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Abstract

An in-depth study of the Tchebyshev transforms of the first and second kind of a poset is taken.
The Tchebyshev transform of the first kind is shown to preserve desirable combinatorial proper-
ties, including EL-shellability and nonnegativity of the cd-index. When restricted to Eulerian
posets, it corresponds to the Billera, Ehrenborg and Readdy omega map of oriented matroids. The
Tchebyshev transform of the second kind U is a Hopf algebra endomorphism on the space of qua-
sisymmetric functions which, when restricted to Eulerian posets, coincides with Stembridge’s peak
enumerator. The complete spectrum of U is determined, generalizing work of Billera, Hsiao and
van Willigenburg. The type B quasisymmetric function of a poset is introduced and, like Ehren-
borg’s classical quasisymmetric function of a poset, it is a comodule morphism with respect to the
quasisymmetric functions QSym. Finally, similarities among the omega map, Ehrenborg’s r-signed
Birkhoff transform, and the Tchebyshev transforms motivate a general study of chain maps which
occur naturally in the setting of combinatorial Hopf algebras.

1 Introduction

The Tchebyshev transform (of the first kind) of a partially ordered set, introduced by Hetyei [22],
enjoys many properties. When applied to an Eulerian poset, it preserves the Eulerian property [22].
Its name derives from the fact that when this transform is applied to the ladder poset, the cd-
index of the resulting poset (expressed in terms of the variables c = a + b and e = a − b) yields a
noncommutative generalization of the familiar Tchebyshev polynomial of the first kind [22, Section 8].

The ab-index is a noncommutative polynomial which encodes the flag f -vector of a poset. Via
a change of basis, one obtains the cd-index, a polynomial that removes all the linear redundancies
in the case of Eulerian posets [3]. The cd-index has proven to be an extraordinarily useful tool for
studying inequalities for the face incidence structure of polytopes [6, 15, 17].

The omega map ω, discovered by Billera, Ehrenborg and Readdy [7], links the flag f -vector of
the intersection lattice of a hyperplane arrangement with the corresponding zonotope, and more
generally, the oriented matroid. On the chain level the omega map is the inverse of a “forgetful
map” between posets. Aguiar and N. Bergeron observed the omega map is actually Stembridge’s peak
enumerator ϑ [29]. See [9] for details.

∗2000 Mathematics Subject Classification. 16W30, 06A11, 06A07, 05E99. Keywords: poset transforms, Eulerian
posets, cd-index, quasisymmetric functions, Hopf algebra.
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Z〈a,b〉 : Ψ(P ∗Q) = Ψ(P ) ·Ψ(Q)
QSym : F (P ×Q) = F (P ) · F (Q)
BQSym : FB(P �Q) = FB(P ) · FB(Q)

Figure 1: The product structures of Z〈a,b〉, QSym and BQSym and their relation to poset products.

In this paper we discover new properties of the Tchebyshev transform. On the flag vector level it is
a linear transformation. Surprisingly, when restricted to the class of Eulerian posets the Tchebyshev
transform is equivalent to the omega map. The core idea underlying this equivalence is that the
Zaslavsky’s expression [31] for the number of regions in a hyperplane arrangement (

∑
x∈P (−1)ρ(x) ·

µ(0̂, x)) applied to an Eulerian poset gives the cardinality of the poset. As a corollary, the Tchebyshev
transform preserves nonnegativity of the cd-index.

We also show the Tchebyshev transform preserves EL-shellability. The edge labeling we give
implies that on the flag vector level the Tchebyshev transform of the Cartesian product of two posets
equals the dual diamond product of the transformed posets, that is,

Ψ(T (P ×Q)) = Ψ(T (P )) �∗ Ψ(T (Q)),

where T denotes the Tchebyshev transform. This proof is bijective for posets having R-labelings. A
second proof is given in a more algebraic setting. See Sections 9 and 11.

The theory broadens when studying the Tchebyshev transform of the second kind U . Hetyei [22]
observed there is another transform U which when applied to the ladder poset yields the Tchebyshev
polynomials of the second kind. This Tchebyshev transform of the second kind is a Hopf algebra
endomorphism on the space of quasisymmetric functions QSym. The Tchebyshev transform U and
the peak enumerator ϑ coincide on the cd-level but differ on the ab-level, that is, they agree on the
cd-index of Eulerian posets, but differ on the ab-index of general posets. Billera, Hsiao and van
Willigenburg [9] determined the eigenvalues and eigenvectors of Stembridge’s map ϑ when it acts on
Z〈c,d〉 to itself. As the transform U acts on Z〈a,b〉 to itself, we can extend the diagonalization of the
map ϑ to this broader setting, hence deriving the complete spectrum and eigenvectors.

There are many ways to encode the flag vector of a poset. One is via the ab-index. Another is via
quasisymmetric functions. We will now introduce a third, which we call the type B quasisymmetric
function FB of a poset. The type B quasisymmetric functions BQSym were introduced by Chow [13].
All three encodings behave nicely under different poset products. See Figure 1. The ab-index Ψ and
the quasisymmetric function F of a poset are coalgebra maps. In contrast, the type B quasisymmetric
function FB of a poset is a comodule map with respect to the classical quasisymmetric function. See
Figure 2.

In the study of the omega map ω relating a hyperplane arrangement to its zonotope, the r-signed
Birkhoff transform BT in [16], and the Tchebyshev transforms T and U , the essential defining map
has one of the following forms:

g(u) =
∑
k≥1

∑
u

κ(u(1)) · b · ĝ(u(2)) · b · · ·b · ĝ(u(k)), (1.1)

g̃(u) =
∑
k≥1

∑
u

ĝ(u(1)) · b · ĝ(u(2)) · b · · ·b · ĝ(u(k)). (1.2)
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Z〈a,b〉 : ∆(Ψ(P )) =
∑

0̂<x<1̂

Ψ([0̂, x])⊗Ψ([x, 1̂])

QSym : ∆QSym(F (P )) =
∑

0̂≤x≤1̂

F ([0̂, x])⊗ F ([x, 1̂])

BQSym : ∆BQSym(FB(P )) =
∑

0̂<x≤1̂

FB([0̂, x])⊗ F ([x, 1̂])

Figure 2: The coalgebra structures of Z〈a,b〉, QSym and BQSym and their relation to posets.

The maps ω, BT and T have the form (1.1) and the map U has the form (1.2). We therefore call
these maps g̃ and g the chain maps of the first and second kind. This phenomenon suggests a wider
theory exists on the coalgebra level.

In Sections 12 and 13 we study general functions of these types. We show the chain map of
the second kind g̃ is a Hopf algebra endomorphism on quasisymmetric functions. This is a concrete
example of Aguiar, Bergeron and Sottile’s theorem that the algebra of quasisymmetric functions QSym
is the terminal object in the category of combinatorial Hopf algebras [1]. Furthermore, the chain map
of the first kind g is an algebra map on the type B quasisymmetric functions. See Theorems 12.5
and 13.5. The map g is also a comodule endomorphism on the type B quasisymmetric functions. See
Theorem 13.7.

We end the paper with concluding remarks and many questions for further study.

2 Background Definitions

For a graded poset P with rank function ρ, minimal element 0̂ and maximal element 1̂, let P ∪ {−̂1}
and P ∪{2̂} denote P adjoined with a new minimal element −̂1, respectively a new maximal element 2̂.
For a chain c = {0̂ = x0 < x1 < · · · < xk = 1̂} in P define the weight of the chain c by

wt(c) = (a− b)ρ(x0,x1)−1 · b · (a− b)ρ(x1,x2)−1 · b · · ·b · (a− b)ρ(xk−1,xk)−1,

where ρ(x, y) = ρ(y) − ρ(x) and a and b are noncommutative variables. Observe that k〈a,b〉 is
spanned by the ab-polynomials of the form wt(c). The ab-index of the poset P is defined as

Ψ(P ) =
∑

c

wt(c),

where the sum is over all chains c in P . For further information on posets, see Stanley [25].

A poset is Eulerian if every interval [x, y], where x < y, has the same number of elements of
even rank as elements of odd rank. When P is Eulerian the ab-index of P can be written in terms of
c = a+b and d = a ·b+b ·a, and the resulting noncommutative polynomial is called the cd-index [4].
Its importance lies in that it removes all the linear redundancies in the flag f -vector entries [3], it
mirrors geometric operations on a polytope as operators on the corresponding cd-index [19, 21], and
it is amenable to algebraic techniques to derive inequalities on the flag vectors [6, 15, 17].
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On the ring Z〈a,b〉 define a coproduct ∆ on an ab-monomial u1u2 · · ·uk by

∆(u1u2 · · ·uk) =
k∑

i=1

u1 · · ·ui−1 ⊗ ui+1 · · ·uk,

where each ui is either an a or a b and extend by linearity to Z〈a,b〉. It is straightforward to verify the
coproduct ∆ is coassociative, that is, (id⊗∆) ◦∆ = (∆⊗ id) ◦∆. For convenience in what follows in
later sections, define ∆k : Z〈a,b〉 −→ Z〈a,b〉⊗k by ∆1 = id and ∆k+1 = (id⊗∆k)◦∆. The coproduct
∆ satisfies the Newtonian condition:

∆(u · v) =
∑
u

u(1) ⊗ u(2)v +
∑
v

uv(1) ⊗ v(2). (2.1)

Here we are using the usual Sweedler notation [30], that is, ∆(u) =
∑

u u(1) ⊗ u(2).

The essential property of the coproduct ∆ is that it makes the ab-index into a coalgebra homo-
morphism [21].

Theorem 2.1 For a graded poset P , the coproduct of the ab-index of P is given by

∆(Ψ(P )) =
∑

0̂<x<1̂

Ψ([0̂, x])⊗Ψ([x, 1̂]).

This allows poset computations to be translated into the coalgebra Z〈a,b〉. See [6, 7, 16, 18, 19, 21].

