ® [<F/> + K]
GeF(K) F'e F((G)+K)
= > Y, (FnImaERCRlQ G + F1® [(F) + K]
GeF(K) FEF(K):GSF
= (AQidg))(A(K)).
This completes the proof of the coassociativity of A.
We finally prove that € is a counit of A. Let K € C(V). Suppose first that K is not a vector

subspace of V. Then the only face of K that is a vector subspace is {0}, and the only face F such
that (F') + K is a vector subspace is K. Hence

(idgy @) (AK)) = Y ()" [Fl@e((F) + K])
FeF(K)
= ()" N K] @< ([KK)))
_ (_1)dimK(_1)dim<K>[K] ®1= [K]

and

(e®@idrw)(AK)) = Y (1) ([F]) @ [(F) + K]

FeF(K)
= (-1 =([{0}] ® [K] = [K].

If K is a vector subspace of V' then the only face of K is K itself, so A(K) = (—1)4™ K [K]|® [K],
and we clearly have

(idg vy ®e)(A(K)) = ([dg(v) ®e)(A(K)) = [K]. B

B Review of 2-structures

The concept of 2-structure for a root system was introduced by Herb to calculate discrete series
characters on real reductive groups. See for example Section 5 of [Her01] or Section 4 of the review
article [Her00]. In this section we review Herb’s constructions and adapt them so that they work
for an arbitrary Coxeter system having finite Coxeter group. We also adapt some of heer results
to this setting and give detailed elementary proofs of these results. Although this is not strictly
necessary, we think that it might be valiable, as the proofs of these results in the literature can be
very hard to follow for people not already immersed in the representation theory of real groups.

We fix a finite-dimensional R-vector space V and an inner product (-,-) on V. For every
v eV — {0}, we denote by s, the (orthogonal) reflection across the hyperplane v'.

Whenever we need to describe the irreducible root systems, we use the description given in the
tables at the end of [Bou68|, except that we write (eq,...,e,) for the canonical basis of R”. When
we need a system of positive roots in these root systems, we also use the ones given in these tables.
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This appendix is organized as follows. Subsections and [B.2] contain the definitions and
results respectively. Subsections and [B-4] contain the technical proofs. The verification that the
Coxeter group W acts transitively on the set of 2-structures takes place in the fourth subsection.

B.1 Pseudo-root systems

Definition B.1.1. A finite subset ® of V' — {0} is called a pseudo-root system if it satisfies the
following conditions:

(a) for every a € ®, we have ® n Ra = {+a};

(b) for every a, 8 € @, the reflection s, sends § to a vector of the form ¢y, with ¢ € R~o and
v e .

If all the elements of ® are unit vectors, we call ® a normalized pseudo-root system. In that case,
condition (b) become “s,(3) € ®”.

Remark B.1.2. We use this definition because it is convenient in the context of Coxeter systems. A
root system (in the usual sense) is a pseudo-root system, which is not normalized in general. The
converse is not true, even if we allow ourselves to replace the elements of ® by scalar multiples,
because of the existence of non-crystallographic Coxeter systems (see Proposition .

Pseudo-root systems are called “root systems” in [Hum90, Section 1.2] and [BB05, Section 4.4].
We avoid this terminology because it is not compatible with the established definition of root
systems in representation theory.

Remark B.1.3. If ® is normalized or an actual root system then the group W preserves ®, so the
action of W on V restricts to an action of W on ®. In general, we can still make W act on ® by
declaring that if w € W and o € ® then w - « is the unique element 3 of ® such that w(a) € R=of.
This reduces to the previous action if ® is normalized or an actual root system. Whenever we write
an element of W acting on an element of ®, this is the action that we mean.

Definition B.1.4. Let ® < V be a pseudo-root system. A subset A of ® is called a system of
simple pseudo-roots if

(a) The set A is a vector space basis for the linear span of ®.

(b) For every o € ®, we can write a = ZﬁeA ngf, where the coefficients ng are in R and they are
either all nonnegative or all nonpositive.

The corresponding system of positive pseudo-roots is then
Pt =qm{2 ngf :ngeRxg v,eeA}.
BeA
We also write @~ = —®™T.

Definition B.1.5. Let ® < V be a pseudo-root system. We say that ® is irreducible if there is no
partition ® = ®; L $y, with &; and P2 nonempty pseudo-root systems such that (a1, as) = 0 for
every a1 € ®1 and every as € ®o.

Proposition B.1.6. The following two statements hold:
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(i) ([Hum90, Section 1.9] and [Hum90, Section 1.4].) Let & < V be a pseudo-root system and
A < ® be a system of simple pseudo-roots. Let W = W(®) be the subgroup of GL(V)
generated by the reflections sq for a € @, and let S = {sq : « € A}. Then (W, S) is a Cozeter
system where W is finite, and the Coxeter graph of (W,S) is connected if and only if ® is
irreducible.

Moreover, W acts transitively on the set of systems of positive pseudo-roots if we use the

action of Remark[B.1.3

(ii) (fHum90, Section 5.4].) Conversely, let (W,S) be a Cozeter system with W finite, and let
p: W — GL(V) be its canonical representation on V = @, g Res (see the beginning of
Subsection [2.9). Then ® = {p(w)(es) : w € W, s € S} is a normalized pseudo-root system
and A = {es : s € S} is a system of simple pseudo-roots in ®.

Definition B.1.7. Let ® < V be an irreducible pseudo-root system. We say that @ is of type A,,
respectively By, D,, Es, F7, Eg, Fy, Hs, Hy, I2(m) with m > 3, if the corresponding Coxeter
system is of that type. Here we use the classification of simple finite Coxeter systems proved
in [GB85, Chapter 5|. See Table 1 in [BB05, Appendix A].

Remark B.1.8. The Coxeter group of type Iz(m) is the dihedral group of order 2m. Note that
types I2(3) and Ay are isomorphic, types I2(4) and By are isomorphic, and types I5(6) and G are
isomorphic. We did not include I5(2) in the list of irreducible types, because the corresponding
Coxeter system is not irreducible, as it is isomorphic to Ay x Aj.

We will use the following lemma when introducing the sign associated to a 2-structure in Propo-
sition Recall that, if r > 1, then the lexicographic order on R" is defined by (x1,...,2,) <
(y1,...,yr) if there exists 1 <4 < r such that 2; < y; and that 2; = y; for 1 <j<i—1. Itisa
total order. Furthermore we say that a vector x is positive if x > (0,0, ...,0).

