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Abstract. We study complex hyperplane arrangements whose intersection lattices, known
as the Dowling lattices, are a natural generalization of the partition lattice. We give a
combinatorial description of the Dowling lattice via enriched partitions to obtain an explicit
EL-labeling and then find a recursion for the flagrector in terms of weighted derivations.
When the hyperplane arrangements are real they correspond to the braid arranggments
andB,. By applying a result due to Billera and the authors, we obtain a recursive formula
for thecd-index of the lattice of regions of the braid arrangemektsand B,.

1. Introduction

The cd-index is a noncommutative polynomial which gives an efficient encoding of
the flag f -vector, equivalently the flab-vector, of an Eulerian poset. The generalized
Dehn-Sommerville equations [2] describe all of the linear relations that hold among the
entries of the flagf -vector, while thecd-index removes the linear redundancies. The
cd-index has been a very successful tool to answer questions about convex polytopes,
including showing the flag -vectors of zonotopes satisfy precisely the same affine re-
lations as the flagf -vectors of all polytopes and settling the zonotopal analogue of
a conjecture of Stanley, that among all zonotopes the cubical lattice has the smallest
cd-index coefficientwise; see [6]. It is believed that ttdindex will be a useful in-
variant in determining linear inequalities in the fl&gvector of convex polytopes, and,
more generally, Gorenstéihattices. For the known inequalities in dimension 4, see [1,
Theorem 3.10], [4], and [19].

Given its usefulness, one would naturally like to be able to computedhirdex.
The first recursion formulas for tha-index were given by Purtill [21] for the Boolean
algebra and the cubical lattice, that is, the face lattice ofitkenplex and ther-cube.
In [16] the authors gave shorter recursions using derivations, as well as determined how
the cd-index changes under the pyramid and prism operations.c@lkiedex is also
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understood for simplicial polytopes, and, more generally, Eulerian simplicial posets.
Stanley [25] expressed thal-index of a simplicial polytope in terms of its-vector
and certaimd—polynomiaISCf>in and conjectured a combinatorial interpretation for the
é{‘. This conjecture was proved by Hetyei [17], whereas a short recursion for these
polynomials in terms of a derivation was found in [16]. Cubical polytopes, more generally
Eulerian cubical posets, have been studied in [14].

In this paper we study thed-index of the braid arrangements, andB,,. In order to
do this we consider a more general hyperplane arrangement in complex spdcbel et
a positive integer and let be a primitivekth root of unity. LetH,, x be the following
hyperplane arrangementindimensional complex space:

z =¢"zz for 1<i<j<n and O<h<k-1,
z=0 for 1<i=<n.

This hyperplane arrangement has been studied earlier in [18] and [20, Section 6.4].
The braid arrangementd, and B, correspond to the casé&s= 1 andk = 2. The
intersection lattice, x of the arrangemeri{, x is called theDowling latticeand is a
natural generalization of the partition lattice [11], [12].

We give a combinatorial description of the Dowling lattice via enriched partitions.
Since the Dowling lattice is a geometric lattice, it has mBhylabelings. Using enriched
partitions, we obtain an explicEL-labeling and determine the set of lists of labels
of maximal chains. By understanding the structure of these lists of labels, we find a
recursion for the fladp-vector of the Dowling lattice in terms of weighted derivations.

As a corollary, the characteristic polynomial an@ilis function are determined. This,
together with theéEL-labeling, yields topological information about the order complex
of this family of lattices.

When the parametdsis equal to one or two, the complex hyperplane arrangement
Hnk is a hyperplane arrangement in real space. A real hyperplane arrangement has two
lattices associated with it, namely the intersection lattice and the lattice of regions. In [7]
the authors, together with Billera, completely determine how to computedtiredex
of the lattice of regions in terms of the intersection lattice. By applying this result to the
Dowling lattice recursion, we obtain a recursive formula for ¢dendex of the lattice
of regions of the braid arrangemerfig andB,,.

2. Definitions

All the posets we consider will be graded of rank greater than or equal to one, that

is, posetsP having a minimal elemer and a maximal elemerit so thatd # 1.