Using the coassociativity, we have the following corollary.

Corollary 2.2

∆k(Ψ(P )) =
∑

0̂=x0<x1<···<xk=1̂

Ψ([x0, x1])⊗Ψ([x1, x2])⊗ · · · ⊗Ψ([xk−1, xk]). (2.2)

There is an involution on Z〈a,b〉 that sends each monomial u = u1u2 · · ·uk to its reverse u∗ =
uk · · ·u2u1. Directly we have (u · v)∗ = v∗ · u∗, ∆(u∗) =

∑
u u

∗
(2) ⊗ u∗(1) and Ψ(P ∗) = Ψ(P )∗ where P ∗

denotes the dual of the poset P .

3 Quasisymmetric functions

Another way to encode the flag f -vector of a poset P is by the quasisymmetric function F (P ) [14]. Let
P be a poset of rank n, where n ≥ 0 and k is an infinite field of characteristic zero. The quasisymmetric
function of the poset P is defined as the limit

F (P ) = lim
m−→∞

∑
0̂=x0≤x1≤···≤xm=1̂

t
ρ(x0,x1)
1 · tρ(x1,x2)

2 · · · tρ(xm−1,xm)
m . (3.1)
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Observe that for m = 2 this sum is a homogeneous rank-generating function, that is, it encodes the
f -vector of the poset. For larger m it encodes all the entries in the flag f -vector of cardinality less
than or equal to m− 1.

A different way to define the quasisymmetric function of a poset is due to Stanley [27]. It is

F (P ) =
∑

0̂=x0≤x1≤···≤xm−1<xm=1̂

t
ρ(x0,x1)
1 · tρ(x1,x2)

2 · · · tρ(xm−1,xm)
m ,

where the sum ranges over all such multichains with the last step xm−1 < xm a strict inequality. In
this paper we will use the original definition in equation (3.1).

The power series F (P ) is homogeneous of degree n in the infinitely-many variables t1, t2, . . .. It
also enjoys the following quasisymmetry: for i1 < i2 < · · · < ik and j1 < j2 < · · · < jk the coefficients
of tp1

i1
· tp2

i2
· · · tpk

ik
and tp1

j1
· tp2

j2
· · · tpk

jk
are the same. Power series in the variables t1, t2, . . . that exhibit

quasisymmetry are called quasisymmetric functions and the algebra of these power series is denoted
by QSym. It is straightforward to observe that a linear basis for QSym is given by the monomial
quasisymmetric function, defined by

M(p1,p2,...,pk) =
∑

i1<i2<···<ik

tp1
i1
tp2
i2
· · · tpk

ik
.

Since every polynomial in a = (a− b) + b and b can be written in terms of a− b and b, we can
define a linear map γ from k〈a,b〉 to QSym by

γ
(
(a− b)p1−1 · b · (a− b)p2−1 · b · · ·b · (a− b)pk−1

)
= M(p1,...,pk).

This map is an isomorphism between k〈a,b〉 and quasisymmetric functions having no constant term.
For a poset P of rank greater than or equal to one, we have γ(Ψ(P )) = F (P ). For the one element poset
• of rank 0, let F (•) = 1QSym. Here we write 1QSym for the identity element of the quasisymmetric
functions in order to distinguish it from the unit in Z〈a,b〉. For more on the Hopf algebra structure
of the quasisymmetric functions QSym, we refer the reader to [14].

Let us mention two important identities for the quasisymmetric function F (P ) of a graded poset P .
For P and Q two graded posets, we have

F (P ) · F (Q) = F (P ×Q), (3.2)
∆QSym(F (P )) =

∑
0̂≤x≤1̂

F ([0̂, x])⊗ F ([x, 1̂])

= F (P )⊗ 1QSym + 1QSym ⊗ F (P ) +
∑

0̂<x<1̂

F ([0̂, x])⊗ F ([x, 1̂]), (3.3)

where equation (3.3) is valid when the poset P has rank at least 1. Note the coproduct on quasisym-
metric functions differs from the coproduct on ab-polynomials. In order to avoid confusion, we denote
the coproduct on quasisymmetric functions by ∆QSym(f) =

∑QSym
f f(1) ⊗ f(2). For proofs of these

identities, see [14, Proposition 4.4].
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From a poset perspective identities (3.2) and (3.3) define the algebra and coalgebra structure
of QSym. Equation (3.3) also motivates the following relation between the two coproducts ∆ and ∆QSym:

∆QSym(γ(v)) = γ(v)⊗ 1QSym + 1QSym ⊗ γ(v) +
∑
v

γ(v(1))⊗ γ(v(2)). (3.4)

4 Enumerating flags in the Tchebyshev transform of a poset

Definition 4.1 For a graded poset P with cover relation ≺ define the Tchebyshev transform (of the
first kind) T (P ) to be the graded poset with elements given by the set

T (P ) = {[x, y] : x, y ∈ P ∪ {−̂1}, x < y} ∪ {1̂T (P )},

and the cover relation given by the following three rules:

(i) [x, y] ≺T (P ) [y, w] if y ≺ w,

(ii) [x, y] ≺T (P ) [x,w] if y ≺ w, and

(iii) [x, 1̂] ≺T (P ) 1̂T (P ).

As a remark, Hetyei’s original definition of the Tchebyshev transform is in terms of the order re-
lation rather than the cover relation of the poset. Note the rank function ρT (P ) on T (P ) satisfies
ρT (P )([x, y]) = ρP (y) and ρT (P )(1̂T (P )) = ρ(P ) + 1.

Our interest in studying the Tchebyshev transform of posets arises from the following result of
Hetyei [22].

Theorem 4.2 Let P be an Eulerian poset. The Tchebyshev transform of P , T (P ), is also an Eulerian
poset.

For a graded poset P let z : T (P ) → P ∪ {2̂} be the map z([x, y]) = y and z(1̂T (P )) = 2̂. Observe
the map z is order and rank preserving and hence preserves chains and the weight of chains.

We now prove a proposition which can be viewed as an analogue of a result of Bayer and Sturm-
fels [5] (see Proposition 4.6.2 in [11]) and of Proposition 4.1 in [16]. This connection will be made
clearer in Sections 12 and 13.

Proposition 4.3 For a chain c = {0̂ = x0 < x1 < · · · < xk = 2̂} in P ∪ {2̂}, the cardinality of the
inverse image of c is given by

|z−1(c)| =
k−1∏
i=1

|[xi−1, xi]|.

6



To prove this proposition we need a lemma and its corollary.

Lemma 4.4 Given three elements x < y < w in the poset P , the condition [x, y] <T (P ) [z, w] is
equivalent to either z = x or z ∈ [y, w).

Proof: We proceed by induction on ρ(y, w). If ρ(y, w) = 1, we have by definition that the element z
is either x (condition (ii)) or y (condition (i)). Assume now that ρ(y, w) ≥ 2 and let [u, v] be
an atom in the interval [[x, y], [z, w]]. Since ρ(v, w) < ρ(y, w) we have by the induction hypothesis
that either z = u or z ∈ [v, w). The union of all such intervals [v, w) is the open interval (y, w).
Moreover, since v covers y, we have that u is either x or y. That is, the only choices for z are
{x} ∪ {y} ∪ (y, w) = {x} ∪ [y, w), proving the induction step. 2

Corollary 4.5 Given three elements x < y < w in the poset P , the number of elements z such that
[x, y] <T (P ) [z, w] equals the cardinality of the interval [y, w].

The proof of Proposition 4.3 follows by repeated use of Corollary 4.5.

Lemma 4.4 is essentially [22, Definition 2.1] and Definition 4.1 is [22, Proposition 2.3] in the case
of graded posets.

5 The Tchebyshev transform on ab-polynomials

In this section we express the ab-index of the Tchebyshev transform in terms of the ab-index of the
original poset.

Define two linear maps A and C from Z〈a,b〉 to Z as follows. Let A be the algebra map A(a) = 1
and A(b) = 0 and let C be the map given by the relation

C(u) = 2 ·A(u) +
∑
u

A(u(1)) ·A(u(2)).

Lemma 5.1 A graded poset P satisfies

A(Ψ(P )) = 1 and C(Ψ(P )) = |P |.

Proof: The first identity A(Ψ(P )) = 1 follows since the chain {0̂ < 1̂} is the only chain having
non-zero weight after substituting b = 0. The second identity follows from

C(Ψ(P )) = 2 ·A(Ψ(P )) +
∑

0̂<x<1̂

A(Ψ([0̂, x])) ·A(Ψ([x, 1̂]))

= 2 +
∑

0̂<x<1̂

1

= |P |,
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where the first step follows from the fact the ab-index is a coalgebra homomorphism. 2

Lemma 5.2 The linear map C satisfies the recursion

C(1) = 2,
C(a · u) = A(u) + C(u),
C(b · u) = A(u).

Proof: Directly C(1) = 2 · A(1) = 2. For the second identity, by the Newtonian condition (2.1) we
have

C(a · u) = 2 ·A(a · u) +A(1) ·A(u) +
∑
u

A(a · u(1)) ·A(u(2))

= 3 ·A(u) +
∑
u

A(u(1)) ·A(u(2))

= A(u) + C(u).

Similarly, the third identity follows from

C(b · u) = 2 ·A(b · u) +A(1) ·A(u) +
∑
u

A(b · u(1)) ·A(u(2))

= A(u). 2

We now consider three linear operators on Z〈a,b〉. For a homogeneous ab-polynomial u define κ
and ν by

κ(u) = A(u) · (a− b)deg(u) and ν(u) = C(u) · (a− b)deg(u),

and extend by linearity. Define T by the sum

T (u) =
∑
k≥1

∑
u

ν(u(1)) · b · ν(u(2)) · b · · ·b · ν(u(k−1)) · b · κ(u(k)), (5.1)

where the coproduct is into k parts. Observe that equation (5.1) directly implies the following propo-
sition.