Lemma B.1.9. Let ® < V be a pseudo-root system. Let vy,va,...,v. be linearly independent
elements of V' such that no element of ® is orthogonal to every v;. Define ®* to be the set of a« € P
such that the element ((c,v1), (o, v2), ..., (a,vy)) of R™ is positive with respect to the lexicographic
order on R". Then ® is a system of positive pseudo-roots.

Proof. We complete (v1,...,v,) to a basis (v1,...,v,) of V, where n is the dimension of V. If
v,w € V, we say that v < w if ((v,v1),...,(v,v,)) < ((w,v1),...,(w,v,)) in the lexicographic
order on R™. This defines a total order on V in the sense of [Hum90, Section 1.3], and ®* is the
corresponding positive system in ®. By the theorem in [Hum90, Section 1.3], ®* is a system of

positive pseudo-roots in the sense of Definition O
Definition B.1.10. If § = (v1,...,v,) is a sequence of linearly independent elements of V' such

that 6 N ® = @, we denote the system of positive pseudo-roots of Lemma by q); .

B.2 2-structures

We define 2-structures, generalizing a notion introduced by Herb for root systems; see for example
the beginning of [Her00, Section 4]. We also generalize some of the results of [Her01, Section 5] to
Coxeter systems with finite Coxeter groups.

We fix a pseudo-root system ® in V' and a system of positive pseudo-roots ®+ < ®. We denote
by (W, S) the corresponding Coxeter system (see Proposition .
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Definition B.2.1. A 2-structure for ¢ is a subset ¢ of ®, that is, a pseudo-root system in V
satisfying the following properties:

(a) The subset ¢ is a disjoint union ¢ = ¢1 L Y2 L - - - U @,, where the ¢; are pairwise orthogonal
subsets of ¢ and each of them is an irreducible pseudo-root system in V of type Aj, By or
I>(2"), for n = 3.

(b) Let ot = n®*. If w e W is such that w(e™) = ¢ then det(w) = 1.

Remark B.2.2. Although condition (b) involves the set of positive pseudo-roots ¢ in ¢, it does
not actually depend on the choice of ¢, because the Coxeter group of ¢ acts transitively on sets
of positive pseudo-roots in .

Remark B.2.3. If ¢ € @ is a 2-structure then there is no a € ® that is orthogonal to every element
of . Indeed, if such an « existed then the associated reflection s, would fix every element of ¢,
and in particular send ¢t to itself, which would contradict condition (b) of Definition [B.2.1]

Let T(®) < 2% be the set of all 2-structures for the pseudo-root system ®. The following propo-
sition is proved in Subsection [B.4] where we also show that each irreducible pseudo-root system
contains a 2-structure and give the type of this 2-structure. This introduces no circularity in the
arguments: the only results in this appendix that depend on Proposition are Lemmas
and and these lemmas are not used in Subsections and B4

Proposition B.2.4. The group W acts transitively on the collection of 2-structures T (®).
Let ¢ € T(®). We write o7 = o n ®" and ¢~ = ¢ n &, and we define

W(p, @) ={we W :w(p") c &t}
Wi(p, @) ={weW w(p") cp'}={weW w(p")=¢"}.

Note that Wi(p, ®T) is a subgroup of W, and that the subset W (¢, ®*) of W is stable by right
translations by elements of Wi (p, ®T).

Corollary B.2.5. Let p € T(®). Then the map W — T(®), w — w(yp) induces a bijection

W(p, @)/ Wi(p, ") — T(®).

Proof. We denote by f: W — T(®) the map defined by f(w) = w(p).

If u e Wi(p, @), then u(p) = ¢, so f(wu) = f(w) for every w € W. So the map f does induce
a map from W (p, @)/ W1(p, ®T) to T(®), that we denote by f.

We show that f is surjective. Let ¢’ € T(®). By Proposition there exists w € W such
that w(yp) = ¢’. By the theorem in [Hum90, Section 1.3], the set w=!(®*) N is a system of positive
pseudo-roots in ¢, so, by Proposition there exists v € W (yp), where W (yp) is the Coxeter
group of ¢, such that v(p*) = w1 (®%) N p. Then wv(pt) = T Nnw(p) = &, so wv e W(p, dT),
and wo(p) = w(p) = ¢, that is, f(wv) = ¢'.

We show that f is injective. Let w,w’ € W(yp,®*) such that w(p) = w'(¢). Then we have
w™lw' (@) = ¢, and, again by the theorem in [Hum90, Section 1.3], the set w™tw’(¢™) is a system
of positive pseudo-roots in ¢, so there exists v € W (i) such that v~ 'w=tw’(p*) = ¢*. This means
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Figure 3: The dihedral pseudo-root system I(8) with the two choices of § = (a, o )

that we have v’ = wvu with u € Wi(p,®"). So we will be done if we show that v = 1. Note
that wv(p') = wou(e™) = w'(¢") € ®*. Suppose that v # 1; then there exists a € ™ such that
v(a) € ¢, and then wv(a) = —w(—v(a)) € &~ (because w € W (p, 1)), contradicting the fact
that wv(p*) c ®T. Sov = 1. O

The following proposition, which follows immediately from Lemma 5.6 of [Her01] for root sys-
tems, can be proved via a direct calculation for the remaining irreducible types. We will not need
this result, so we do not go into details.

Proposition B.2.6. Let T(,)(®) be the set of ¢ = ® that satisfy condition (a) of Definition|B.2.1|
Then T (®) is exactly the set of elements of T(q)(®) that are mazimal with respect to inclusion.

Proposition B.2.7. Let p € ® be a 2-structure. Define an ordered subset 8 of ¢ as follows. Select
a linear order of the irreducible components v1, w2, ...,0r of . If @; is a pseudo-root system of
type A1, let 0; be the singleton p; n @*. If @; is a pseudo-root system of type Bo or Iy(2F) for
k = 3, pick two orthogonal elements o and o from ©; N ot such that ; Nt = 4’0:(&,0/)’ that is,
such that an element B of @; is in @ if and only if either (8,a) > 0, or (8,a) = 0 and (3,a’) > 0.
Let 0; be the sequence (o, &'). Finally let 6 be the concatenation of the sequences 01,0, . .. ,0,.