The associated rank function will be denoted doywnd satisfyp(0) = 0. Forx <y

definep(x, y) to be equal tgp(y) — p(x) and define thénterval from x to y to be set

{z : x < z<y}, denotedX, y]. Observe thatX, y] is a graded poset of rank(x, y).
Aposetl is alatticeif every two elements andy has a unique greatest lower bound or

meetdenoted b Ay, and a unique least upper boungain, denoted by v y. Aranked

lattice L is semimodulaif it satisfies the inequality (X) + p(Y) > p(XAY) + p(X V' Y),

for all x, y € L, andatomicif all of its elements can be written as a join of atoms. A

lattice which is both semimodular and atomic igeometric lattice
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Let P be a graded poset of ramk+ 1. For S a subset of1, ..., n}, let Ps be the
subposet oP definedasPs = {x e P : p(x) € S, x =0, orx = 1}. Leta(S) be
the number of maximal chains iAs, that is,«(S) is the number of chains iR whose
ranks correspond to the s&tDefine(S) by the equation

B(S) =) ('S (). 2.1)

TSS

The 2 entries of theflag f-vectorandflag h-vectorcorrespond to the values a{S)
andg(S).

Leta andb be two noncommuting variables. For a subSeff {1, ..., n}, defineus
to be theab-monomialu, - - - u, whereu; = aif i ¢ Sandu; = bif i € S. Theab-index
of a posetP of rankn + 1, W (P), is defined by

W(P) =) B(S-us,
S

where the sum ranges over all subsgtsf {1, ..., n}. Observe theb-index encodes
exactly the same information as the flagyector. Moreover¥ (P) is a homogeneous
polynomial of degrea.

TheMobius functionu(x, y) is defined foix, y € P by u(x, x) = L and forx < yin
PbyY -, 1(X, 2) = 0.We denotg:(0, 1) by (P). Thenwe havg(S) = (—1)!S+.
w(Ps). AposetP is calledEulerianif the Mobius function satisfies(x, y) = (=1)?*Y,
Fine [3] observed that wheR is Eulerian theab-index of P can be written in terms of
the noncommuting variables= a+ b andd = a- b + b - a. The resulting polynomial
is called thecd-index An elementary proof of this fact appears in [25]. In the case
whenP is the lattice of regions of a hyperplane arrangement (or more generally, of an
oriented matroidM), the ab-index of P can be written as a polynomial with integer
coefficients in the noncommuting variableasnd 2 d. The resulting polynomial is called
thec-2d-index see [6].

LetZ(a, b) be the ring of polynomials in the variablasndb, and let the degree af
andb be 1. LetZ(c, 2d) denote the subring &(a, b) spanned by the elemerts= a+b
and A = 2ab+2ba. Thuschas degree 1 andihas degree 2. For a pogetlet P* denote
thedual poset. The posé®* has the same underlying setRbut with the order relation
X <p- Yif X >p y. Similarly, for anab-monomialv = vyv; - - - vp, letv* = vy - - - VoV
By linearity we extend this operation to be an involutionZfa, b). Sincec* = ¢ and
2d* = 2d, the involution restricts té (c, 2d) by reading the-2d-monomials backwards.
Observe for a graded posetwe havel (P*) = W (P)*.

3. Techniques for Computing the ab- and cd-Indexes

When a poseP has anR-labeling, there is a known method to computedbeandex of
P. This method will be extended so that one can computedhiadex of the lattice of
regions of hyperplane arrangements.

Recall anedge-labeling. of a locally finite poseP is a map which assigns to each
edge in the Hasse diagram Bfan element from some posat For usA will always
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be a linearly ordered set. ¥fcoversx in P, then we denote the label on the edgey)
by A(X, ¥). A maximal chainx = Xg < X; < -+ < Xx = yin an interval k, y] in P
is calledrising if the labels are weakly increasing with respect to the order of the poset
A, that is,A(Xg, X1) <A A(X1, X2) <a --- <a A(Xk_1, Xk). An edge-labeling is called
an R-labelingif for every interval i, y] in P there is a unique rising maximal chain in
[x. yl.

