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ABSTRACT. We introduce the notion of the descent set polynomial as an alter-
native way of encoding the sizes of descent classes of permutations. Descent set
polynomials exhibit interesting factorization patterns. We explore the ques-
tion of when particular cyclotomic factors divide these polynomials. As an
instance we deduce that the proportion of odd entries in the descent set sta-
tistics in the symmetric group &, only depends on the number on 1’s in the
binary expansion of n. We observe similar properties for the signed descent
set statistics.

1. INTRODUCTION

The study of the behavior of the descent sets of permutations in the symmetric
group &,, on n elements usually involves such questions as maximizing the descent
set or determining inequalities which hold among the entries [4, 8, 9, 13, 14, 15]. The
usual way to encode the descent statistic information is via the Eulerian polynomial
E,(t) =Y 4 B(S) 15!, where S runs over all subsets of [n —1] = {1,...,n—1}. We
instead introduce the descent set polynomial where the statistic of interest appears
in the exponent of the variable ¢, rather than as a coefficient. That is, the nth
descent set polynomial is defined by

Qn(t) = Z 89
s

where S ranges over all subsets of [n — 1].

The degree of the descent set polynomial is given by the nth Euler number, which
grows faster than an exponential. Despite this, these polynomials appear to have
curious factorization properties, in particular, having factors which are cyclotomic
polynomials. See Table 2. This paper explains the occurrence of certain cyclotomic
factors. We have displayed these in boldface in the tables. Both combinatorial and
number-theoretic properties (for example, the number of 1’s in binary expansion
of n and the prime factorization of n) are involved in our investigations.

The divisibility by cyclotomic factors is related to the remainders of sizes of
descent classes modulo integers. As a simplest example, @, (t) is divisible by the
second cyclotomic polynomial ®5 if and only if the number of even descent classes
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is equal to the number of odd descent classes. In other words, the proportion of
even and odd entries in the descent statistics is the same (in the notation below,
p(n) = 1/2) if and only if —1 is a root of the descent polynomial. Somewhat
surprisingly, whether or not n has this property depends only on the number of 1’s
in the binary expansion of n.

The paper proceeds as follows. In Section 2 we review quasisymmetric functions
and their relation to posets. In Section 3 we look at the proportion of odd entries
in the descent statistics. We consider similar properties for the signed descent
statistics in Section 4. The natural setting for this question is to look at flag vectors
of zonotopes. In Section 5 we explore patterns of descent statistics modulo 2p
for prime p. Here we introduce the descent polynomial and consider divisibility
by cyclotomic polynomials. In Section 7 we explore when the quadratic factors
®3, &3 and <I>§p occur in the decomposition. In Section 8 we introduce type B
quasisymmetric functions and the signed descent polynomials. We use the former
to describe divisibility patterns of the latter. Finally, in the concluding remarks we
make a number of observations on the data presented in Tables 2 and 3.

2. QUASISYMMETRIC FUNCTIONS AND POSETS

Consider the ring Z[[w1, wa, . ..]] of power series with bounded degree. A func-
tion f in this ring is called quasisymmetric if for any positive integers aq, s, . . ., Qg
we have

[wit - wif ] f = gt ] f
whenever i; < --- < iy and j; < --- < ji, and where [w®]f denotes the coeflicient
of w* in f. Denote by QSym C Z[[w1, wa, . . .]] the ring of quasisymmetric functions.

With an appropriate choice of coproduct, QSym is a Hopf algebra. See for example
[6].

For a positive integer n, a composition of n is a sequence o = (v, aa,...,qx)
of positive integers such that a; + as + --- + ap = n. For a composition « the
monomial quasisymmetric function M, is given by

_ ay g
Mo= > witewlk
i < <dg

Definition 2.1. Let P be a graded poset with rank function p. Define the quasi-
symmetric function F(P) of the poset P by

F(P) = ZMp(c)»

where the sum ranges over all chains ¢ = {0 =2 < x1 < --- < x = 1} in P, p(c)
denotes the composition (p(xg, 1), p(x1,22), ..., p(Tk—-1, 1)), and where p(x,y) de-
notes the rank difference p(x,y) = p(y) — p(x).