Let @; be the system of positive pseudo-roots defined by the sequence 0 as in Lemma and
let wg be the unique element of W such that wg - @ = CI);F. Then the sign det(wg) depends only
on @ and not on the choices made to form 6.

Note that there are several choices when producing the ordered set 6. First we have to select
an order @1, @y, ..., ¢y There are r! ways to do this. Second, if ¢; is of type By or of type I5(2F),
there are two possible choices for the pseudo-roots o and «o’; see Figure |3, These selections do not
influence the sign of wy, although they do of course affect the set <I>;’.

Proof of Proposition[B.2.7. Let 6 and 6’ be the results of two possible sequences of choices. For
an element w in W, recall that its length ¢(w) E|is also given by the cardinality of the intersection

By definition, this is the minimal number of factors in an expression of w as a product of reflections corresponding
to simple pseudo-roots.
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w- &~ &7 see [BBO5, Proposition 4.4.4]. Note that &5 n @y, = wg - DT nwy - - = wy -

(w;lwg - ®* A~ &) which has cardinality E(w;lwg). Hence to prove that the signs agree, that is,

that det(wg) = det(wy), it suffices to show that the set ®; N ®,, has an even number of elements.
We can reduce to the following two cases:

(a) there exists 1 < i < r such that 6 and 8" differ only by the choice of the two pseudo-roots in
the factor ¢;;

(b) there exists 1 <4 <r — 1 such that 6; = 6, 0;1.1 = 0; and 0; = 9;- if j #4,7+ 1.

We begin by treating case (a). We write 6; = (o, a’) and 8, = (8,5'). Let v € &) n .
Then ~ is orthogonal to ¢1,...,p;—1, and it is not orthogonal to ;. Also, as the sets of positive
pseudo-roots in ¢; defined by 6; and 6, are equal by assumption, we cannot have v € ¢;. Write
v =ca+cda’ + A with A € o1 n -+ n @i By the previous sentence, we have A # 0. The vector
t(y) = —(8a8a)(7) = ca + da’ — X is also in ®. It is not equal to v because A # 0, and it is in
CID"; N ®,, because v and ¢(7y) have the same inner product with any element of the set {a, o/, 3, 8'}.
Note that we clearly have ¢(¢(7y)) = . We have constructed a fixed-point free involution ¢ on the
set <I>; N ®,,, which proves that this set has even cardinality.

We treat case (b). Suppose first that ¢; and ¢;11 are both of type Aj, so we can write 0; = (o)
and 6,11 = (a;11). Let ® be the pseudo-root system ® n (Ra; + Ray41). If @ is of type Iz(m)
with m > 3, then m must be even because ®' contains two orthogonal pseudo-roots. But then
@’ contains a multiple 5 of a; — a;41, and the reflection sg sends ¢ to p* because it fixes every
element of ; for j = 7,741 and exchanges o; and «;41, contradicting the definition of a 2-structure.
Hence @' is of type A; x Aj, and then the fact that |®; n ®| is even follows from Lemma m

Suppose that ¢; is of type A; and ;11 is of type I2(2™) with m > 2. Then we can write §; = («;)
and 0;41 = (41,0 ). Let @, respectively ®”, be the pseudo-root system ® N (Rey; + Ravit1),
respectively ® n (Ray + Revj, ), and let #” be the sequence that we obtain from 6 by switching
a; and a;11. As @i is of type I2(2™), it (and hence ®) contains a pseudo-root [ proportional
to ajy1 — aj, 4, and then sg(®') = ®”, so ® and ®” are of the same type. By Lemma the
cardinalities of the sets @;r N ®,, and CIDJ,, N @, have the same parity, and so @; N @, | is even.
The case where ; is of rank 2 and ;1 of rank 1 follows from the previous case by switching the
roles of ¢; and @;41.

Finally, suppose that both ¢; and ¢;41 are of rank 2. Then we can write 6; = («;,}) and
iv1 = (i1, 05, 1). We move from € to §' by the following sequence of operations:

(1) We switch o and ;1. By Lemma m and Remark this changes the sign of wy by
(—1)™/271 where the pseudo-root system ®; = & N (Ra, + Ray4 1) is of type Io(my).

(2) We switch a; and o, ;. By the same lemma and remark, this changes the sign by (—1)m2/2_1,
where the pseudo-root system ®3 = ® N (Ra; + Ro, ;) is of type Io(my).

(3) We switch a; and a;41. By the same lemma and remark, this changes the sign by (—1)’”3/2_1,

where the pseudo-root system ®3 = & n (Ra; + Rayi11) is of type Iz(ms).

(4) We switch a; and o, ;. By the same lemma and remark, this changes the sign by (—1)’”4/2_1,
where the pseudo-root system ®4 = ® N (Ray; + Rov, ;) is of type I(my).

The reflections s; = s,,_ and s;11 = 54, t1—al,, AT€ both in W because ¢; contains a multiple of
o — 042 and ;1 contains a multiple of a; 11 — a;H. Observe now that s;(®1) = P3, s;(P2) = Dy,
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Si+1(®1) = P9 and $;4+1(P3) = P4. Thus the four pseudo-root systems P, P9, P35 and P, are
isomorphic and hence m; = my = m3 = my. Hence performing operations (1) to (4) changes the
sign by ((—1)™/2~1)4 = 1, that is, det(wg) = det(wy). O

Definition B.2.8. Let ¢ € ® be a 2-structure, and let wy be as in Proposition Then the
sign (—1)"*"" det(wg), where 7 is the number of irreducible factors of ® of type Az, with n odd and
r’ is the number of irreducible factors of ® of type Io(2n’ + 1) with n’ > 3 odd, is called the sign
of ¢ and denoted by €(p, ), or by €(p) if the system of positive pseudo-roots ®* is understood.

Remark B.2.9. For a root system, this coincides with the definition of the sign of ¢ from Herb’s
paper |[Her83|, and it differs from the definition in Section 5 of Herb’s paper [Her01]; see Remark 5.1

of [Her01] and Corollary
Lemma B.2.10. Let ¢ € @ be a 2-structure, that is, ¢ € T(P).

(i) For every w e W, the identity e(w(p), w(®™)) = e(p, ®1) holds.