Let P be a poset of rank + 1 with R-labelingx. For a maximal chair = 0=
Xo<Xp <+ < Xpp1 = i}, thedescent set ) istheseD(C) = {i : A(Xi_1, X)) >a
A(Xi, Xi+1)}. Observe thaD(c) is a subset of the sdt, ..., n}. Our interest inR-
labelings stems from the following result of @jier and Stanley (see Theorem 2.7 of

[9)):

Proposition 3.1. Let P be a graded poset that admits an R-labelifgeng(S) is
equal to the number of maximal chains ¢ with descent set S

From this result we obtain the following corollary, which was observed in [15].

Corollary 3.2. Let P be a graded poset of rank4p 1. Let A be an R-labeling of P
Then theab-index of P is given by

W(P) =) Upg,
C

where the sum is over all maximal chains c of the poset P

An EL-labelingof a graded poseR is anR-labeling such that in each intervad,[y]
the unique rising chain is lexicographically least among all chains in the inteqygl.|
If a poset possesses Bh-labeling, then it is known that the chain complex of the poset
P is shellable [9]. Moreover, the chain complex is homotopy equivalent to a wedge of
spheres.

An EL-labeling of ageometric lattide can be obtained as follows; see Example 3.13.5
of [24]. Let A denote the set of atoms bfand let there be a total ordering on the atoms.
The label on the edge < y may be described by

AX,Y)=minfae A : Xva=y}.

Observe that with thig€L-labeling two different chains will have two different lists of
labels.

We now turn our attention to hyperplane arrangements’H.&e a hyperplane ar-
rangementifR". We assume that = {H. : e € E} isessential, thati§,),.c He = {0}.
Associated with a hyperplane arrangement are two latticesiniérsection latticeof H
is the lattice on the set of subspa¢f},.s He : S E} ordered by reverse inclusion.
ThusR" is the minimal elemen{0} is the maximal element, and the hyperplanes in the
arrangement are the atoms. Each hyperpldria H cutsR" into three pieces, namely,
the hyperplane itself and two open half-spaces. Together all the hyperplafesitiR"
into relative open cones, which we cadgions Let R be the set of regions. The sit
forms a poset by the order relatiah< C’ if the closure of the regiof is contained in
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the topological closure of the regi@i. We adjoin a maximal element & to obtain a
lattice, called theattice of regionsof the hyperplane arrangemeit

Bayer and Sturmfels [5, Theorem 3.4] showed that the flagector of the lattice of
regionsR depends only on the intersection lattice This dependency was showed in
an explicit manner in [7].

The lattice of regions is an Eulerian poset, hence it hed-mdex. In fact it has a
c-2d-index, that is, thed-index may be written as a polynomialdérand 21 with integer
coefficients. Theorem 3.4 shows how to computect@d-index of the lattice of regions.

Definition 3.3. Define a linear functiow: Z{a, b) — Z{c, 2d) as follows: For arab-
monomialv computew (v) by replacing each occurrenceal in the monomiab with
2d, then replacing the remaining letters witls. Extend this definition by linearity to
ab-polynomials.

Theorem 3.4[7]. LetH be a hyperplane arrangemeit R be the lattice of regions
of H, and let L be the intersection lattice &f. Then thec-2d-index of R is given by

¥(R) = w(@- (L))"

For instance, the intersection lattice of the braid arrangergrtas theab-index
aa+ 5-ba+ 6-ab+ 6 - bb. Hence thec-2d-index of the lattice of regions of the
arrangemenfg is given by

w(aaa+5-aba+6-aab+6-abb)* = (c+11-2d-c+6-c-2d)*
=c+11-c-2d+6-2d-c.

By combining Stanley'€L-labeling of geometric lattices with Corollary 3.2 and
Theorem 3.4, we have the following corollary.