Proposition 5.3 The operator T satisfies the functional identity

T (u) = κ(u) +
∑
u

ν(u(1)) · b · T (u(2)).

The slight abuse of notation between the Tchebyshev transform of a graded poset and the Tcheby-
shev transform of ab-monomials is explained by the following theorem.
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Theorem 5.4 The ab-index of the Tchebyshev transform of a graded poset P is given by

Ψ(T (P )) = T (Ψ(P ) · a).

Proof: Using the chain definition of the ab-index and Proposition 4.3, we have

Ψ(T (P )) =
∑

c

|z−1(c)| · wt(c)

=
∑
k≥1

∑
c

k−1∏
i=1

C(Ψ([xi−1, xi])) ·A(Ψ([xk−1, xk])) · wt(c)

=
∑
k≥1

∑
c

k−1∏
i=1

C(Ψ([xi−1, xi])) ·A(Ψ([xk−1, xk]))

·
(

k−1∏
i=1

(a− b)ρ(xi−1,xi)−1 · b
)
· (a− b)ρ(xk−1,xk)−1

=
∑
k≥1

∑
c

(
k−1∏
i=1

ν(Ψ[xi−1, xi]) · b
)
· κ(Ψ[xk−1, xk])

=
∑
k≥1

∑
u

(
k−1∏
i=1

ν(u(i)) · b
)
· κ(u(k))

= T (u).

Here the second to last step uses the fact the ab-index is a coalgebra homomorphism and u is the
ab-index of P ∪ 2̂, that is, u = Ψ(P ∪ 2̂) = Ψ(P ) · a. 2

6 Connection with the ω operator of oriented matroids

We begin by recalling the ω map for oriented matroids [7].

Theorem 6.1 Let ω : Z〈a,b〉 → Z〈c, 2d〉 be the linear map defined on monomials in the variables a
and b by replacing each occurrence of ab by 2d and the remaining letters with c’s. For an oriented
matroid, let R be its lattice of regions and L be its lattice of flats. Then the cd-index of R is given by

Ψ(R) = ω(a ·Ψ(L))∗.

In fact, the cd-index of the lattice of regions R is indeed a c-2d-index.

Hsiao has found an analogous version of this theorem for the Birkhoff transform of a distributive
lattice [24]. Ehrenborg has generalized Hsiao’s work to an r-signed Birkhoff transform [16]. In this
section we show the Tchebyshev transform is likewise connected to the omega map. This allows us to
conclude the Tchebyshev transform preserves nonnegativity of the cd-index.

9



Theorem 6.2 Given a cd-polynomial v, it satisfies

T (v · a) = ω(a · v∗)∗.

Proof: Following [7] let η be the unique operator on Z〈a,b〉 such that

η(Ψ(P )) =

 ∑
0̂≤x≤1̂

(−1)ρ(x) · µ(0̂, x)

 · (a− b)ρ(P )−1,

for all posets P . Next, let the operator ϕ be defined as follows:

ϕ(u) =
∑
k≥1

∑
u

κ(u(1)) · b · η(u(2)) · b · · ·b · η(u(k)). (6.1)

By Proposition 5.5 in [7] we have ω(a · v) = ϕ(a · v). Also observe

T (u∗)∗ =
∑
k≥1

∑
u

κ(u(1)) · b · ν(u(2)) · b · · ·b · ν(u(k)). (6.2)

For any Eulerian poset P we have η(Ψ(P )) = ν(Ψ(P )) since (−1)ρ(x) ·µ(0̂, x) = 1 for all elements x
in an Eulerian poset P . Since the cd-indexes of all Eulerian posets span all cd-polynomials, we have
for all cd-polynomials v that η(v) = ν(v). Now consider the coproduct ∆k applied to u = a · v, where
v is a cd-polynomial. We obtain

∆k(a · v) ∈ Z〈a,b〉 ⊗ Z〈c,d〉⊗(k−1).

Hence the expressions in equations (6.1) and (6.2) agree on u = a · v. 2

Recall that the Tchebyshev transform T preserves Eulerianness. We obtain two important corol-
laries.

Theorem 6.3 If an Eulerian poset P has a non-negative cd-index then so does the Tchebyshev trans-
form T (P ), that is, Ψ(P ) ≥ 0 implies Ψ(T (P )) ≥ 0.

Proof: The cd-polynomial Ψ(P ) has non-negative terms as an ab-polynomial. Applying Theorems 5.4
and 6.2 and observing that ω sends an ab-monomial to a c-2d-monomial, we see that non-negativity
is preserved. 2

Corollary 6.4 The Tchebyshev transform T (P ) of an Eulerian poset P has a c-2d-index, that is, the
cd-index Ψ(T (P )) belongs to Z〈c, 2d〉.
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Since a given cd-monomial expands into 2k ab-monomials, where k is the number of c’s and d’s
appearing in the monomial, we also have the following corollary.

Corollary 6.5 Let u be a cd-monomial consisting of k letters. Then the Tchebyshev transform T (u·a)
is a sum of 2k c-2d-monomials.

In the paper [22] Hetyei introduced a sequence of posets T1, T2, . . . which he called the Tchebyshev
posets. The Tchebyshev poset Tn+1 is simply the Tchebyshev transform of the rank n ladder poset Ln,
where Ln is the unique poset with cd-index cn−1. The rank n ladder poset has two elements in each
non-trivial rank and each element covers each element of rank one less. This poset is also known as
the butterfly poset.

Hetyei has the following result for coefficients of the cd-index of Tn [22, Theorem 7.1].

Corollary 6.6 The coefficient of the cd-monomial ck1dck2d · · ·dckr+1 in the cd-index of the Tcheby-
shev poset Tn = T (Ln) is given by

2r · (k1 + 1) · · · (kr + 1).

Proof: By Theorem 6.2 we only have to find the coefficient of ckr+1d · · ·dck2dck1 in ω(a · cn). When
expanding a · cn in terms of ab-monomials, we are only interested in those monomials where the con-
secutive letters ab appear precisely in the positions of the d’s in the cd-monomial ckr+1d · · ·dck2dck1 .
It remains to choose the other letters in the ab-monomial. The first kr+1 letters before the first ab
must be all a’s. The next string of letters (between the first and second ab’s) must have the form biaj

where i+ j = kr. Hence there are kr +1 possibilities. The same holds for every other string of letters,
giving the product (k1 + 1) · · · (kr + 1). Finally, the omega map assigns a factor of 2 with each d. 2

Recall the hyperplane arrangement in Rn consisting of the n coordinate hyperplanes xi = 0 for
1 ≤ i ≤ n has intersection lattice corresponding to the Boolean algebra Bn. The regions of this
arrangement correspond to faces of the n-dimensional crosspolytope Cn. Hence another corollary of
Theorem 6.2 is as follows.

Corollary 6.7 The cd-index of the Tchebyshev transform of the Boolean algebra Bn equals the cd-
index of the n-dimensional crosspolytope Cn, that is,

Ψ(T (Bn)) = Ψ(Cn).

Observe that T (Bn) 6∼= Cn as can be seen from Figure 3.

7 Recursions for the Tchebyshev transform

In this section we develop recursions for computing the Tchebyshev transform. They are especially
important for ab-polynomials.
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Define a new operator σ on Z〈a,b〉 by

σ(u) =
∑
u

κ(u(1)) · b · T (u(2)),

where u is an ab-polynomial.

Proposition 7.1 The operator T satisfies the following joint recursion with the operator σ:

T (1) = 1 (7.1)
T (a · u) = (a + b) · T (u) + (a− b) · σ(u), (7.2)
T (b · u) = 2b · T (u) + (a− b) · σ(u), (7.3)

σ(1) = 0, (7.4)
σ(a · u) = b · T (u) + (a− b) · σ(u), (7.5)
σ(b · u) = b · T (u). (7.6)

Proof: Directly T (1) = 1 and σ(1) = 0. Using the Newtonian condition (2.1), we have

T (a · u) = κ(a · u) + ν(1) · b · T (u) +
∑
u

ν(a · u(1)) · b · T (u(2))

= (a− b) · κ(u) + 2b · T (u) + (a− b) ·
∑
u

(κ(u(1)) + ν(u(1))) · b · T (u(2))

= (a + b) · T (u) + (a− b) ·
∑
u

κ(u(1)) · b · T (u(2))

= (a + b) · T (u) + (a− b) · σ(u).

Here we have used the functional equation in Proposition 5.3 in the first and third equalities. Similarly,
we obtain

T (b · u) = κ(b · u) + ν(1) · b · T (u) +
∑
u

ν(b · u(1)) · b · T (u(2))

= 2b · T (u) + (a− b) ·
∑
u

κ(u(1)) · b · T (u(2))

= 2b · T (u) + (a− b) · σ(u).

For the operator σ we have

σ(a · u) = κ(1) · b · T (u) +
∑
u

κ(a · u(1)) · b · T (u(2))

= b · T (u) + (a− b) ·
∑
u

κ(u(1)) · b · T (u(2))

= b · T (u) + (a− b) · σ(u),

and

σ(b · u) = κ(1) · b · T (u) +
∑
u

κ(b · u(1)) · b · T (u(2))

= b · T (u). 2

12



Corollary 7.2 For an ab-polynomial u,

T ((a− b) · u) = (a− b) · T (u).

As a consequence, the following identity holds:

T ((c2 − 2d) · u) = (c2 − 2d) · T (u).

Proof: The first part follows from subtracting equation (7.3) from equation (7.2). The second part
follows from (a− b)2 = c2 − 2d. 2

Define the operator π on Z〈a,b〉 by

π(u) = 2b · T (u) + 2(a− b) · σ(u).

We now restrict our attention to the subalgebra Z〈c,d〉.