The quasisymmetric function of a poset is multiplicative, that is, for two graded
posets P and @ the quasisymmetric function of their Cartesian product is given by
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the product of the respective quasisymmetric functions

F(PxQ)=F(P) F(Q).

See Proposition 4.4 in [6]. This result may be stated that F' is an algebra map. In
fact, a stronger result holds, namely, the function F' is a Hopf algebra homomor-
phism from the Hopf algebra of graded posets to the Hopf algebra of quasisymmetric
functions. However, this more general statement will not be needed here.

Let P be a graded poset of rank n. For a subset S = {s1 < s9 < -+ < sp_1}
of [n — 1], define the flag f-vector entry fs to be the number of chains {0 = z¢ <
1 < e < T = i} such that p(x;) = s; for 1 < i < k —1. The flag h-vector is
defined by the invertible relation

hg = Z(_l)\Sle - fr.

TCS

Define a bijection D between subsets of the set [n — 1] and compositions of n
by sending the set {s; < so < -+ < sx_1} to the composition (s1,s2 — s1,83 —
52,...,M — 8x_1). By abuse of notation we will write Mg instead of Mp gy, where
the degree of the quasisymmetric function is understood. Then Lemma 4.2 in [6]
states that the quasisymmetric function of a poset encodes the flag f-vector, that

is
= > fs-Ms.

SCln—1]

)

The fundamental quasisymmetric function Lt is given by

Ly = ZMS.

TCS

Note that one can write F/(P) in terms of fundamental quasisymmetric functions:

= Y hs-Ls.

SCln—1]

For m = my ---m, a permutation in &,,, recall that the descent set of m is the
subset of [n — 1] given by {i : m; > m41}, where [m] denotes the set {1,...,m}.
For a subset S of [n — 1], let 3(S) denote the number of permutations in &,, with
descent set S. If the poset P is a Boolean algebra B, then hg = ((S). This is
straightforward to observe using the classical R-labeling of the Boolean algebra [16,
Section 3.13] or by direct enumeration [16, Corollary 3.12.2].

Lemma 2.2. For m = 2/ we have F(B,,) = M,y mod 2. Consequently, for
n =20 4 ... 29k with j; > -+ > ji. > 0 we have F(B,) = Hl 1 M2i:y mod 2.

Proof. The first statement can be proved by induction using F' as an algebra map
and that (a + b)? = a? 4+ b? mod 2. The second statement follows from the facts
that F' is an algebra map and that the Boolean algebra can be realized as a Cartesian
product. (I
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E n=2F-1 p(n) 1/2 — p(n)
1 1 1 —-1/2

2 3 1/2 0

3 7 1/2 0

4 15 29/26 3/26

5 31 3991/213 3.5.7/213

TABLE 1. Values of the proportion p(n) for at most five 1’s in the
binary expansion of n.

3. THE PROPORTION OF ODD ENTRIES

Let p(n) denote the proportion of odd entries in the descent statistics in the
symmetric group &,,, that is,
{S C[n—1] : B(S) =1mod 2}|
p(n) = 1 :

For instance, p(3) = 1/2 since in the data 8(0) = 5({1,2}) = 1 and B({1}) =
B({2}) = 2 exactly half of the entries are odd.

Our first result is that the proportion p(n) depends on the number of 1’s in the
binary expansion of n.

Theorem 3.1. The proportion of odd entries in the descent set statistics p(n) only
depend on the number of 1’s in the binary expansion of the integer n.

The first few values of the proportion p(n) are shown in Table 1.

An ordered partition 7 of a set [k] is a list of non-empty pairwise disjoint sets
(B1, Ba, . .., Bj) such that their union is [k]. There is a natural ordering on ordered
partitions with the cover relation m < o, whenever o is obtained from 7= by merging
two adjacent blocks. This partial order coincides with that of the face poset of the
dual of the boundary of the (k — 1)-dimensional permutahedron.