(ii) Let w € W be such that w(e™) € ®. Then the identity e(w(p), ) = det(w) - e(p, PT)
holds.

Proof. Both identities follow easily from the definition of (¢, ®T). Indeed, let 6 be a subset of ¢
chosen as in Proposition [B.2.7] For every w € W, w(yp) is a 2-structure for ® and its subset w(6)
satisfies the same conditions for the system of positive pseudo-roots w(®™), and also for the system
of positive pseudo-roots @1 if w(e™) < ®*. Also, we have @;0 = w - @;. This immediately
yields (i) and (ii). O

Lemma B.2.11. Let ag € ® be a simple pseudo-root, let so be the simple reflection defined by o,
let &9 = ag N ® and ®f = @9 N ®*. Let T” be the set of ¢ € T(®) such that so(p) = p; we
also consider the subsets T = {o € T" : pn Py e T(Pg)} and Ty = T" —T{". Then the following
statements hold:

(0) Let ¢ be a 2-structure for ®. Then so(p) = ¢, that is, the 2-structure ¢ is in T", if and only
if Qp € Q.

(1) The map T{" — T (®o), ¢ — @ N Pq is bijective.
(2) For every ¢ € T{", we have (p, 1) = e(p N @y, D).

(8) There exists an involution v of Ty such that, for every ¢ € Ty, we have o N Py = 1(p) N Dy

and €(t(p), ®1) = —€(p, @T).

Proof. We prove (0). If o € ¢, then sp is in the Coxeter group of ¢, so so(¢) = ¢. Conversely,
we have s,, (P — {ap}) < @ by [BB05, Lemma 4.4.3], so, if ¢ € T” and ag ¢ ¢, then so(p™) <
T N p = T, contradicting condition (b) in the definition of a 2-structure. Note also that the
subset ¢ N ®( of ®( always satisfies condition (a) in the definition of a 2-structure, but it does not
always satisfy condition (b).

We prove (1). We may assume that @ is irreducible, and we will freely use the explicit description
of 2-structures given in Subsection [B.4] If 2-structures for ® are all of type Aj for some s, which
happens in types A,, D,,, Fs, E7, Es, Hs, Hy and I(m) for m odd, then ¢ n @y € T (P) for every
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p € T(®), that is, 7 = T”, and we see in the explicit description of 2-structures that the map of
statement (1) is a bijection. It is easy to check that the same statement holds in type I2(m) for m
even.

We now suppose that ® is of type B, or Fy. (Recall that from the point of view of Coxeter
systems types B, and C,, are isomorphic.) For convenience, in this case, we take ® to be the actual
root system, with possibly non-normalized roots; this does not affect any of the definitions that we
made before. To study the map of (1), we may assume that ag = e, or oy = e; — ea. Suppose first
that g = e; —es. Then ®g is reducible. Furthermore, it is of type A1 X B,_5 if ® is of type B,,, and
of type A; x By if ® is of type Fy, where the A; factor is {£(e1 + e2)}. In both cases, it is easy to
see that 7" = 7" and that (1) holds. Suppose that ag = e,,. Then Py is irreducible. Furthermore,
it is of type Bj_1 if @ is of type B,, and of type Bs if ® is of type Fy. If ® is of type Fy or B,
with n even then again it is easy to see that 7{” = 7" and that (1) holds.

Finally, suppose that @ is of type B, with n odd and that ag = e,. If ¢ € T” then we have
¢ € T if and only if {te,} is an irreducible component of ¢. The map sending ¢g € T (®g) to
wo U {*e,} is thus an inverse to the map of (1), so statement (1) holds.

We now prove (3). We have seen in the proof of (1) that 75’ = @ unless ® is of type B, with n
odd and «g is the short simple root. Assume that we are in this case, which means that ag = e,.
Let ¢ € T;'. Then there exists 2 < i < n such that ¢1 = {*e,, te;, *e, + e;} is an irreducible
component of ¢. Write ¢ = 1 L g LI -+ L ,, where the ¢, are irreducible and ¢y = {£e;} is the
unique rank 1 component of . Set t(p) = {£e,, *e;, te, + e} L {te;} Lpsu--- e, This map
switches the roles of e; and e;. Then ¢(¢p) is also in 7', it is not equal to ¢, we have () NPy = NP
and ¢(t(p)) = . To finish the proof of (3), it suffices to show that e(c(p), @) = —e(p, @) for
every ¢ € 7. But this follows immediately from the definition of ¢(¢) and from Lemma [B.3.2]

We finally prove (2). Let ¢ € T{”. Choose an ordered subset § = {a1,...,a,} of ¢ as in
Proposition We may assume that ag € 0. If ap is in an irreducible component of ¢ of
type A1, we may assume that ag = 1. If ag is in an irreducible component of ¢ of rank 2, then,
as it is a simple pseudo-root, it cannot be the first element of # coming from this rank 2 factor of ¢
(see Figure 3| for an illustration in the case of I3(8), the general case is similar), so we may assume
that ag = a..

Suppose first that ag is in an irreducible component of ¢ of rank 2 and that ag = a,. By
the description of 2-structures in Subsection this can only happen if ® is of type B,, Fy or
Iy(m) with m even. The set {aj,...,a,—1} is an ordered subset of ¢( satisfying the conditions
of Proposition and <I>a”7 0y = S N ®y. So the statement of (2) will follow if we can show
that X = (@) — (I)a_,@()) N @~ has even cardinality. Let s = s,,. We claim that s(X) = X
and that s has no fixed points in X, which implies that X has even cardinality because s> = 1.
The fact that s has no fixed point in X follows from the facts that the fixed points of s are
the elements of 047%, that ® n o = &g and that X n &y = @. As a, ¢ ®~ and —a, ¢ O,
we have X = (&~ — {—a,}) n (@ — ((I)arﬂo U {ar})). As a, is a simple pseudo-root, we have
s(P” — {—ay}) € @ — {—a,} by [BB05, Lemma 4.4.3]. So it suffices to prove that s preserves
o — (@&90 Ufap}). If B e df — (ID(;GO is such that 8 # a,, then we cannot have (8,«;) = 0 for
every i € {1,...,r—1}; indeed, as ® is of type B,,, Fy or Is(m) with m even, the family (a1, ..., a;)
is an orthonormal basis of V', so the only element of <I>;r that is orthogonal to aq,...,a,—1 is «;.
So @, — (@&90 U {a,}) is the set pseudo-roots 3 € ® such that ((8,a1),...,(8,a—1)) > 0 (for the
lexicographic order on R"~1) and that (3, a,.) # 0. This set is stable by s, because, for every 3 € V,
we have (s(8), ai) = (8, s(ai)) = (B,:) if 1 <i <7 —1and (s(8),ar) = (8, s(ar)) = =(B, ).
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Now we suppose that aq is in an irreducible component of ¢ of rank 1 and that ag = ;. Then
0o = {ag,...,a,} is an ordered subset of ¢ satisfying the conditions of Proposition and