Proposition 7.3 The operator T satisfies the following joint recursion with the operator π:

T (a) = c (7.7)
T (c · u) = c · T (u) + π(u), (7.8)
T (d · u) = 2d · T (u) + c · π(u), (7.9)

π(a) = 2d, (7.10)
π(c · u) = 2d · T (u) + c · π(u), (7.11)
π(d · u) = c · 2d · T (u) + 2d · π(u). (7.12)

Proof: By Proposition 7.1 we have

T (c · u) = T (a · u) + T (b · u)
= (a + b) · T (u) + 2b · T (u) + 2(a− b) · σ(u) (7.13)
= c · T (u) + π(u). (7.14)

Iterating Proposition 7.1 twice yields

T (d · u) = T (ab · u) + T (ba · u)
= (a + b) · T (b · u) + (a− b) · σ(b · u) + 2b · T (a · u) + (a− b) · σ(a · u)
= [2cb + (a− b) · b + 2b · (a + b) + (a− b) · b] · T (u)

+ [c · (a− b) + 2b · (a− b) + (a− b) · (a− b)] · σ(u)
= (2d + 2c · b) · T (u) + 2c · (a− b) · σ(u) (7.15)
= 2d · T (u) + c · π(u). (7.16)
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For the operator π we have

π(c · u) = 2b · T (c · u) + 2(a− b) · σ(c · u)
= 2b · [(a + b) · T (u) + 2b · T (u) + 2(a− b) · σ(u)]

+ 2(a− b) · [2b · T (u) + (a− b) · σ(u)]
= (2d + 2cb) · T (u) + c · 2(a− b) · σ(u)
= 2d · T (u) + c · π(u).

Here for the second equality we have applied (7.13) and the sum of (7.5) and (7.6).

A straightforward double iteration of Proposition 7.1 yields

σ(d · u) = σ(ab · u) + σ(ba · u)
= b · T (b · u) + (a− b) · σ(b · u) + b · T (a · u)
=

[
2b2 + (a− b) · b + b · (a + b)

]
· T (u) + 2b · (a− b) · σ(u)

= (d + 2b2) · T (u) + 2b · (a− b) · σ(u). (7.17)

Finally, we have

π(d · u) = 2b · T (d · u) + 2(a− b) · σ(d · u)
= 2b · [(2d + 2c · b) · T (u) + 2c · (a− b) · σ(u)]

+ 2(a− b) ·
[
(d + 2b2) · T (u) + 2b · (a− b) · σ(u)

]
=

[
4bd + 4bcb + 2(a− b)d + 4(a− b)b2

]
· T (u)

+ [4b · c · (a− b) + 4(a− b)b(a− b)] · σ(u)
= (2cd + 2d · 2b) · T (u) + 2d · 2(a− b) · σ(u)
= c · 2d · T (u) + 2d · π(u),

where the second equality follows from (7.15) and (7.17). 2

Note that Proposition 7.3 offers different proofs for Theorem 6.3, Corollaries 6.4 and 6.5.

The next proposition relates the operators T and π with the operator ω.

Proposition 7.4 For cd-polynomials v, the following two identities hold:

T (v · a) = ω(a · v∗)∗,
π(v · a) = ω(a · v∗ · b)∗.

This proposition is straightforward to prove using induction, and hence we omit the proof. Notice this
argument offers a second proof of Theorem 6.2.

The next relation extends a result from [22] where the special case of the ladder poset was consid-
ered.
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Corollary 7.5 For all ab-polynomials u, the following recursion holds:

T (c2 · u) = 2c · T (c · u) + (2d− c2) · T (u).

Proof: From Proposition 7.3, we have

T (c2 · u) = c · T (c · u) + π(c · u)
= c · T (c · u) + 2d · T (u) + c · π(u)
= c · T (c · u) + 2d · T (u) + c · (T (c · u)− c · T (u))
= 2c · T (c · u) + (2d− c2) · T (u). 2

As a corollary to this recursion, we can now explain the name Tchebyshev. This result is originally
due to Hetyei [22].

Corollary 7.6 The substitution x for c and (x2 − 1)/2 for d in T (cn−1 · a) yields the Tchebyshev
polynomial of the first kind Tn(x).

Under this substitution the recurrence in Corollary 7.5 becomes the recurrence for the Tchebyshev
polynomials. The substitution for c and d takes T (a) and T (c · a) to T1(x) = x and T2(x) = 2x2 − 1,
respectively.

8 EL-shellability

For a poset P let H(P ) be the set of edges in the Hasse diagram of P , that is, H(P ) = {(x, y) :
x, y ∈ P, x ≺ y}, where ≺ denotes the cover relation in the poset P . An R-labeling of a poset P is
a map λ from H(P ) to Λ, a linearly ordered set of labels, such that in every interval [x, y] there is a
unique maximal (saturated) chain x = x0 ≺ x1 ≺ · · · ≺ xk = y having increasing labels λ(x0, x1) ≤Λ

λ(x1, x2) ≤Λ · · · ≤Λ λ(xk−1, xk). Such a chain is called rising. Furthermore an R-labeling is an EL-
labeling if the unique rising chain in every interval is also the maximal chain with the lexicographically
least labels. A poset having an EL-labeling is said to be EL-shellable. For further information
regarding EL-labelings and their topological consequences, see [12].

Recall the Jordan-Hölder set JH(x, y) of an interval [x, y] is the collection of all strings of labels
occurring from the maximal chains in the interval, that is,

JH(x, y) = {(λ(x0, x1), λ(x1, x2), . . . , λ(xk−1, xk)) : x = x0 ≺ x1 ≺ · · · ≺ xk = y}.

Theorem 8.1 Let P be an EL-shellable poset. Then the Tchebyshev transform T (P ) is an EL-
shellable poset.
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Proof: Suppose the poset P has label set Λ = {λ1 < · · · < λk}. Define the new label set Γ = {λs
1 <

· · · < λs
k < 0 < λb

1 < · · · < λb
k}. Here one should think of the superscript s as denoting “small” labels

and the superscript b as denoting “big” labels. In the Tchebyshev poset T (P ) label the edges in the
Hasse diagram by the following rule:

λ([x, y], [y, w]) = λ(y, w)s,
λ([x, y], [x,w]) = λ(y, w)b,

λ([x, y], 1̂T (P )) = 0.

We claim this is an EL-labeling of the Tchebyshev poset T (P ). For a set X of strings of labels from the
set Λ, let Xs and Xb denoted the set of strings where each label has been signed with s, respectively b.
Similarly, let Xsb denote the set of strings where each label has been arbitrarily signed s or b.

There are three types of intervals to consider.

(i) An interval of the form I = [[x, y], [x,w]] in T (P ) is isomorphic to the interval [y, w] in the original
poset P . In this case, the edge labels are from the set {λb

1, . . . , λ
b
k} and the Jordan-Hölder set

of the interval I is described by
JH(y, w)b.

Hence the lexicographically least maximal chain in the interval I is to take the lexicographically
least maximal chain in the interval [y, w] and change the labels λi to λb

i .

(ii) Let I be an interval of the form [[x, y], [z, w]], where z is an element of rank j from the half-open
interval [y, w) in the poset P . Observe that 0 ≤ j < k. Any maximal chain {[x, y] = [x0, y0] ≺
[x1, y1] ≺ · · · ≺ [xk, yk] = [z, w]} in the interval I satisfies {y = y0 ≺ y1 ≺ · · · ≺ yk = w} is a
maximal chain in the interval [y, w] and z = yj = xj+1 = · · · = xk. Thus the Jordan-Hölder set
of the interval I is described by⋃

z≺yj+1

JH(y, z)sb ◦ λ(z, yj+1)s ◦ JH(yj+1, w)b,

where ◦ denotes concatenation. To obtain a rising chain in the interval I, let m = {y = y0 ≺
y1 ≺ · · · ≺ yj = z} be the unique rising chain in the interval [y, z] and let m′ = {z = yj ≺ yj+1 ≺
· · · ≺ yk = w} be the unique rising chain in the interval [z, w]. Set xi = yi−1 for 0 < i ≤ j and
xi = z for j + 1 ≤ i ≤ k. The string of labels of this maximal chain is given by

(λ(y0, y1)s, λ(y1, y2)s, . . . , λ(yj−1, yj)s, λ(yj , yj+1)s, λ(yj+1, yj+2)b, . . . , λ(yk−1, yk)b).

It is straightforward to see that this chain is the unique rising and lexicographic least maximal
chain in the interval.

(iii) Let I be the interval of the form [[x, y], 1̂T (P )]. Any maximal chain {[x, y] = [x0, y0] ≺ [x1, y1] ≺
· · · ≺ [xk, yk] ≺ 1̂T (P )} in the interval I satisfies {y = y0 ≺ y1 ≺ · · · ≺ yk = 1̂P } is a maximal
chain in the interval [y, 1̂P ]. Thus the Jordan-Hölder set of the interval I is described by

JH(y, 1̂P )sb ◦ 0.

Since all the labels signed with s are smaller than 0, a rising chain can only have these “small”
labels. The unique rising chain in the interval [y, 1̂P ] is {y = y0 ≺ y1 ≺ · · · ≺ yk = 1̂P }. To
obtain the desired maximal chain in the interval I with the correct labels, let xi = yi−1 for
0 < i ≤ k. This rising chain is also the lexicographic least.
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Hence we conclude T (P ) has an EL-labeling. 2

As a corollary to Theorem 8.1 and its proof we have:

Corollary 8.2 Let P be a poset with an R-labeling using the label set Λ. Then the Tchebyshev
transform T (P ) has an R-labeling with the label set given by Λsb∪{0} and the Jordan-Hölder set given
by JH(T (P )) = JH(P )sb ◦ 0.

Recall that the Tchebyshev poset Tn is simply the Tchebyshev transform of the ladder poset Ln−1.
Since the ladder poset is EL-shellable, we obtain the next corollary, originally due to Hetyei [22].