Theorem 3.2. For positive integers my,mo,...,mg, the product of the quasi-
symmetric functions M(p,y - M(m,) * - M(m,) 1s given by

M M M = M
(m1) (m2) (my) ; (ZiEBl mi’EiEBQ mi""’EiEBj ’mi)7
where m = (By, By, ..., Bj) ranges over all ordered partitions of the set [k].
Proof. The theorem can be proved by iterating Lemma 3.3 in [6]. g
Definition 3.3. A knapsack system mqy,ma,...,my is a list of positive integers

such that the 2% partial sums of these integers are all distinct. That is,

e o

€S

=2k,
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As an example, suppose that a,b,c is a knapsack system. Then the product
Mqy - M) - M(.) has the expansion
May - M) - M)
= Muape)+ Macr) + Mpa,e) + Mpea) + Meap) + Mecpa)
+Matb,e) T Mcarv) + Miates) + Mpate) + Mptc,a) + Ma,pte)
+Matbte)-
By changing the index notation from compositions to sets, we can write this as
Moy - M) - M)
= Mgaro) + Miaarer + Miparvy + Mpprer + Micatrey + Micpre}
+Mayoy + My + Mgy + My + Mipyey + Mgy
+My.
Observe that the only elements occurring in these sets are a, b, ¢, a + b, a +
c and b + c. Moreover, these six elements are distinct exactly when a,b,c is a
knapsack system. The 13 sets appearing in the expansion encode the face poset

of the boundary of a hexagon, that is, the hexagon is self-dual and is the two-
dimensional permutahedron.

Theorem 3.4. For a knapsack system my, ms, ..., my the proportion of odd coeffi-
cients in the quasisymmetric function f = My, ) - M(y,) -+ M, ) when expressed
in the L-basis only depends on k.

Proof. We have to express the quasisymmetric function f in terms of the L-basis.
That is,
fo= > Ms
S

Z Z(—l)'T_S| - L,

S SCT

where we restrict S to range over sets corresponding to ordered partitions; see
Theorem 3.2. Thus the coefficient of L is given by the sum Y g (—1)17 =51,

Call the 2¥ — 2 elements of the set [n — 1] of the form Y., m; for § C B C [k]
essential, and the other n — 1 — (2¥ — 2) elements nonessential. For T an index
set not containing the nonessential element 7, observe that the coefficients of Ly
and Lpyg;y are the same modulo 2. Hence the proportion of odd coefficients in
the quasisymmetric function f only depends on sets T consisting solely of essential
elements. Since the collection of sets S encodes the poset of ordered partitions of
the set [k], we conclude that the proportion depends on k and not on the elements
of the knapsack system. O

Proof of Theorem 3.1: The proof follows by considering the knapsack system
271,292 . 29k where j1 > jo >+ > jr > 0 and n =271 4272 4 ... 4 20k, O

Theorem 3.1 implies that for n = 27 all the values in the descent set statistics
are odd. Hence it is interesting to look at this data modulo 4.
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Theorem 3.5. Forn =27 > 4 exactly half of the descent set statistics are congru-
ent to 1 modulus 4, and the other half are congruent to 3 modulus 4.

Proof. First we claim that F(B,) = M) + 2 - M(;/2,n/2) mod 4. This identity
follows from the observation (a + 2 - b)? = a? mod 4 and by induction on j, where
the induction step is F(Bap) = (Mn) 4+ 2 - M(n/2n/2))* = M(2n) = Mon) +2-
My,,n) mod 4. We have the expansion

My +2- M2y = My+2- My 2y
= Z(fl)ls\ Lg—2- Z (-1)!8. Lg
s n/2es
= > (0¥ Ls— Y ()l L.
n/2¢S n/2€s

Hence the descent set statistics modulo 4 are given by 3(S) = (—1)15={"/2H mod 4.
Thus for 1 € S the values of 5(S) and 3(SU{1}) have the opposite sign modulo 4,
proving the result. O

4. THE SIGNED DESCENT SET STATISTICS

A signed permutation is of the form m = 7y - -+ 7, where each m; belongs to the
set {£1,...,4n} and |m|---|m,| is a permutation. Let & be the set of signed
permutations on n elements. For ease of notation let w9 = 0. The descent set of
a signed permutation 7 is a subset of [n]| defined as {i : m;_1 > m;}. For S C [n]
let 5%(S) denote the number of permutations in &; with descent set S.