Corollary 3.5. Thec-2d-index of the lattice of regions R is given by

W(R) =) o(@-Upe)",

where the sum ranges over all maximal chains c in the intersection lattice L

4. The Dowling Lattice

The Dowling lattice., k is the intersection lattice of the complex hyperplane arrangement
Hn . Since it is an intersection lattice, it follows that the Dowling lattice is a geometric
lattice of rankn. ObserveL, 1 is isomorphic toll,. 1, the partition lattice of rank.
Each of the hyperplanes i, x is an atom in the Dowling lattick, x, hencelL, x has
k- (3) 4+ natoms.

The Dowling latticeLnk has the following combinatorial description. Define an
enriched blockB = (B, f) to be a nonempty subs& of {1, ..., n} and a function
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f: B — Zx. We say two enriched block® = (B, f) andC = (C, g) are equivalent if
B = C and the functiong andg differ only by a constant. Hence there are okil§/—*
possible ways to enrich the nonempty &tup to equivalence. Whek = 1 there is
exactly one way to enrich a block, that is, there is no enrichmentBLatdC be two
disjoint enriched blocks and lebe an element ix. We can define a functiomon the
block B U C by

_[fy if beB,
h(b)_{g(b)~|—i if becC.

Sincel can be chosen ikpossible ways, there akgossible ways to merge two enriched
blocks. ~ ~

For E a subset of1, ..., n}, anenriched partitionz = {By, ..., By} onthe seE is
a partitionr = {B,, ..., By} of E, where each blocB; is enriched with a functiorf;.
Observe that on the empty set there is exactly one enriched partition, namely the empty
partition.

Define the lattice. |, , to be the set

Lo ={®.2):Z c{1,...,n}and7 is an enriched partition o ={1,...,n}—Z}.

We call the se¥ thezero setDefine the order relation oy, , by the following two re-
lations:({By. By, ..., Bm}, Z) < ({Bz. ..., Bm}, ZUBy and({By, By, ..., Bn). Z) <
({B1UBy, ..., Bn}, Z2). The first relation says that a block is allowed to merge with the
zero set. The second relation says that two blocks are allowed to be merged together.
Given(w, Z) € Ly, construct the corresponding subspace by
0.z =10 g for i,jeB and B=(B, f)e7,
z =0 for ieZ.

It is straightforward to see that this is an isomorphism betwegpandL, .
Proposition 4.1.  The two lattices kx and L;, , are isomorphic

By the compositional exponential formula, see for instance, Chapter 5 of [27], we
obtain the next lemma.

Lemma4.2. Let &, be the number of elements in the Dowling latticexLThen the
exponential generating function for the sequengé&sajiven by

x" 1
Zan = exp(X) - exp(— - (explk - X) — 1)) .

n>0 k

Sincelk is a geometric lattice, aR-labeling of L, x is found by giving a linear
orderA to the atoms of , «. First, denote the atom corresponding the hyperptare0
by i. Similarly, describe the atom corresponding to the hyperpiare ¢" - z; by the
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triple (i, j, h), where 1< i < j < nandh € Z. On the set of atoms df, x consider
the following linear order\:

o j<pjifl=<j<j <n,

o j<a (i j,N)ifl<j<j <n,

o (i,j,hy<pjif2<j<j <n,

e (i, j,h) <4 (i, j/, ') if one of the following three conditions holds:
e 2<j<j <n,
e j=j’andi <i’,or
e j=j,i=iyandh < h.

Let M,k be the set of lists of labels of maximal chaindipy, that is,
Mnk = {(A(X0, X1), - - ., A(Xn—1, Xn)) : (Xo, X1, - .., Xn) iS @ maximal chain ir.p, x}.

To characterize the s#l,, \, we need the following two notions. For an atanof L, x
we define its suppog by

_ iy it a=da,j.h),
"(a)—{{i} it a=i.