Corollary 8.3 The Tchebyshev poset Tn is EL-shellable.

9 The Tchebyshev transform of Cartesian products

In the papers [18, 21], Ehrenborg-Fox and Ehrenborg-Readdy studied the behavior of the cd-index
under the Cartesian product P ×Q and the diamond product P �Q, where P and Q are posets. This
latter product is defined as P �Q = (P −{0̂})× (Q−{0̂})∪{0̂}. For our purposes, we need to consider
the dual of the diamond product, namely

P �∗ Q = (P − {1̂})× (Q− {1̂}) ∪ {1̂}.

In other words, P �∗ Q = (P ∗ �Q∗)∗.

We have the following result.

Theorem 9.1 Given two posets P and Q, the flag f-vector of the Tchebyshev transform of the Carte-
sian product P × Q is equal to the flag f-vector of the dual diamond product of the two Tchebyshev
transforms T (P ) and T (Q), that is,

Ψ(T (P ×Q)) = Ψ(T (P ) �∗ T (Q)).

In general, it is not true that the two posets T (P × Q) and T (P ) �∗ T (Q) are isomorphic. A
counterexample is to take P = B2 and Q = B1. The Tchebyshev transform of B2 is isomorphic to
the face lattice of a square and the Tchebyshev transform of B1 is the face lattice of a line segment.
Hence T (B2) �∗ T (B1) is the face lattice of the 3-dimensional crosspolytope. However the Tchebyshev
transform of B2 × B1 = B3 is not a lattice. It is the face poset of the CW -complex displayed in
Figure 3.

Observe that an alternate proof of Corollary 6.7 follows directly from Theorem 9.1 by considering
the Boolean algebra Bn = Bn

1 .

To prove Theorem 9.1 we need the following result from [21].
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Figure 3: A CW -decomposition of the 2-sphere with three 2-gons, two triangles and three squares.
The face lattice is the Tchebyshev transform of B3.

Theorem 9.2 There exist two bilinear operators M and N on Z〈a,b〉 that correspond to the Cartesian
and diamond product of graded posets. In other words, two graded posets P and Q satisfy

Ψ(P ×Q) = M(Ψ(P ),Ψ(Q)), (9.1)
Ψ(P �Q) = N(Ψ(P ),Ψ(Q)). (9.2)

Recursions for the two bilinear operators M and N have been developed in [18]. Defining N∗ by
N∗(u, v) = N(u∗, v∗)∗, we have

Ψ(P �∗ Q) = N∗(Ψ(P ),Ψ(Q)). (9.3)

Theorem 9.2 states that on the flag f -vector level the Cartesian product and the dual diamond
product are bilinear. Hence Theorem 9.1 can be reformulated as follows.

Theorem 9.3 Any two ab-polynomials u and v satisfy

T (M(u, v) · a) = N∗(T (u · a), T (v · a)).

Proposition 9.4 Any two ab-polynomials u and v satisfy

ω(a ·M(u, v)) = N(ω(a · u), ω(a · v)).

Proof: Let H1 and H2 be two central hyperplane arrangements. Let Li be the intersection lattice of
Hi and let Zi be the associated zonotope. Then the intersection lattice L of H1×H2 is the Cartesian
product of the intersection lattices L1 and L2. The associated zonotope Z of H1×H2 is the Cartesian
product of the zonotopes Z1 and Z2. Especially, the face lattice of Z is the diamond product of the
face lattices of Z1 and Z2. Hence we have that ω(a ·M(Ψ(L1),Ψ(L2))) = ω(a · Ψ(L)) = Ψ(Z) =
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N(Ψ(Z1),Ψ(Z2)) = N(ω(a ·Ψ(L1)), ω(a ·Ψ(L1))). Since the ab-indexes of the intersection lattices of
hyperplane arrangements span Z〈a,b〉 (see [8]), the desired identity is proved. 2

Combining Theorem 6.2 and Proposition 9.4, we obtain that Theorem 9.1 is true for cd-polynomials.

To prove Theorem 9.1 it is enough to prove the identity for a class of posets having ab-indexes
which span Z〈a,b〉. We will prove the identity for posets that admit R-labelings.

Proposition 9.5 Let P1 and P2 be two posets such that each has an R-labeling. Then we have

Ψ(T (P1 × P2)) = Ψ(T (P1) �∗ T (P2)).

Let P be a graded poset of rank n+ 1 that has an R-labeling. The strings of labels in the Jordan-
Hölder set JH(P ) have length n+1. For such a string λ = (λ1, λ2, . . . , λn+1), define its decent word to
be uλ = u1u2 · · ·un by letting ui = a if λi ≤ λi+1 and ui+1 = b otherwise. Then we have the following
result which expresses the ab-index of the poset P in terms of the Jordan-Hölder set JH(P ).

Proposition 9.6 Let P be a poset with an R-labeling. Then the ab-index of P is given by

Ψ(P ) =
∑

λ∈JH(P )

uλ.

The original formulation of this result is due to Björner-Stanley [10]. The reformulation in Proposi-
tion 9.6 can be found in [7].

Given two strings x = (x1, . . . , xn) and y = (y1, . . . , ym), define their shuffle product x ? y to be
the set of all

(n+m
n

)
shuffles of them, that is,

x ? y = {(z1, . . . , zn+m) : zip = xp, zjq = yq,

where {i1 < · · · < in} ∪ {j1 < · · · < jm} = {1, . . . , n+m}}.

For two sets of strings X and Y , define their shuffle product by

X ? Y =
⋃

x∈X, y∈Y

x ? y.

Lemma 9.7 For i = 1, 2 let Pi be a poset of rank ni with R-labeling λi and linearly ordered label poset
Λi. Without loss of generality assume that Λ1 and Λ2 are disjoint. Let Γ be a linear extension of the
union Λ1 ∪ Λ2. Then P1 × P2 has an R-labeling γ described by{

γ((x, y), (z, y)) = λ1(x, z),
γ((x, y), (x,w)) = λ2(y, w).
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Moreover, the Jordan-Hölder set JH(P1 × P2) is given by all shuffle products of the strings from
JH(P1) and JH(P2), that is,

JH(P1 × P2) = JH(P1) ? JH(P2).

Proof: Every maximal chain in the product P1 × P2 comes from one maximal chain in P1 and one
maximal chain in P2. Conversely, for each pair (c1, c2) of maximal chains, where ci is a maximal chain
in Pi, there are

(n1+n2

n1

)
maximal chains in P1 × P2. Moreover, the labels of these

(n1+n2

n1

)
maximal

chains are the shuffle product of the labels of c1 and the labels of c2. Hence the Jordan-Hölder set of
the Cartesian product P1 × P2 has the desired form.

Consider an interval I = [(x1, x2), (y1, y2)] in the product P1×P2. Let mi be the string of labels of
a maximal chain in the interval [xi, yi] in the poset Pi. If m1 or m2 has a descent then all the strings
of labels in the shuffle product m1 ? m2 have at least one descent. Now let λi be the string of labels
of the unique rising chain in the interval [xi, yi]. Then there is exactly one shuffle among λ1 ? λ2 that
is a rising string. Hence the interval I has a unique rising chain, proving γ is an R-labeling. 2

Lemma 9.8 For i = 1, 2 let Pi be a poset with an R-labeling λi and linearly ordered label poset Λi.
Assume that each edge in the Hasse diagram between a coatom of Pi and the maximal element 1̂Pi is
labeled 0 and no other labels are equal to 0. This condition can be expressed as

λi(x, y) = 0 ⇐⇒ x ≺ y = 1̂Pi .

Without loss of generality assume that Λ1∩Λ2 = {0}. Let Γ be a linear extension of the union Λ1∪Λ2.
Then P1 �∗ P2 has an R-labeling γ described by

γ((x, y), (z, y)) = λ1(x, z),
γ((x, y), (x,w)) = λ2(y, w),
γ((x, y), 1̂P1�∗P2) = 0.

Moreover, the Jordan-Hölder set is given by

JH(P1 �∗ P2) = (JH0(P1) ? JH0(P2)) ◦ 0,

where JH0(Pi) is the set of all the strings in the Jordan Hölder set JH(Pi) with the element 0 at the
end removed.

Proof: Directly from the identity (P1 − {1̂P1}) × (P2 − {1̂P2}) = (P1 �∗ P2) − {1̂P1�∗P2} it follows
that JH0(P1 �∗ P2) = JH0(P1) ? JH0(P2), thus verifying the Jordan Hölder set of the dual diamond
product is as described.

It remains to observe that γ is an R-labeling. By the same reasoning as in the proof of Lemma 9.7,
each interval of the form [(x, y), (z, w)] has a unique rising chain. Hence it is enough to show each
interval of the form I = [(x, y), 1̂P1�∗P2 ] has a unique rising chain.
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Let mi◦0 be the string of labels of a maximal chain in the interval [xi, 1̂Pi ] in the poset Pi. If m1◦0
or m2 ◦ 0 has a descent then all the strings of labels in the shuffle product (m1 ?m2) ◦ 0 have at least
one descent. Now let λi ◦ 0 be the string of labels of the unique rising chain in the interval [xi, 1̂Pi ].
Then there is exactly one shuffle among (λ1 ? λ2) ◦ 0 that is a rising string. Hence the interval I has
a unique rising chain, proving γ is an R-labeling. 2

Proof of Proposition 9.5: Let the R-labeling of the poset Pi have label set Λi, where we assume Λ1

and Λ2 are disjoint. Then the Cartesian product P1×P2 has an R-labeling with the label set Λ1 ∪Λ2

and the Jordan-Hölder set JH(P1 × P2) = JH(P1) ? JH(P2). By Corollary 8.2, the Tchebyshev
transform of the product P1×P2 has an R-labeling with label set (Λ1∪Λ2)sb∪{0} and Jordan-Hölder
set (JH(P1) ? JH(P2))sb ◦ 0.