An equivalent way to using quasisymmetric functions to encode the flag f-vector
data of a poset is via the ab-index. Let a and b be two non-commutative variables.
For S C [n — 1] let ug be the monomial ujus---u,_1 where u; = a if i ¢ S and
u; = b if i € S. The ab-indez of a poset P of rank n is defined as the sum

U(P) = Zhs ug.
S

When the poset P is Eulerian then its ab-index can be written in terms of c = a+b
and d = ab 4+ ba. This more compact form removes all linear redundancies among
the flag vector entries [2]. The linear relations satisfied by the flag f-vectors of
Eulerian posets are known as the generalized Dehn-Sommerville relations [1]. Simi-
lar to quasisymmetric functions, the ab-index and cd-index also have an underlying
coalgebra structure. For more details, see [10].

The poset associated to signed permutations is the cubical lattice C),, that is,
the face lattice of an n-dimensional cube. Observe that C),, has rank n + 1. We
have

U(Cn) =Y B5(S) - us,
S

where S ranges over all subsets of [n].
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A more general setting for the cd-index of the cube is that of zonotopes. Recall
that a zonotope is a Minkowski sum of line segments. Associated to every zono-
tope Z there is a central hyperplane arrangement H. Let L be the intersection
lattice of the arrangement H. A result by Billera—-Ehrenborg—Readdy shows how
to compute the cd-index of the zonotope from the ab-index of the intersection
lattice L. First, introduce the linear map w from Z({a, b) to Z(c,d) defined on an
ab-monomial as follows. Replace each occurrence of ab by 2d and then replace
the remaining letters by c. The main result in [3] states that the cd-index of the
zonotope Z is given by

(4.1) U(Z)=w(a-¥(L)).
Especially, for the cubical lattice we have that
(4.2) U(Cp) =w(a-¥(By,)),
since the associated hyperplane arrangement is the coordinate arrangement and its
intersection lattice is the Boolean algebra.
Considering Equation (4.1) modulo 2, we observe that ¥(Z) = ¢” mod 2 and

hence we conclude the following result.

Lemma 4.1. All the entries of the flag h-vector of a zonotope are odd. In partic-
ular, all the signed descent set statistics are odd.

In order to understand the flag h-vector modulo 4, we need a few lemmas.

Lemma 4.2. After expanding the cd-polynomial

n—2
E ct.d- Cn—l—Q
=0

into an ab-polynomial, exactly half of the coefficients are odd.

Proof. Since d = ab — ba mod 2, it is sufficient to consider the identity
n—2
Zci -(ab—ba)-c""?=a-(a+b)"2-b—b-(at+b)" % a.
i=0

This identity holds since the coefficient of an ab-polynomial in the sum is the
number of occurrences of ab minus the number of occurrences of ba in the mono-
mial. This difference only depends on the first and last letter in the monomial
and the identity follows. Now the conclusion follows by observing that out of 2"
ab-monomials of degree n, exactly 2°~! appear in the right-hand side of the iden-
tity. O

Lemma 4.3. Let z and w be two homogeneous polynomials in Z(a,b) of degree m
and n, respectively, each having exactly half of their coefficients odd. Then the two
ab-polynomials

cz-¢d and z-c"+c"-w

also each have exactly half of their coefficients odd.
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Proof. We only prove the second statement of the lemma. We omit the proof of
the first, as it is similar and easier. Let u and v be two ab-monomials of degrees m
and n, respectively. The coefficient of v -v in z - ¢ + ¢ - w is given by the sum of
the coeflicients of u in z and of v in w. Hence the coefficient of u - v is even when
the coefficients of u and v are both even (2m~1.2"~! cases) or the coefficients of u
and v are both odd (2™~ . 27! cases), completing this case. O

Combining Lemmas 4.2 and 4.3, we have:

Proposition 4.4. Let aq,...,a, be integers, not all of which are even. When
expanding the cd-polynomial

n—2
§ a; - ct-d- Cn—z—2
=0

into an ab-polynomial, exactly half of the coefficients are odd.

Theorem 4.5. For a zonotope Z either (i) exactly half of the flag h-vector entries
are congruent to 1 modulo 4, and the other half are congruent to 3 modulo 4; or
(#i) all the flag h-vector entries are congruent to 1 modulo 4.

Proof. Considering the identity (4.1) modulo 4, we observe that the only terms
appearing are ¢ and those cd-monomials with even coefficients having exactly
one d, that is,

n—2
U(Z)=c"+2- <Z a;-ct-d- c"_i_2> mod 4.
i=0

If all the «;’s are even then the flag h-vector entries are congruent to 1 modulo 4.
If at least one «; is odd, then by Proposition 4.4 we know that exactly half of the
flag h-vector entries are congruent to 1 modulo 4 and the other half are congruent
to 3 modulo 4. a

Now we consider the cubical lattice, that is, the signed descent set statistics
modulo 4.