<I>a’790 = Qo n D, s0 ) — @Jeo ={Be®:(B,a1) > 0}. Statement (2) will follow if we can show
that

Xz(@?—@&eo)mtﬁ* ={fed :(B,a1) >0}

has even cardinality if ® is not of type Asgy, or Io(2n'+1) with n’ odd, and odd cardinality otherwise.
As ¢ has an irreducible component of rank 1, we cannot be in type Fy. We can check that X has
even cardinality by a computer calculation in the exceptional types F, G and H.

We now go through the remaining types one by one (in cases A, B and D, we use the description
of the roots from the tables at the end of [Bou68|, and not the normalized pseudo-root system):

e Type I(m): If m is even, then ¢ is a rank 2 pseudo-root system; so m must be odd, and
then ¢( is empty and €(pp) = 1. There are exactly m pseudo-roots 8 such that (5, a1) > 0,
and (m — 1)/2 of these are in ®~. So €(p) = (1)~ D/2(—1)(m=1/2 = 1 which is what we
wanted.

e Type A,: We write ag = ¢; — e;41, with 1 < i < n. Then
X={ej—ep:1<k<j=iori+l=k<j<n+1}
has cardinality n — 1, that is, even if and only if n is odd.

e Type B,: As ¢ has an irreducible component of rank 1, the integer n must be odd and « is
the short simple root, that is, g = e,,. Then

X={-e+e,:1<i<n}
has cardinality n — 1, which is even.
e Type D,: If ag = ¢; —e;41 with 1 <i < n—1, then
X={ej—er:1<k<j=iori+l=k<j<n}
u{—(ej+ep)i+l=j<k<nori#j<k=i+1}
has cardinality 2n — 4. If ayg = €,_1 + €5, then
X={ej—ey:n=j>k#n—1lorj=n—1>k}
also has cardinality 2n — 4.

O]

Lemma B.2.12. Let ¢ € ® be a 2-structure. Then |®T — ™| is an even integer. More precisely,
if ® is irreducible, we have

2nmod 4  if O is of type Aap,
|®F — ™| = { 0 mod 4 if ® is of type Asps1, B, D, E, Fy,Ga, or H,
2"(m —1) if ® is of type I3(2"m) with m odd.

Proof. This follows from the explicit description of 2-structures for the irreducible types in Subsec-

tion [B.41 O
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B.3 Orthogonal sets of pseudo-roots and 2-structures

For ® a root system (not just a pseudo-root system), let &(®) be the set of all finite sequences
(a1, a9, ...,a.) of elements of ® which are pairwise orthogonal and such that their entries all have
the same length, that is, the following two conditions hold:

(a) (avi,aj) =0foralll<i<j<m,
(b) llaall = Jloaf = -+ = [l

Lemma B.3.1. Suppose that ® is a root system. Let 6 = (a1,...,0p) and 0" = (P1,...,0s) be
elements of O(®), and suppose that 6+ A ® = (0')- A ® = @ and that the elements of 6 and ¢’
have the same length. Then there exists w € W such that {aq,..., .} = {w(f1),...,w(Bs)}. In
particular, r = s holds.

Proof. Let <I>;’, respectively @;’,, be the system of positive roots defined by 6, respectively ¢, as in
Definition [B:1.10] As W acts transitively on the set of systems of positive roots, there exists w € W
such that w(®y,) = ®;. As w(®,,) = ®$(51)7_“7w(55), we may assume that ®, = ®,,. We then wish
to prove that 6 and 6’ are equal up to reordering their entries. We proceed by induction on the length
of . If § is empty then ® is also empty because of the condition ® N0+ = &, so ¢ is empty and we are
done. Suppose that r > 1. Let jo be the smallest index j such that (o, 8;) # 0. Since N () = 2,
this minimum exists. As j, € ®,, = ®,, we cannot have (a1, j,) < 0, so (o, ;) > 0. As @
is a root system and not just a pseudo-root system, the corollary after [Bou68, Chapitre VI, § 1,
Ne 3, Théoreme 1] implies that the difference v = ay — B, is an element of ® U {0}. Suppose that
~ € <I>;r,. As (v,85) = 0 for 1 < j < jo, we must then have 0 < (v, 85,) = (a1,8j,) — (Bjos Bjo)-
The hypothesis states that || = |B;,] and hence we deduce that (a1, Bj,) = [B50ll> = e - [ Bj -
This inequality implies that a1 = fj,, contradicting the fact that + is nonzero. Suppose that
v € ®,. Then 0 < (a1, —7) = (a1, Bj,) — (a1, 1), so (a1, Bj,) = |ai]?, and again this implies that
a1 = fj, and contradicts the assumption. Hence we conclude that v = 0, that is, a1 = 3j,. Let
dg=aifn® = 6]% N®, 0y = (ag,...,a,) and 6] = (51,...,@),...,63). Then @ is a root system,
0 and §; are in (D), g N Bo = ()" N Do = &, and BF, = Dy N By = B, N Py = D, . We

0,0}
can apply the induction hypothesis to conclude that {ag,...,a,} = {B1,...,Bjy,...,Bs}, and this
immediately implies that {a1,...,a,.} = {B1,..., 8s}. O
Lemma B.3.2. Let ® be a normalized pseudo-root system, let 6 = (aq, ..., ) be a sequence of

pairwise orthogonal elements of ® such that 0+ N ® = @, and let 6 be the sequence obtained from 6
by exchanging «; and a;r1. Consider the subroot system ® = ® N (Ray + Ray1). Then @ is of
type Ay x Ay or Ia(m) with m = 4 even, and the parity of the cardinality of @; N ®,, is given by

|®5 NP, =0 mod 2 if @ = Ay x Ay,
@y " @, =m/2—1 mod2 if &' = Ir(m).