Similarly, by Corollary 8.2 the Tchebyshev transform of the poset Pi has anR-labeling with label set
Λsb

i ∪{0} and Jordan-Hölder set JH(Pi)sb◦0. Now by Lemma 9.8 the diamond product T (P1)�∗T (P2)
has an R-labeling with label set Λsb

1 ∪ Λsb
2 ∪ {0} and Jordan Hölder set (JH(P1)sb ? JH(P2)sb) ◦ 0.

As sets, the two label sets agree:

(Λ1 ∪ Λ2)sb ∪ {0} = Λsb
1 ∪ Λsb

2 ∪ {0}.

Additionally, as linearly ordered sets they are also equal, since we can first choose the linear extension
of Λ1 ∪ Λ2 to be the unique linear order where all the labels from Λ1 is an initial segment. Moreover,
choose the linear extension of (Λsb

1 ∪ {0}) ∪ (Λsb
2 ∪ {0}) to be as Λs

1,Λ
s
2, {0},Λb

1,Λ
b
2, in that order.

Finally, observe that the Jordan-Hölder sets of the two posets T (P1 × P2) and T (P1) �∗ T (P2) are
also equal, namely,

(JH(P1) ? JH(P2))sb ◦ 0 = (JH(P1)sb ? JH(P2)sb) ◦ 0.

Hence, by Proposition 9.6, the posets have the same ab-index. 2

10 The Tchebyshev operator of the second kind

Following Hetyei, we will now define the Tchebyshev operator of the second kind. We demonstrate it
is an algebra map with respect to the mixing operator M and a coalgebra map with respect to the
coproduct ∆. Moreover, we find the spectrum of this operator, generalizing work in [9].

Define the two linear maps H,H∗ : Z〈a,b〉 −→ Z〈a,b〉 by H(1) = H∗(1) = 0 and H(a · u) =
H(b · u) = H∗(u · a) = H∗(u · b) = u. The map H appears in [7]. We have the following result from
the same reference.

Lemma 10.1 A poset P of rank at least 2 satisfies

H(Ψ(P )) =
∑
a

Ψ([a, 1̂]),

H∗(Ψ(P )) =
∑

c

Ψ([0̂, c]),
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where the first sum ranges over all atoms a of the poset P and the second sum ranges over all coatoms c
of the poset P .

Observe both H and H∗ restrict to Z〈c,d〉 by H(c · u) = H∗(u · c) = 2u, H(d · u) = c · u and
H∗(u · d) = u · c.

Definition 10.2 The Tchebyshev transform of the second kind is the linear map U : Z〈a,b〉 −→
Z〈a,b〉 defined by

U(u) = H∗(T (u · a)).

The explanation for this name is given by the next corollary. This result is originally due to Hetyei.

Corollary 10.3 Substituting c to be x and d to be (x2 − 1)/2 in 1/2 · U(cn) yields the Tchebyshev
polynomial of the second kind Un(x).

Proof: First, under the substitution the expressions 1/2 · U(1) = 1 and 1/2 · U(c) = 2c become
U0(x) = 1 and U1(x) = 2x. Second, the recursion in Corollary 7.5 transforms into U(c2 · u) =
2c · U(c · u) + (2d − c2) · U(u). Under the given substitution this becomes the recursion for the
Tchebyshev polynomials of the second kind. 2

Proposition 10.4 The Tchebyshev transform of the second kind has the following expression:

U(u) =
∑
k≥1

∑
u

ν(u(1)) · b · ν(u(2)) · b · · ·b · ν(u(k)).

Proof: By applying the definition of the Tchebyshev transform appearing in equation (5.1), we have

T (u · a) =
∑
k≥1

∑
u

ν(u(1)) · b · ν(u(2)) · b · · ·b · ν(u(k−1)) · b · κ(u(k) · a)

+
∑
k≥1

∑
u

ν(u(1)) · b · ν(u(2)) · b · · ·b · ν(u(k)) · b · κ(1).

Since κ(u(k) · a) = κ(u(k)) · (a − b) the first sum is equal to T (u) · (a − b). Now apply H∗ and by
noticing that H∗(T (u) · (a− b)) = 0, the result follows. 2

Corollary 10.5 The Tchebyshev transform of the second kind is invariant under duality, that is,
U(u∗) = U(u)∗.
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Theorem 10.6 The Tchebyshev transform of the second kind is a coalgebra homomorphism, that is,

∆(U(u)) =
∑
u

U(u(1))⊗ U(u(2)).

Proof: Recall that ∆(ν(u)) = 0. By applying Proposition 10.4, we obtain

∆(U(u)) =
∑
k≥1

∑
u

k−1∑
i=1

ν(u(1)) · b · · ·b · ν(u(i))⊗ ν(u(i+1)) · b · · ·b · ν(u(k))

=
∑

i,j≥1

∑
u

∑
u(1)

∑
u(2)

ν(u(1,1)) · b · · · · ν(u(1,i))⊗ ν(u(2,1)) · b · · · · ν(u(2,j))

=
∑
u

U(u(1))⊗ U(u(2)). 2

Theorem 10.7 The Tchebyshev transform of the second kind is an algebra map under the product M .
In other words, the following identity holds for any two ab-polynomials u and v:

U(M(u, v)) = M(U(u), U(v)). (10.1)

Proof: By Lemma 2.3 in [16], we have

H∗(N∗(u, v)) = M(H∗(u),H∗(v)).

Applying H∗ to Theorem 9.3, we obtain

U(M(u, v)) = H∗(T (M(u, v) · a))
= H∗(N∗(T (u · a), T (v · a)))
= M(H∗(T (u · a)),H∗(T (v · a)))
= M(U(u), U(v)). 2

Proposition 10.8 Assume ui is an eigenvector with eigenvalue λi of the Tchebyshev transform of
the second kind U for i = 1, 2. Then M(u1, u2) is an eigenvector with eigenvalue λ1 · λ2.

Proof: Directly U(M(u1, u2)) = M(U(u1), U(u2)) = M(λ1 · u1, λ2 · u2) = λ1 · λ2 ·M(u1, u2). 2

Proposition 10.9 Assume u is an eigenvector with eigenvalue λ of the Tchebyshev transform of the
second kind U . Then (a− b) · u is an eigenvector with eigenvalue λ.
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Proof: Observe that U((a− b) · u) = H∗(T ((a− b) · u · a)) = (a− b) ·H∗(T (u · a)) = (a− b) ·U(u),
where the second step is by Corollary 7.2. 2

Let k〈a,b〉n denote the set of all homogeneous ab-polynomials of degree n with coefficients in the
field k. Hence the dimension of k〈a,b〉n is 2n and Un is an endomorphism on k〈a,b〉n.

Theorem 10.10 Let Un denote the restriction of U to ab-polynomials of degree n, that is, k〈a,b〉n.
Then the linear operator Un is diagonalizable and has the eigenvalue 2i+1 of multiplicity

(n
i

)
for 0 ≤

i ≤ n. Furthermore, a complete set of eigenvectors can be obtained by starting with 1 and repeatedly
iterating the two operations

u 7−→ Pyr(u) = M(u, 1),
u 7−→ L(u) = (a− b) · u,

n times.

Proof: Observe that 1 is an eigenvector with eigenvalue 2. By iterating Propositions 10.8 and 10.9
n times, we obtain 2n eigenvectors of degree n. By Proposition 3.4 in [9] we know

k〈a,b〉n+1 = Pyr(k〈a,b〉n)⊕ L(k〈a,b〉n).

Hence this set of eigenvectors is a complete set of eigenvectors, that is, there are no linear dependencies
among them.

Also since the pyramid operation Pyr multiplies an eigenvalue by 2 and the second operation L
preserves the eigenvalue, we may conclude the distribution of the eigenvalues of Un is precisely the
binomial distribution. 2

11 A Hopf-algebra endomorphism on quasisymmetric functions

The main result of this section is prove the Tchebyshev transform of the second kind is a Hopf algebra
endomorphism.

Define the map U on a quasisymmetric function f (where we intentionally use the same symbol
as the Tchebyshev transform of the second kind) by

U(f) = γ(U(γ−1(f))),

where f ∈ QSym does not have a constant term. Extend linearly to all quasisymmetric functions by
setting U(1QSym) = 1QSym.

Theorems 10.7 and 10.6 imply the following result.
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Theorem 11.1 The map U is a Hopf algebra endomorphism on the Hopf algebra of quasisymmetric
functions.

Sketch of proof: We leave it to the reader to verify that U behaves well with the unit and the counit
of quasisymmetric functions. Since the mixing operator M on Z〈a,b〉 corresponds to the Cartesian
product on graded posets (equation (9.1)) and the Cartesian product corresponds to the product of
quasisymmetric functions (equation (3.2)), Theorem 10.7 implies the map U is algebra endomorphism
on the quasisymmetric functions.

Now for a quasisymmetric polynomial f = γ(v), we have

∆QSym(U(f)) = ∆QSym(γ(U(v)))
= γ(U(v))⊗ 1QSym + 1QSym ⊗ γ(U(v)) +

∑
v

γ(U(v(1)))⊗ γ(U(v(2)))

= U(f)⊗ 1QSym + 1QSym ⊗ U(f) +
∑
v

U(γ(v(1)))⊗ U(γ(v(2)))

= (U ⊗ U) ◦∆QSym(f),

where the second step is that U is a coalgebra endomorphism on Z〈a,b〉. 2

12 Chain maps of the first and second kind

The results in Sections 5, 10 and 11 motivate us to consider two general classes of maps. In this
section, we show one such class, the chain map of the second kind, is a Hopf algebra endomorphism
of quasisymmetric functions.