Theorem 4.6. For an integer n > 2, exactly half of the signed descent set statistics
are congruent to 1 modulo 4, and the other half are congruent to 3 modulo 4.

Proof. Observe that there are 2" atoms in the cubical lattice. Hence hy;y =2"—1 =
3 mod 4. Thus the result follows from Theorem 4.5. O

5. DESCENT SET STATISTICS MODULO 2p

For a set S of integers and a non-zero integer g, define the two notions ¢ - .S and
S/q by
q-S = {q-s : seS},
S/lq = {s/q : s€ S andq|s}.
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In what follows let 3;(S) denote the descent set statistic 5(S) in the symmetric
group &; and let «;(S) denote the corresponding alpha statistic «(S) in &;.

Proposition 5.1. Let ¢ = p', where p is a prime and t is a non-negative integer.
Let n =r-q, where r is a positive integer. Then the descent set statistics modulo p
in the symmetric group &, are given by

Bu(8) = (=1)!*= 011 5.(5/g) mod p,
where S C [n—1].

Proof. Observe that
My =F(B,)= Y on(S)  Ms.
SC[r-1]

In this quasisymmetric function identity make the plethystic substitution w; ——
w!. We then obtain

My = Y () My
SCir—1]

- Y Y ey
1

SC[r—1] TCIn-1
- q-SCT

= Y Y e ()L

TC[n—1] ¢-SCT

= Z (—1)\T-al-1l. Z o (S) - (=) T/a=S1| . Ly

TC[n—1] SCT/q
= > (pTetilg (1/q) - Ly
TC[n—-1]
Since M{ = M4y mod p, we have F(B,) = (M{)" = M, mod p. Now by reading
off the coefficients of L, the result follows. O

Corollary 5.2. Let g = pt, where p is a prime and t is a non-negative integer.
Then the descent set statistics for the symmetric group &, satisfy

B(S) = (—1)! mod p.

Proof: The claim can be deduced from Proposition 5.1 by setting » = 1. A direct
argument proceeds as follows. Since (a + b)? = a? + b? mod p, we have

F(Bq):(w1+w2+'--)qEw‘f—i—wg—i—---:M(q):Z(—1)|S|-Lsmodp. |
S

Corollary 5.3. Let ¢ = pt, where p is a prime and t is a non-negative integer.
Then the descent set statistics for the symmetric group &, of permutations on
n = 2q elements satisfy

B(S) = (—1)15~ 12} mod p.
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Proof. Follows from Proposition 5.1 by setting r = 2 and noting that (82(0) =
fa({1}) = 1. O

For n having the binary expansion n = 271 + 272 4 ... 4+ 2Jx where j; > j >
-+« > jr > 0, recall an element j € [n — 1] is nonessential if j is not a sum of a
subset of {271 272 . 2ix}

Theorem 5.4. Let ¢ = pt, for p an odd prime and t a non-negative integer, and
let n = r-q, where r is a positive integer. Assume that there is a nonessential
element j € [n — 1] that is not divisible by q. Finally, assume that the descent set
statistics B in the symmetric group S, take on exactly one of two values modulo p,
say a and b, where a and b have the same parity. Then

HSCln—-1]: B(S)=ail = {SC[n-1]: B(S)= b},
{SCh—-1:88)=a+p}| = HSChh-1]:B(5)=b+p},

where all the congruences are modulo 2p. In the case when the proportion p(n)
is 1/2, the four cardinalities above are all equal to 2"3.

Proof. Consider the collection of sets S C [n — 1] such that 8(S) = a = b mod 2.
For S in this collection such that j € S, we have 3(S) = 8(SU{j}) mod 2. However,
since ¢ does not divide j we have §(S) = —(SU{j}) mod p. Hence this collection
splits into two classes of equal size when divided according to the value of 3(S)
modulo 2p. The same argument holds for the sets S satisfying 5(S) = a+p =
b+ p mod 2. O

By the Chinese remainder theorem, we have 3(S) = +1,p + 1 mod 2p. For
non-Mersenne primes we can say more.