Proof. As @ is a pseudo-root system of rank 2 (because it is contained in a 2-dimensional vector
space and contains the two linearly independent pseudo-roots «; and a;41), it is of type A1 x A
or I(m) with m > 3. Moreover, ® contains two orthogonal pseudo-roots, so it cannot be of
type Iz(m) with m odd.
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Table 1: The number of orthogonal sets of roots or pseudo-roots of size k where the elements
all have the same length in the exceptional/sporadic reflection arrangements. Note the double
occurrence of 10! in the Fg column. The equality of the columns in type Fj comes from the fact
that there is an automorphism of the underlying vector space that preserves angles, sends short
roots to long roots, and sends long roots to doubles of short roots (for instance, the automorphism
given by e; — e1 + ea, ea —> €] — €3, e3 —> e3 + e4 and eg —> €3 — ey).

k| Es E; Es Fy Fy Hz Hy
short long
1 72 126 240 24 24 30 120
211080 3780 15120 72 72 60 1800
314320 32760 302400 96 96 40 2400
412160 75600 1965600 48 48 1200
) 90720 3628800
6 60480 3628800
7 17280 2073600
8 518400

We now set C = &, n @, and calculate the parity of |C|. Let v € C. Then ~ is orthogonal to
a1, ...,Q—1, SO we can write v = ca; +da;+1 + A with A € Span(aq, . .. ,ai+1>J' and cay; +da+1 # 0.
Set () = —Sa;Sa;,1 (7). Then ¢(y) € ® and u(y) = ca; + doip1 — A, so v(y) € C. Also, we clearly
have ¢(c(y)) = 7, and «(7) is equal to v if and only if A = 0, that is, if and only if v € ®’. We have
defined an involution ¢ of C, and we conclude that |C| = |Cy| mod 2, where Cy = &' n C is the
set of fixed points of ¢ in C. If ®' is of type A; x A; then we easily see that Cy is empty, so we
are done. Suppose that @’ is of type I2(m) with m even. Let v = ca; + daj1 € Y, with ¢,d € R.
Then v € C'if and only if ¢ > 0 and d < 0. The set Cj contains exactly one quarter of the elements
of @ — {+aj, ta;41}, that is, |Co| = (2m —4)/4 =m/2 — 1. O

Remark B.3.3. If we view the root system A; x A; as the dihedral pseudo-root system I3(2) then
the conclusion of Lemma is that |®, N ®,,| = m/2 — 1 mod 2 if & = I(m) with m even and
m = 2.

Lemma B.3.4. Suppose that ® is an irreducible root system (not just a pseudo-root system) and
not of type Go. Let @ be a system of positive roots of ® and let o = ® be a 2-structure. Define
a subset 0 of ¢ as in Proposition[B.2.7. Then there is a choice of the sequences 0; for which 0 is
an element of O(®). Moreover, if ® is of type By, or Fy we can choose 6 to consist of short roots.
Similarly, if ® is of type C,, or Fy we can choose 6 to consist of long roots.

Proof. By Remark we have - N ® = @. We use the notation of Proposition If all
the roots of ® have the same length (which is the case for A, D, Es, E7 and Eg), then there is
nothing to prove. Note also that if ¢; is an actual root system of type By (that is, with the correct
root lengths), then the two possible choices for 6; are the set of short positive roots and the set of
long positive roots.

Suppose that @ is of type B,. If ¢ has no irreducible component of type A, then we choose
the two short positive roots in each ;. Suppose that ¢ has a factor of type A;. We show that
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Table 2: The 2-structures in types A, D and E where m = |(n+ 1)/2] in type A and m = |n/2] in
type D.

Type of root Type of
system ® | 2-structures are isomorphic to 2-structure
An {i(el - 62), i(eg - 64), caey i(ezm_l - egm)} AT
D, {+e1 tes, testeq, ..., Feanm_1 =t ean} Agm
Eg {te1 * ey, tegt ey} Af
Er {+e1 +ea, tegtes, testes, *(er—es)} AT
Ex {te; L eg, tegteq, destes, Lertes) A3

this factor cannot contain long roots. Suppose on the contrary that this occurs. Without loss of
generality, we may assume that o1 = {+(ej + e2)}. The rank 2 factors of ¢ cannot contain e; — ea,
so they are all in e ney. All the rank 1 factors that do not contain e; — ex must also be in ef Nes.
If e; — ea were not in ¢ then the reflection se, ., would act as the identity on all the elements on ¢,
which contradicts the definition of a 2-structure. Hence {+(e; — e2)} is another rank 1 factor of ¢.
But then the reflection s., preserves ¢, which is impossible. Hence all the A; factors of ¢ contain
only short roots, and we choose the ; in the By factors to contain the two short positive roots.

The case of C), is similar, with the roles of short and long roots uniformly exchanged.

Finally suppose that ® = Fj. In this case we can similarly show that the 2-structure ¢ has

type B%, allowing us to pick either short or long roots in each factor. ]

B.4 2-structures in the irreducible types

In this subsection we prove Proposition that is, the fact that the group W acts transitively
on the collection of 2-structures 7 (®). It is enough to prove this result for irreducible pseudo-root
systems. We proceed by a case by case analysis.

Types A,, D,, Eg, E7 and Eg

Suppose that ® is a root system of type A,,, D,, or E,, with m € {6,7,8}. As all the roots of ® have
the same length and as ® contains no By root system, the 2-structures for ® are exactly the maximal
sets ¢ = {£au, ..., ta,} such that (a1,...,a,) € 0(®). By Lemma[B.3.1] for any (v,..., o) and
(B1,...,08s) on O(®), there exists w € W such that {aq,...,a,} = {w(B1),...,w(Bs)}. Hence the
group W acts transitively on 7 (®). In particular, all the 2-structures for ® are isomorphic, so we
can determine their type. See Table

Types B, and C),

Suppose that ® is a root system of type B,,. This will also give the type C), case, since B, and C,
correspond to the same Coxeter system. We claim that W acts transitively on 7 (®). In particular,
all the 2-structures for ® are isomorphic to

o {te1, tea, fe1 tea} - L {+eam—_1, Teom, team—1 * €2} if n. = 2m,
0 = .
{iel, +eo, e £ 62} Ll eee L {ieszl, +eom, teom—_1 L egm} L {i€2m+1} if n=2m+1,
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so they are of type By" if n = 2m is even, and of type By x A; if n = 2m + 1 is odd.