Definition 12.1 A character G on k〈a,b〉 is a functional G : k〈a,b〉 −→ k which is multiplicative
with respect to Cartesian product of posets, that is,

G(Ψ(P ×Q)) = G(Ψ(P )) ·G(Ψ(Q)),

for all posets P and Q of rank greater than or equal to 1.

Theorem 11.1 can be extended in the following manner. Let G be a character on k〈a,b〉. Define
the functions ĝ, g̃ and g on k〈a,b〉 by

ĝ(u) = G(u) · (a− b)deg(u),

g̃(u) =
∑
k≥1

∑
u

ĝ(u(1)) · b · ĝ(u(2)) · b · · ·b · ĝ(u(k)),

g(u) =
∑
k≥1

∑
u

κ(u(1)) · b · ĝ(u(2)) · b · · ·b · ĝ(u(k)).

We call the maps g and g̃, respectively, the chain maps of the first and second kind.
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Examples 12.2 (i) If G satisfies G(Ψ(P )) = 1 for all posets P , then ĝ = κ and the two maps g and g̃
are both equal to the identity map.

(ii) G(Ψ(P )) =
∑

x∈P (−1)ρ(x) · µ(0̂, x). Then g is the ϕ map of oriented matroids (see equation (6.1))
and g̃ is the Stembridge ϑ map.

(iii) An extension of the previous example is to take G(Ψ(P )) =
∑

x∈P (1 − r)ρ(x) · µ(0̂, x). In this
case, g corresponds to ϕr of the r-signed Birkhoff transform and g̃ is the r-signed analogue of the
Stembridge map, ϑr, see [16].

(iv) G(Ψ(P )) is the cardinality of the poset P . In this case we have g(u∗)∗ is the Tchebyshev transform
of the first kind and g̃(u∗)∗ is the Tchebyshev transform of the second kind.

Proposition 12.3 The following relations hold between the functions g̃ and g:

∆(g̃(u)) =
∑
u

g̃(u(1))⊗ g̃(u(2)), (12.1)

∆(g(u)) =
∑
u

g(u(1))⊗ g̃(u(2)), (12.2)

g(a · u) = (a− b) · g(u) + b · g̃(u), (12.3)
g(b · u) = b · g̃(u). (12.4)

Proof: The proof that g̃ is a coalgebra endomorphism follows exactly along the same lines as the
proofs of Theorems 10.6 and 11.1. The same proof idea also establishes equation (12.2). Identity (12.3)
follows from

g(a · u) =
∑
k≥1

∑
u

κ(a · u(1)) · b · ĝ(u(2)) · b · · ·b · ĝ(u(k))

+
∑
k≥1

∑
u

κ(1) · b · ĝ(u(1)) · b · · ·b · ĝ(u(k))

= (a− b) · g(u) + b · g̃(u).

Identity (12.4) follows in a similar manner. 2

Extend the composition G ◦Ψ by letting G(Ψ(•)) = 1, where • denotes the one element poset.

Proposition 12.4 The chain map of the second kind g̃ has the following form when applied to the
ab-index, respectively, the quasisymmetric function of a poset P :

g̃(Ψ(P )) =
∑

c

G(Ψ([x0, x1])) · · ·G(Ψ([xk−1, xk])) · wt(c), (12.5)

g̃(F (P )) =
∑

c

G(Ψ([x0, x1])) · · ·G(Ψ([xk−1, xk])) ·M(ρ(x0,x1),...,ρ(xk−1,xk)), (12.6)

g̃(F (P )) = lim
j−→∞

∑
m

G(Ψ([x0, x1])) · · ·G(Ψ([xj−1, xj ])) · tρ(x0,x1)
1 · · · tρ(xj−1,xj)

j , (12.7)
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where the first two sums are over all chains c = {0̂ = x0 < x1 < · · · < xk = 1̂} in the poset P and the
third sum is over all multichains m = {0̂ = x0 ≤ x1 ≤ · · · ≤ xj = 1̂} in P .

Proof: The first identity follows by using the definition of g̃ and the fact that the ab-index is a
coalgebra homomorphism. The second identity follows from the first by applying the map γ.

To prove the third identity, let tj+1 = tj+2 = · · · = 0 in identity (12.6). This restricts the sum to
chains having at most j steps, that is, k ≤ j. Such chains can be expressed in terms of multichains
with j steps. By the definition of the monomial quasisymmetric function, we then have

g̃(F (P ))|tj+1=tj+2=···=0

=
∑

0̂=x0≤x1≤···≤xj=1̂

G(Ψ([x0, x1])) · · ·G(Ψ([xj−1, xj ])) · tρ(x0,x1)
1 · · · tρ(xj−1,xj)

j .

Letting j tend to infinity yields the desired identity. 2

Observe in the proofs of Propositions 12.3 and 12.4 we only used the fact that G is functional on
k〈a,b〉, not that G is a character on k〈a,b〉.

Theorem 12.5 Let G be a character on k〈a,b〉. The chain map of the second kind g̃ is an algebra
map under the product M . In other words, the following identity holds for any ab-polynomials u
and v:

g̃(M(u, v)) = M(g̃(u), g̃(v)).

Equivalently, the chain map of the second kind g̃ is an algebra map on quasisymmetric functions QSym.
That is, for any quasisymmetric functions f1 and f2 the following identity holds:

g̃(f1 · f2) = g̃(f1) · g̃(f2).

Proof: A multichain of length m in the Cartesian product P × Q corresponds to two multichains
of length m, with one coming from the poset P and the other from the poset Q. By applying
equation (12.7) three times, we have

g̃(F (P ×Q))

= lim
m−→∞

∑
0̂=(x0,y0)≤(x1,y1)≤···≤(xm,ym)=1̂

· · ·G(Ψ([(xi−1, yi−1), (xi, yi)])) · · · tρ((xi−1,yi−1),(xi,yi))
i · · ·

= lim
m−→∞

 ∑
0̂=x0≤x1≤···≤xm=1̂

· · ·G(Ψ([xi−1, xi])) · · · tρ(xi−1,xi)
i · · ·


·

 ∑
0̂=y0≤y1≤···≤ym=1̂

· · ·G(Ψ([yi−1, yi])) · · · tρ(yi−1,yi)
i · · ·


= g̃(F (P )) · g̃(F (Q)),
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where we only write the generic factor in each term. 2

Combining equation (12.1) in Proposition 12.3 with Theorem 12.5, we obtain:

Theorem 12.6 Let G be a character on k〈a,b〉. Then the associated function g̃ is a Hopf algebra
endomorphism on the quasisymmetric functions QSym.

This theorem is a special case of a more general theorem due to Aguiar, Bergeron and Sottile [1].
They proved that in the category of combinatorial Hopf algebras the quasisymmetric functions QSym
is a terminal object. A combinatorial Hopf algebra is a Hopf algebra H together with a character G.
Their results then state that given a combinatorial Hopf algebra H with character G, there exists a
Hopf algebra homomorphism ψ : H −→ QSym such that G = ζ ◦ψ, where ζ is the character on QSym
defined by ζ(f) = A(γ−1(f)) and ζ(1QSym) = 1.

13 Type B quasisymmetric functions

We now turn our attention to the chain map of the first kind. In this section we will assume the
underlying map G is multiplicative with respect to the Cartesian product of posets. The purpose of
this section is to prove the chain map of the first kind g is an algebra map under the product N , and
moreover, to prove g is a comodule map.

Theorem 13.1 The chain map of the first kind g is an algebra map under the product N . That is,
for any ab-polynomials u and v the following identity holds:

g(N(u, v)) = N(g(u), g(v)).

By observing N(a · u,a · v) = a ·M(u, v) (see Proposition 7.8 in [18]), we have the corollary:

Corollary 13.2 For all ab-polynomials u and v the following identity holds:

g(a ·M(u, v)) = N(g(a · u), g(a · v)).

This corollary implies Theorem 12.5 by applying the H map.

In order to prove Theorem 13.1, we introduce the type B quasisymmetric functions due to
Chow [13]. Let BQSym denote the algebra k[s] ⊗ QSym. We view BQSym as a subalgebra of
k[s, t1, t2, . . .] ∼= k[s]⊗ k[t1, t2, . . .].
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Define the type B quasisymmetric function of a poset P by

FB(P ) =
∑

0̂<x≤1̂

sρ(x)−1 · F ([x, 1̂])

= lim
m−→∞

∑
0̂<x0≤x1≤···≤xm=1̂

sρ(̂0,x0)−1 · tρ(x0,x1)
1 · tρ(x1,x2)

2 · · · tρ(xm−1,xm)
m .

Theorem 13.3 The type B quasisymmetric function of a poset is an algebra map taking the diamond
product on posets into the product of type B quasisymmetric functions BQSym. That is, two graded
posets P and Q satisfy

FB(P �Q) = FB(P ) · FB(Q).

Proof: Applying the definition of FB to the diamond product P �Q yields

FB(P �Q) =
∑

0̂<(x,y)≤1̂P�Q

sρP�Q((x,y))−1 · F ([(x, y), 1̂P�Q])

=

 ∑
0̂<x≤1̂P

sρP (x)−1 · F ([x, 1̂P ])

 ·

 ∑
0̂<y≤1̂Q

sρQ(y)−1 · F ([y, 1̂Q])


= FB(P ) · FB(Q).