For an elemenx in L, x defineM (x) to be set
M(x) = {min(B) : 1<i <m}

wherex as an elementih|, , is the element, Z) with 7w = {Bl, .. §m} and min( §.)
denotes the smallest element contained in the bBckObserve that ik <y, then
M(y) € M(x). Moreover,n — [M(x)| is the rank of the element

Lemma4.3. Letx <y be a cover relation in the Dowling latticenl. If the element
y is formed by merging two bIocI&_ and B, of x, then the labeh.(x, y) is of the form
(| i, hywherefi, j} = {mm(Bl) mln(Bz)} If the element y is formed byjommgablock

Bl to the zero sethen the labek(x, y) is of the form i where i= mm(Bl)

Proof. We prove the lemma in the first case. The second case follows by a similar
argument. Henceforth assume the elemeistobtained by merging the two block

and B, of x. Leti bg the smallest element in the blo8k and letj be the smallest
element in the blociB,. We may assume that< j. Leth be the unique element i

such that joining the ator, j, h) with the elemenk gives the element. We claim that

the labeli(x, y) is given by(i, j, h).

Assume thaa is an atom such that\/x =Y. Then the atora has theforrm 1,00,
wherei’ < j’. Moreover, either’ € Bl andj’ e 82 ori’ e Bz andj’ € Bl Using the
factthati andj are the smallest elements in their respective blocks, we obtain in the first
case thati, j,h) <, aor(, j,h) = a. Inthe second case we have: j <i’ < |/, so
we get(, j, h) <, a. O

Corollary 4.4. Let x < y be a cover relation in the Dowling lattice zl. Then
o (A(X,y)) S M(X).
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Proof. The labelr(x, y) is either equal tdi, j, h) ori. Consider the first case. Then
o(A(X,y)) = {i, j}. By Lemma 4.3, the elemernitaind j are the smallest elements from
their respective blocks. Hende j} € M(x). Similarly, in the second case we obtain
a(A(x,y) ={i} € M(X). O

Lemma 4.5. Letx < y be acover relation in the Dowling lattice,l and assume that
y < z. Then the elememhax(c (A(X, y))) does not belong to k).

Proof. If the atoma is the label.(x, y) for the cover relatiorx < y, then the element
max(o (a)) is not a smallest element in any block of the elemenithat is, maxo (a)) ¢
M (y). SinceM (z) € M(y), the result follows. O

Proposition 4.6. The list(ay, ..., ay) belongs to M if and only if for all indices p
1 < p < n, the valuemax(o (a,)) does not appear among the support of the elements
A1, - - -, 8n. Thatis maxo (ap)) € o (@pr1) U --- Uo(@n).

Proof Letc={0= Xy < X; < --- < X, = 1} be a maximal chain in the lattice
Lnk so that, forp < g, ap = A(Xp_1, Xp) andag = A(Xg—1, Xq). Sincex, < Xg-1,
by Lemma 4.5 we have méx(ap)) ¢ M(xq-1). However, by Corollary 4.4 we know
o(aq) € M(Xg-1). Hence we have max (ay)) € o(ag), so the labels of the chain
satisfy the condition of the lemma.

Let (aq, ..., a,) be a list of atoms which satisfies the condition in the lemma. For
0O<p=<n, Ietxp=a1v-~-vap.Weknowthaﬁ=xo <X; <--- < Xy is aweakly
increasing chain i, . We would like to prove that it is a maximal chain.

Since the entries ma&x (ap)), . . ., max(o (a,)) are all distinct, we have thall (xp_1)
is the disjoint union oM (x,) and{max(c (ap))}. SinceM (xg) = {1, ..., n}, we obtain
IM(Xp)| = n— p, so the elemenx, has rankp. Hence the chail=Xg < X3 < -+ < Xn
is a maximal chain irL, . The elements i (ay) lie in M (Xp—1), So they are smallest
elements in their respective blocks. Hence the delge;, xp) is labeled by the atora,.
So we have that the ligty, . . ., a,) belongs to the seM . O

In order to state our main result, we need the notion of a weighted derivationPHere
denotes the positive integers.

Definition 4.7. Let R be a graded algebra.ght weighted derivation DOs a function
from R x P to R such that

D@-u+pg-v,p) =a-Du,p)+p-D, p), (4.1)
DL, p) = O, (4.2)
D(U'U, p) = D(U,|U|+ p)'U+U' D(U» p)» (43)

wherea andpB are scalars angli| denotes the degree of the element

Let K(v, p) be the right weighted derivation o#(a, b) such thatK(a, p) =
K, p) = (1 + k- p) - ab. By induction on the degree af, we may show the
following result.
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Lemma 4.8. Letv = v;---v,_1 be anab-monomial Then K(v, 1) is given by the sum

n—1
K@D =73 (L+k-(n=m)-vi--vm1-ab- vmis--vn1.
m=1

Using the weighted derivatioK we now obtain an expression for thé-index of
the Dowling lattice.