We prove the claim by induction on n. The case n = 1 is clear. Suppose that n > 2. Let
¢, € ®. By Lemma we can choose sequences 0 of ¢ and 6 of ¢’ as in Proposition
such that 6,6 € 0(®) and that these subsets contain only short roots. By Lemma we may
assume that 6 and 6" coincide up to the order of their elements. Denote by ¢ = 1 L -+ L s and
¢ =) U U the decomposition into irreducible systems that gave rise to § and . We can
always change the order on the ¢; and the Lp;-.

Suppose that ¢ is of rank 1, so that ¢; = {+a1}. We may assume that oy € ). If ¢ is of
rank 1 then ¢} = ¢1. As ® N 7 is an irreducible root system of type B,_1, the conclusion follows
by the induction hypothesis.

If ¢} is of rank 2 then ¢/ is a By root system whose short positive roots are a; and some s,
and we may assume that as € @o. In particular, 5 = a1 —ay € ®. If o = {+as} then the
reflection sg preserves ", which is not possible. So 3 is of rank 2 (in particular, n > 3), which
means that it is a By root system whose short roots are as and some a3. We may assume that
asz € 5. In particular, ap — ag € ®, s0 v = sg(aa — a3z) = oy — a3 is also a root. The irreducible
components of s () are ¢}, {+as}, ¢s3,...,0s. As ® N (p})1 is a root system of type B,_», the
induction hypothesis implies that there is a w € W such that w(¢") = s,(¢), which finishes the
proof in this case.

Suppose that ¢; is of rank 2, and call its other short positive root as. We may assume that
ar € ¢). If ] is of rank 1 then ¢} = {f+a;}, and we can repeat the reasoning of the previous
paragraph with the roles of ¢ and ¢’ exchanged. If ¢} = ¢; then the conclusion follows from the
induction hypothesis applied to the B, _2 root system golL N ®. Finally, suppose that ¢} is of rank 2
and ¢} # p1. Let az be the other short positive root of ¢]. As ag and as are both short roots,
B = ap —az € ®. Note that the irreducible components of sg(p) are ¢/, sg(p2),...,s8(ps), s0
again the induction hypothesis implies that there exists w € W such that sg(¢) = w(¢’), and we
are done.

Type F}

Suppose that ® is a root system of type Fj. Then we can show that W acts transitively on 7 (®)
exactly as in type B,,. In particular, any 2-structure is isomorphic to ¢g = {te1, fea, e + ea} U
{£es, teq, tes £ eq}, so it is of type B3.

Dihedral types

Suppose that ® is a pseudo-root system of type Iz(m) with m > 5 (this includes the type G root
system). It is straightforward to see that W acts transitively on 7(®). If m is odd then all the
2-structures for ® are isomorphic to ¢y = {*e;}, and in particular of type A;. If m is even then
all the 2-structures for ® are of type I2(2"), where 2" is the largest power of 2 dividing m.

Types H; and Hy

Suppose that ® is of type H3 or Hy. We use the description of the pseudo-root systems Hj
and Hy given in |[GB85, Table 5.2] where they are called I3 and Ij. In particular, we choose ®
to be normalized. We claim that W acts transitively on 7 (®), and so every 2-structure for ® is
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isomorphic to

(B.1)

) {£e1, fea, tes} if ® = Hj,
70 {iel,ieg,ieg,ie4} if® = H4,

and in particular it is of type A$ if ® = Hj and of type A} if ® = Hy.

It is clear by the chosen description of ® that all of the inner products of elements of ® are
in Q[v/5], and in particular 1/4/2 never appears. So there are no pseudo-roots in ® with an angle
of 7/4 between them, which implies that ® does not contain any pseudo-root system of type Iy(m)
with m a multiple of 4, and so 2-structures for ® (if they exist) can only have irreducible components
of type Aj.

We check easily that the set g given in equation is a 2-structure, so it remains to show
that all the maximal sets of pairwise orthogonal pseudo-roots are conjugate under W to (y, where
Co = {e1,€e2,e3} if ® = Hs and (y = {e1,e2,€3,e4} if & = Hy. Any element of the stabilizer Wy of (y
in W must act on Span(®) by a permutation of the coordinates, and it must be an even permutation
to be in W. This implies that the cardinality of W} is 3 for ® = H3 and 12 for ® = H4. Using a
computer, it is not hard to count all the maximal sets of pairwise orthogonal pseudo-roots in Hj
and Hy (see Table . We find that there are 40 such sets for H3 and 1200 such sets for Hy. In
both cases, this number is equal to |W|/|Wp|, so W does act transitively on the set of maximal sets
of pairwise orthogonal pseudo-roots, and hence also on T (®).

C Relationship with locally symmetric spaces

In this appendix, aimed at specialists of Shimura varieties, we give more details about the con-
nection between some of the objects introduced in this article and the calculation of the weighted
cohomology of locally symmetric spaces.

This is a continuation of the discussion in the first part of the introduction, and we return to the
notation of this discussion. We do not suppose yet that the group G(R) has a discrete series. In the
introduction, we only considered cohomology of X with constant coefficients, but now we need to
introduce a coefficient system. Let F be an irreducible algebraic representation of G. Then, via the
G(Q)-covering (G(R) x G(A™))/(Kyx x K) — X and the action of G(Q) on F, we get a locally
constant sheaf Ly on X, and we will write H*( X, F') instead of H*(X, Lr) for every reasonable
cohomology theory H*. E| If T < B are a maximal torus and a Borel subgroup of G¢ respectively,
then the representation F' has a highest weight Ap in the Lie algebra of T that is dominant with
respect to B. |Z| The space V of the article will typically be this Lie algebra with the inner product
coming from the Killing form of the Lie algebra of G in the usual way. The pseudo-root system ®
that defines the hyperplane arrangement will be the root system of T" in the Lie algebra of G, with
the positive system determined by B; sometimes T" will be defined over R, and ® will be the real
root system of 7.