Here we are using ρP�Q((x, y)) = ρP (x) + ρQ(y) − 1 and that the quasisymmetric function F is
multiplicative on posets. 2

Let γB be the isomorphism between k〈a,b〉 and BQSym defined by

γB

(
(a− b)p · b · (a− b)p1−1 · b · · ·b · (a− b)pk−1

)
= sp ·M(p1,...,pk),

where p ≥ 0 and p1, . . . , pk ≥ 1, that is, γB(Ψ(P )) = FB(P ). Define the linear map g on BQSym by
g(f) = γB(g(γ−1

B (f))). Hence Theorem 13.3 states

γB(N(u, v)) = γB(u) · γB(v). (13.1)

Proposition 13.4 The chain map of the first kind g has the following form when applied to the
ab-index, respectively, the type B quasisymmetric function of a poset P :

g(Ψ(P )) =
∑

c

G(Ψ([x0, x1])) · · ·G(Ψ([xk−1, xk])) · wt(c), (13.2)

g(FB(P )) =
∑

c

G(Ψ([x0, x1])) · · ·G(Ψ([xk−1, xk])) · sρ(̂0,x0)−1 ·M(ρ(x0,x1),...,ρ(xk−1,xk)), (13.3)

g(FB(P )) =
∑

0̂<x≤1̂

sρ(x)−1 · g̃(F ([x, 1̂])), (13.4)

g(FB(P )) = lim
j−→∞

∑
m

G(Ψ([x0, x1])) · · ·G(Ψ([xj−1, xj ]))

·sρ(x0)−1 · tρ(x0,x1)
1 · · · tρ(xj−1,xj)

j , (13.5)
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where the first two sums are over all chains c = {0̂ = x0 < x1 < · · · < xk = 1̂} in the poset P and the
fourth sum is over all chains satisfying m = {0̂ < x0 ≤ x1 ≤ · · · ≤ xj = 1̂} in P .

Proof: By the definition of g and g̃, we have

g(u) = κ(u) +
∑
u

κ(u(1)) · b · g̃(u(2)).

Apply this identity to the ab-index of a poset P and use equation (12.5) to expand the factor
g̃(Ψ([x, 1̂])). We then obtain

g(Ψ(P )) = (a− b)ρ(P )−1 +
∑

0̂<x<1̂

(a− b)ρ(x)−1 · b · g̃(Ψ([x, 1̂]))

= (a− b)ρ(P )−1 +
∑

0̂<x<1̂

∑
k≥1

∑
x=x0<x1<···<xk=1̂

G(Ψ([x0, x1])) · · ·G(Ψ([xk−1, xk]))

·(a− b)ρ(x)−1 · b · (a− b)ρ(x0,x1)−1 · b · · ·b · (a− b)ρ(xk−1,xk)−1,

which is equivalent to the first identity of the proposition.

To prove the second identity, apply the isomorphism γB to the first identity. The third identity
follows from the second and equation (12.6). Similarly, the fourth identity follows by the third and
equation (12.7) 2

As a remark, we did not use the fact thatG is a character on k〈a,b〉 in the proof of Proposition 13.4.

Theorem 13.5 The linear map g is an algebra homomorphism on the type B quasisymmetric func-
tions BQSym.

Proof: By equation (13.4) we have

g(FB(P �Q)) =
∑

0̂<(x,y)≤1̂P�Q

sρP�Q((x,y))−1 · g̃(F ([(x, y), 1̂P�Q]))

=

 ∑
0̂<x≤1̂P

sρP (x)−1 · g̃(F ([x, 1̂P ]))

 ·

 ∑
0̂<y≤1̂Q

sρQ(y)−1 · g̃(F ([y, 1̂Q]))


= g(FB(P )) · g(FB(Q)).

Since the type B quasisymmetric function of posets spans the space BQSym, the result follows. 2

We remark that Theorems 13.1 and 13.5 are equivalent via the isomorphism γB.

Define the coproduct ∆BQSym : BQSym −→ BQSym⊗QSym by

∆BQSym(sp · f) =
QSym∑

f

sp · f(1) ⊗ f(2),

where f ∈ QSym. We then have the following result.
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Theorem 13.6 The type B quasisymmetric function of a poset is a comodule map taking the comodule
structure of posets into the coproduct ∆BQSym on type B quasisymmetric functions BQSym. More
specifically, a graded poset P satisfies the following identity:

∆BQSym(FB(P )) =
∑

0̂<x≤1̂

FB([0̂, x])⊗ F ([x, 1̂]).

Proof: By applying the definition of FB, we obtain

∆BQSym(FB(P )) = ∆BQSym

 ∑
0̂<y≤1̂

sρ(y)−1 · F ([y, 1̂])


=

∑
0̂<y≤1̂

∑
y≤x≤1̂

sρ(y)−1 · F ([y, x])⊗ F ([x, 1̂])

=
∑

0̂<x≤1̂

 ∑
0<y≤x

sρ(y)−1 · F ([y, x])

⊗ F ([x, 1̂])

=
∑

0̂<x≤1̂

FB([0̂, x])⊗ F ([x, 1̂]). 2

Theorem 13.7 The linear map g is a comodule endomorphism on BQSym, that is,

∆BQSym ◦ g = (g ⊗ g̃) ◦∆BQSym.

Proof: By applying equation (13.4) twice and Theorem 13.6, we obtain

∆BQSym(g(FB(P ))) = ∆BQSym

 ∑
0̂<x≤1̂

sρ(x)−1 · g̃(F ([x, 1̂]))


=

∑
0̂<x≤1̂

∑
x≤y≤1̂

sρ(x)−1 · g̃(F ([x, y]))⊗ g̃(F ([y, 1̂]))

=
∑

0̂<y≤1̂

 ∑
0̂<x≤y

sρ(x)−1 · g̃(F ([x, y]))

⊗ g̃(F ([y, 1̂]))

=
∑

0̂<y≤1̂

g(FB([0̂, y]))⊗ g̃(F ([y, 1̂]))

= (g ⊗ g̃)

 ∑
0̂<y≤1̂

FB([0̂, y])⊗ F ([y, 1̂])


= (g ⊗ g̃)

(
∆BQSym(FB(P ))

)
.

31



The result follows since the type B quasisymmetric functions FB(P ) span BQSym as P ranges over
all posets. 2

14 Concluding remarks

Recall the following theorem of Hetyei [23, Theorem 1.10].

Theorem 14.1 The order complex of T (P )− {0̂, 1̂} triangulates the suspension of the order complex
of P − {0̂, 1̂}.

Corollary 14.2 If P is the face poset of a spherical CW -complex then the Tchebyshev transform
T (P ) is also the face poset of a spherical CW -complex.

A natural conjecture to make is the following.

Conjecture 14.3 If P is a spherical and shellable poset then the Tchebyshev transform T (P ) is also
a shellable poset.

See the related conjecture [23, Conjecture A.2].

A Gorenstein* poset is an Eulerian poset which is Cohen-Macaulay. Furthermore, a Gorenstein*
lattice is a Gorenstein* poset that also is a lattice. A recent result about Gorenstein* lattices is
that their cd-index are coefficientwise minimized by the Boolean algebra. This was conjectured by
Stanley [26] and recently proved by Ehrenborg and Karu [20]. In the special case of face lattices of
convex polytopes this was settled earlier by Billera and Ehrenborg [6].

Hetyei has proved that the Tchebyshev transform will give a host of new examples of Gorenstein*
posets.

Theorem 14.4 For a graded poset P if P is Gorenstein then the Tchebyshev transform T (P ) is
Gorenstein. Especially, for an Eulerian poset P we have if P is Gorenstein* then the Tchebyshev
transform T (P ) is Gorenstein*.

Proof: It is enough to prove the first statement. Recall the equivalences (a) and (c) of Theorem 5.1 in
Chapter II in [28]: A triangulation of a topological space X is Gorenstein if and only if the homology
of X and all the local homology (that is, the relative homology H(X,X − p) for p ∈ X) is 0 except
for being one-dimensional in the top dimension. Thus Gorenstein is a topological condition. Since the
order complex of Tchebyshev transform T (P ) triangulates the suspension of the order complex of P
and that the Gorenstein property is preserved under suspension, the statement holds. 2
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One could also ask to study the behavior of a Cohen-Macaulay poset P under the Tchebyshev
transform T . For example, can a system of parameters and a basis for T (P ) be determined from the
original system of parameters and basis of P .

Since the classical quasisymmetric functions correspond to the symmetric group, that is, the Weyl
group of type A, the following two questions are natural. Are there analogues of the quasisymmetric
functions for other Weyl groups other than type A and B? Similarly, are there analogues of the two
maps F and FB on posets for the other Weyl groups?

For instance, one can introduce another extension of the quasisymmetric function of a poset.
Namely, define

F ′(P ) =
∑

0̂<x≤y<1̂

sρ(̂0,x)−1 · F ([x, y]) · uρ(y,̂1)−1.

This poset invariant is multiplicative with respect to the product (P − {0̂, 1̂})× (Q− {0̂, 1̂}) ∪ {0̂, 1̂}
and has a bi-comodule structure. Also, it behaves nicely with the map defined by

g′(u) =
∑
k≥2

∑
u

κ(u(1)) · b · ĝ(u(2)) · b · · ·b · ĝ(u(k−1)) · b · κ(u(k)).

The essential question to answer is if these maps naturally appear in geometry or combinatorics. Also,
is this a B̃ analogue of the quasisymmetric function of a poset?

Is there a notion of a type B combinatorial Hopf algebra? Moreover, is there an Aguiar, Bergeron
and Sottile type theorem, that is, that the pair (QSym,BQSym) is the terminal object in this category?
These two question also extend to the other Weyl groups.

Another result due to Aguiar, Bergeron and Sottile [1] is that every character G of a Hopf al-
gebra factors into an even character G+ and an odd character G−. In a recent paper Aguiar and
Hsiao [2] described this factorization explicitly for the character ζ. The character ζ is the character
underlying Example 12.2 (i). Are there similar explicit factorizations into even and odd characters for
Examples 12.2 (ii) through (iv)?

We end with three open questions about the chain maps g and g̃. Find other examples of poset
transformations so that the resulting linear transformation on the ab-index has the form of g or g̃.
Find the general theorem which determines the spectrum of the maps g and g̃. Alternatively, find
subclasses of multiplicative maps where this is possible. Recall that for the Tchebyshev transform of
the second kind U we were able to do this.
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