Theorem 4.9. The ab-index of the Dowling lattice ki satisfies the following
recursion

W(lniik) = ¥(Lnw -a+ KW (Law, D+ A+k-n)-b-W(lnw.

Proof. Consider a list» in the setMp,1k. There will be exactly one entryy, in
the listA = (A1,...,Any1) SO that maxs (1i)) = n + 1. Now observe that the list
(M, -« oy Am—1s Amt1, - - - » Ant1) belongs toMp k.

Let A = (Aq1,...,An) be alist in My k. Assume theab-monomialu(i) is equal
tou;---up_1. Let m be an integer so that & m < n. We determine how many
elementsa can be inserted in theath position ofA so that we obtain a list itMp 1 k.
By Proposition 4.6 we have méx(a)) must ben + 1. Moreover, by Proposition 4.6
we have that ma (1)) does not belong te (a) for 1 < j < m. These are the only
conditions ora. Hence eithea is the atom labeled + 1 or it is of the form(i, n+ 1, h),
whereh can be chosen ik possible ways andcan be chosen in — m possible ways.
Thusa can be chosen in% k - (n — m) possible ways.

The ab-monomial for the new listAq, ..., Am_1, @, Amy1, -+., An) iSUL -+ Um_1 -
ab-Umy1---Up_1if0 < m < n. If m= 0 theab-monomialisb - u;---uy,_; = b - u,
while if m = n theab-monomial isu; - - -up_1 - @ = U - a. Summing over all positions
m we obtain

n—-1
u(r) -a-+ Z(1+k- (n—m))-Up---Up_1-ab
m=1

Um+1Un71+(1+kn)bu()\.)

By Lemma 4.8 the summation can be expressed in terms of the weighted derkation
Hence we obtain the expression

ud)-a+ Ku@®),)+@+k-n-b-u@).

Summing over alk in My x we obtain the desired recursion f&r(Ln ). |

Recall thecharacteristic polynomiabf a graded poseP is defined asx(P) =
D bex<i w(0, x) - q°*-D. The characteristic polynomial of the Dowling lattice was first
obtained in Proposition 7 of [11].
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Corollary 4.10[11]. The characteristic polynomial of the Dowling latticg Lis
n-1
x(Low =[J@=1-k-i).
i=0

Proof. LetE be the linear map frorf(a, b) to Z[q] defined by

Ew) = {(—1)m gk if v=bmak forsome m,k >0,
0 otherwise.
Then the characteristic polynomial is given pyP) = (q — 1) - E(¥(P)); see Propo-
sition 5.3 of [7].
Apply the linear magE to Theorem 4.9. Observe thBtK (v, 1)) = 0 since all the
terms inK (v, 1) contain the monomiadb. Hence we obtain

E(W(Lni1k) = E(W(Lak -8 + (L +k-n)-Eb-W(Lnk)
= (q—1-Kk-n)-E¥(Lnk).

Multiplying this identity withq — 1, we have the recursiop(Lni1x) = (Q—1—Kk-
n) - x (Lnk). Observingy (L1k) = q — 1, we obtain the result. O

By settingq equal to zero in Corollary 4.10 we get Corollary 1 in [11].

Corollary 4.11[11]. The Mbdbius function of the Dowling lattice L is given by
n—-1
p(lng) =D A +k-D.
i=0

Since the Dowling lattice i€ L-shellable, its chain complex is shellable. Hence we
obtain:

Corollary 4.12. The chain complex of the Dowling latticg kis homotopy equivalent
to a wedge of spheres and only the highest homology is nontriialdimension of the
highest homology is given lﬂi”:_g(l +k-i).