The first cohomology theory that we consider is weighted cohomology, from which the weighted
complex and the weighted sum get their names. Weighted cohomology was introduced by Goresky—
Harder-MacPherson in the paper [GHM94]. It depends on an auxiliary parameter called a “weight

5We need a different construction of Lz if Xk is the set of complex points of a Shimura variety and H* is étale
(intersection) cohomology, but this is not the point of this appendix.

"The representation F might not stay irreducible when seen as a representation of Ge, but we ignore this technical
complication.
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profile” and is the cohomology of a sheaf of truncated differential forms on the reductive Borel-Serre
compactification of X, where the truncation depends on the weight profile. The Hecke algebra
acts on the weighted cohomology groups, and they are explicit enough to make the calculation of
the traces of Hecke operators possible; see the paper [GMO03| of Goresky and MacPherson. Also,
there are two “middle” weight profiles for any group G and, if Xg is a Shimura variety, then the
two middle weighted cohomology groups are both isomorphic to the intersection cohomology of the
Baily-Borel compactification of X . What we call the “weighted sum” in this article appears in the
calculation of the trace of a Hecke operator on the weighted cohomology groups, hence the name.
This calculation is carried out in [GMO03] and summarized in Section 7 of [GKM97]. Very roughly,
the trace of a Hecke operator on a weighted cohomology group is a sum over conjugacy classes of
rational Levi subgroups M of G and certain conjugacy classes of v € M(Q) of the product of:

— a normalizing factor;

— an orbital integral on the conjugacy class of v in M (A*) that depends on the Hecke operator
but not on the weight profile or on the coefficient system;

— a “term at infinity” Ljs(y) that depends on the weight profile and the coefficient system but
not on the Hecke operator.

See formula (7.14.7) of |[GKM97|. Goresky, Kottwitz and MacPherson then introduce a stable
virtual character ® on G(R) (this notion is defined on page 495 of |[GKM97|) that depends on
the coefficient system via the highest weight of F' and on the weight profile. We can recover the
function Lj; as the restriction of ©® to M up to chasing some denominators depending on M;
this last statement is Theorem 5.1 of [GKM97], and it works for any weight profile. While the
expression for the function L) involves “relative” weighted sums 1)3,/c where we are in the situation
of Example [4.2.1] (see pages 504-505 of [GKM97]), the virtual character © only involves the simpler
weighted sums 13y, where we are in the situation of Subsection In both cases, the space V'
is the real Lie algebra of a maximal torus T of (G, the pseudo-root system is the set of real roots
of T in GG, and the element A of V is, up to a shift depending on the weight profile, of the form
w(Ap + pB) — pB, where B © T is a Borel subgroup (defined over C), A\p is the highest weight of F
corresponding to B, pp is half the sum of the positive roots and w is an element of the Weyl group.

We now assume that the weight profile is one of the middle profiles and that X is a Shimura
variety. Then, as explained in the introduction, we know that weighted cohomology is isomorphic
to L? cohomology, for which we have a spectral description known as Matsushima’s formula (even
though it was proved by Borel and Casselman in this generality). This implies in particular that
the virtual character © is equal to the stable discrete series character corresponding to the dual
of the representation F', hence that the weighted sum v is equal to what are known as stable
discrete series constants; see for example pages 493 and 498-500 of [GKM97] for a quick review
of these constants. The first statement of the previous sentence is proved directly in Theorem 5.2
of [GKM97|, and the second statement is proved directly in Theorem 3.1 of the same paper. The
stable discrete series constants can be expressed in terms of 2-structures by the work of Herb (see
for example [Her00, Theorem 4.2]), and this is the expression on the right-hand side of the identity
of Corollary

We can go further and relate the traces of Hecke operators on L? cohomology to the Arthur-
Selberg trace formula for a particular test function. This is done in Arthur’s paper |[Art89]. The
resulting trace formula can then be stabilized. Although this is a very complicated process in the
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general case, it is slightly less involved for our test function, by the work of Kottwitz (unpublished)
and Zhifeng Peng ([Penl9]). Thus we get character formulas relating the virtual character © and
stable discrete series characters on endoscopic groups of G. However, when we express everything
in terms of 2-structures, the distinction between G and its endoscopic groups disappears. Indeed,
endoscopic groups of G have root systems that are subsystems of the root system of G, and 2-
structures, being very small root systems, can be shared between G and its endoscopic groups.
(We are summarily ignoring many complications, due in particular to the appearance of transfer
factors in the character identities.)

We finally come to the case where X is a Shimura variety defined over some number field F
and we are interested, not just in the action of the Hecke algebra on the intersection cohomology
IH*(X g, F) of its Baily-Borel compactification X g, but also in the action of the absolute Galois
group of E. There is a calculation of the trace of a Hecke operator times a power of the Frobenius
morphism (at at unramified place p) that parallels the calculation of [GMO03|: see [Mor08] for the
algebraic version of weighted cohomology, the papers [Mor10] and [Morl1] for the trace calculation
in the cases of unitary and symplectic groups (over Q), and [Zhul7| for the trace calculation in
the case of orthogonal groups. We obtain an expression for this trace that is reminiscent of for-
mula (7.14.7) of |GKM97], that we quickly described above, except that the orbital integral at p is
twisted and that the terms Lys() are slightly different. Nevertheless, by using techniques similar
to those of the proof of Theorem 5.1 of [GKM97|, in particular the Weyl character formula and
Kostant’s theorem, we can still relate Lys(7) to the relative weighted sum 1), in the situation
of Example For symplectic groups over Q, this calculation is done in the proof of Proposi-
tion 3.3.1 of [Morl1]. The difference with the situation of [GKM97] is that L? cohomology does
not have an action of the absolute Galois of E, so we do not have a nice spectral expression for
our trace, and in particular we do not know if there is a stable virtual character “interpolating”
the function Ljs as in Theorem 5.1 of [GKM97]. Fortunately, we are still able to relate our trace
expression directly to a sum of stable trace formulas for well-chosen test functions on endoscopic
groups of G, and this is where Theorem [4.2.2] comes into play: We must express the function L,
in terms of stable discrete series constants for endoscopic groups of G. Via Herb’s formula, this
reduces to giving a formula for Lj,s involving 2-structures for the root systems of these endoscopic
groups, but, as we explained above, these 2-structures can also be seen as 2-structures for the root
system of G. Again, we are sweeping many technical complications under the rug, and the story is
by no means finished once we have Theorem [4.2.2]
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