5. The Braid Arrangements A, and B,

We now restrict our attention to the braid arrangemégtandB,,. These arrangements
correspond to the cas&s= 1 andk = 2 in Hpk, that is, when the arrangemeht, «
can be considered as a real arrangement.

The arrangemem, is most often described by the hyperplames= x; for 1 <i <
j < n+1lin(n+1)-dimensional Euclidean space. This arrangementis not essential since
each hyperplane contains the likg= --- = X,1. We obtain an essential hyperplane
arrangement by setting the last varialslg, equal to zero, yielding the arrangement
corresponding t64y 1.
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For k equal to 1 and 2 leR, x be the lattice of regions of the arrangeméy.
Moreover, letR, o denote the lattice of regions of the coordinate hyperplanes, that is,
Rn.0 is the face lattice of the-dimensional crosspolytope. By Theorem 3.4 the lattices
Rn.0, Rn.1, andR, 2 have ac-2d-index. Using Theorem 4.9 we give an explicit recursion
for thec-2d-index of these three lattices.

Recall the definition of a right weighted derivation given in Definition 4.7. We have
a similar notion of a left weighted derivation.

Definition 5.1. Let R be a graded algebra. |&ft weighted derivation Ds a function
from R x P to R such thatD satisfies (4.1) and (4.2), and

Du-v,p=D,p-v+u-D,ul+ p). 5.D
We consider the weighted derivatidi on Z(c, 2d) that is defined by

W(c, p) (1+kp) -2d,
W@d, p) = 1+kp-2d-c+ 1+ k(p+1)-c-2d.

In our notation we suppress the fact tNéatdepends on the integkr Observe that when
k = 0 the weighted derivatioW/ reduces to a derivation.

Theorem 5.2. Thec-2d-index of Rk, k = 0, 1, 2, satisfies the following recursion
Y(Rnpi) =€ W(Rak) + W (Ry0, D).

The case whek = 0 was obtained in [16]. Hence it is enough to prove this theorem for
k=1andk = 2.
The two weighted derivationd/ andK are related by the following identity.

Lemma 5.3. For any element in Z({a, b) and any positive integer p
W(w®)*, p) = o(K(v, p)*.

Proof. Since both sides are linear in it is enough to prove the statement falp-
monomials. The proof is by induction on the degreevofThere are four base cases
which are easy to verify, namely=1,v = a, v = b, andv = ab.

Consider now amb-monomialv different from the four base cases. We can write
v = u - U such thatu, v # 1 andu does not end witka or u” does not begin witlb.
That is,u andu’ have degrees smaller than and we haven (v) = w(u) - w(U). Also
note that ifu ends witha, then all monomials ik (u’, p) will begin with a. Hence we
know thatw (u - K(U', p)) = w(u) - (K (U, p)). Similarly, if u’ begins withb, then all
monomials inK (u, p) will end with b. That is,w (K (u, p) - U) = (K (u, p)) - o(U).
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Now we have
W(w(u-Uu)*, p) = W(eU)* - o(w)*, p)
= W(oW)*, p) oW+ o) W), [u|+ p)
= o(KU, p)* o) +oW)" - oK, U]+ p)*
= [oU) - oKW, p) + oK, U]+ p)) - oU)]*
= (- KU, p)+ K(u, U]+ p)-u)*
= o(KUu-U, p)*

This completes the induction. O
We are now ready to give the proof of Theorem 5.2.

Proof of Theorenb.2. By applying the map — w(a-v)* to Theorem 4.9 we obtain
Y(Ri1k) = w(@- ¥(Lnirk)*
= ow@ ¥(Ln-a) +o@ KWL, )+ @+k-n-ab- W(lnk)
=cow@ ¥lnw) +o(K@ ¥l )"
=c w(@ ¥(lnw) +W(@@ V()" 1)
= C V(R +W(¥(R,1),
where the fourth step is by Lemma 5.3. O

It is now straightforward to compute the following table:

n Y (Rn1) V(R,2)

0|1 1

1l|c c

2| c2+2-2d ?+3-2d

3/cd+11-c-2d+6-2d-c c34+23.c-2d+12-2d-¢c

4| c*+59.¢2-2d+60-c-2d-c|c*+191-¢?-2d+186-c-2d- ¢
+14.2d - ¢® 4 46- (2d)? +36-2d- ¢ + 146- (2d)?

For instance, to comput(Rs 1) we have

Y(R31) = Cc-W(Ry1) +WW(Ry1), 1)

c-(+2-2d) +W(P+2-2d,1)
=c+2-c-2d+W(, 1) -c+c-W(c2) +2-W(2d, 1)
t+2.c-2d+2-2d-c+3-c-2d+4-2d-c+6-c-2d
=c®4+11.c-2d+6-2d-c.

6. Concluding Remarks

The permutahedron Ris then-dimensional polytope whose vertices are thet 1)!
permutations in the symmetric group o+ 1 elements. In other word®, lies in the
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hyperplane;+- - -+Xn41 = (”*2) and has verticegr (1), . .., m(n+1)), wherer ranges
over all permutations on+ 1 elements. Similarly, let thaagned permutahedronPbe
the convex hull of the pointetn (1), ..., £ (n)), wherer ranges over all permutations
onn elements. Examples of these polytopes include the line segrRgaisd Pli, the
hexagonP,, the octagonP;", the truncated octahedrds, and the rhombitruncated
cuboctahedror®y .

It is well known that the face lattice of the permutahed®(P,) is given by the
dual poset ofR, 1. Moreover, the latticdr, 1 has a combinatorial interpretation as the
ordered partition lattice; see for instance [8]. Similarly, the face lattice of the signed
permutahedro (P5) is the dual poset oR, ». We present the following combinatorial
description of the lattic&, ».

A signed blockB is a nonempty seB with a functionf: B — {—1, 1}. This notion
differs from that of an enriched block which was defined in Section 4 since we now
consider the two signed block8, f) and(B, — f) to be different. Anordered signed
partition 77 is an ~ordered partition = (By, ..., Bn), Where each blocB; is signed by
a functionf;. If B andC are two signed blocks then we may consider their union as a
signed block. Define the lattidg , to be the set

Ri,=1{@,2) : Zc{l,....n}
and7 is an ordered signed partition &f = {1, ...,n} — Z}.

The order relation o, , is given by

(Z,(B1, By, ....Bm) < (ZUBL (Ba,..., B,
(Z’ (Bla ceey Bls BIJrls ceey Bm)) < (Z! (Bls ceey BI U Bi+17 ceey Bm))-

The first relation says that the first block is allowed to merge with the zero set. The
second relation says that two adjacent blocks are allowed to be merged together.

Given(Z,7) € RT’LZ, where the zero set contains the elemdpts . .., jom, and
theith block contains the elemenigs, ..., jim, the corresponding region @, is
constructed by

0 = Xjou ="+ = Xiom,
< fl(jl,l) : X]‘1A1 == fl(jl,ml) : le,ml
< ..
< 1Em(jm,l) Xjpy =0 = fm(jm,mm) * Kim,mm -

Fork = 0, 1, or 2, the lattice of regionR, x corresponds to a root system. The set
of exponents of the root system isll+ k, ..., 1+ k- (n — 1). These numbers appear
as weights in the weighted derivatioé andK . This suggests that a similar recursion
should hold for other root systems in general. Hence a good question to consider is what
is thec-2d-index of the lattice of regions for the simple sporadic root systems.

An interesting challenge is to find a recursion for the root sydbgimRecall that the
corresponding hyperplane arrangement is

Xi = EX; for 1<i<j=<n,
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for n > 4. What can be said about the-index of the compleD, arrangement
z=¢".z for 1<i<j<n and O<h<k-1,

whereg¢ is akth primitive root of unity?

The homology of the partition latticH,1 = L, 1 has been extensively studied in
order to find representations of the symmetric group; see [23] and [28]. In the same
spirit, Wachs has studied the signed partition latlige; see [29]. What can be said
about the representations of the symmetric group arising from the Dowling lattic2
A related question is to find an explicit basis for the highest homology group of the
Dowling lattice, the dimension of which is given in Corollary 4.12.
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