Theorem 5.5. Let ¢ = pt be an odd prime power which has k 1’°s in its binary
expansion. Assume that ¢ > 2F — 1, that is, q is not a Mersenne prime. Then

{SClg—1] : B(S) =1} {SClg—1] : B(S) = -1},
{SClg-1: 8 =p-1}| = HSClg—-1]: B(5) =p+1}],

where all the congruences are modulo 2p and (3 denotes descent set statistic in G,.
In the case the proportion p(q) is 1/2, the four cardinalities above are equal to 2973,

Proof. Since ¢ > 2F — 1, as in the proof of Theorem 3.4 there exists a nonessential
element j € [¢ — 1]. Now Theorem 5.4 applies. O

When ¢ = p is a prime and k = 2, Theorem 5.5 applies only to the Fermat
primes which are greater than 3, that is, 5, 17, 257 and 65537. We also know that
the proportion is 1/2 for the case k = 3, that is, primes whose binary expansion has
three 1’s. The first few such primes are 7,11,13,19,37,41,67,73,97; see sequence
A081091 in The On-Line Encyclopedia of Integer Sequences.
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For prime powers of the form ¢ = p* with ¢ > 2, the only case with k = 2 we
know is ¢ = 32. Similarly, with k = 3 we know six cases: 52, 72, 3%, 172, 232, 2572
and 655372, It is not surprising that the squares of the Fermat’s primes and the
square of 32 appear in this list. The two sporadic cases are 72 and 232.

The next theorem concerns permutations of length twice a prime power.

Theorem 5.6. Let ¢ = pt be an odd prime power which has k 1’s in its binary
expansion. Then

{S S [2¢-1] : B(S) =1} {S S 2¢—1] : B(S) = -1},
{SCR¢—1]: B =p-1} = KSCS2¢—1]: B(5) =p+1},

where all the congruences are modulo 2p and 3 denotes descent set statistic in Gaq.
In the case the proportion p(q) is 1/2, the four cardinalities above are equal to 22473,

Proof. By Corollary 5.3 we know that 3(S) = (1)1} mod p. Furthermore,
since 2q is even, the element 1 is nonessential, and Theorem 5.4 applies. (I

6. THE DESCENT SET POLYNOMIAL

A different approach to view the results from the previous sections is in terms
of the descent set polynomial

Quiy= 3 9,
SCn-1]

The degree of this polynomial is the nth Euler number E,,. For n > 2 the polynomial
is divisible by 2¢t. Theorems 3.1, 3.5, 5.5 and 5.6 can be reformulated as follows.

Theorem 6.1. (i) For a positive integer n we have Q,(—1) = 2"-(1/2—p(n)).
In particular, when n has two or three 1’s in its binary expansion, then —1
is a root of Qn(t).

(i) For n =27 > 4 the imaginary unit i is a oot of Q,(t).

(iii) Let g = p* be a prime power, where p is an odd prime. Assume that q has
k 1’s in its binary expansion and satisfies ¢ > 2% — 1. Let ¢ be a primitive
2p-th root of unity. Then

2,0 =2R0)- (o) 3).

where N(() denotes the real part of €.
(iv) Let ¢ = p' be a prime power, where p is an odd prime. Assume that q has k
1’s in its binary expansion. Let ¢ be a primitive 2p-th root of unity. Then

Q) =2 %)+ () - 3 )

It is curious to observe that the polynomial @, (¢) quite often has zeroes occur-
ring at roots of unity. An equivalent formulation is that @, (t) often has cyclotomic
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polynomials ®(t) as factors. (Recall that the cyclotomic polynomial ®y(t) is de-
fined as the product [ C(t —(), where ¢ ranges over all primitive kth roots of unity.)
See Table 2 for the cyclotomic factors of @, (t) for n < 23.

Lemma 6.2. Let q be an odd prime power. Then the cyclotomic polynomial ®,
does not divide the descent set polynomial Q. (t).

Proof. The cyclotomic polynomial ®, evaluated at 1 is given by the odd prime p
where ¢ = p'. Since @, (1) = 2"~ ! has no odd factors, the lemma follows. |

Lemma 6.3. Let ¢ be the odd prime power pt. Then

(i) If n =27 then the cyclotomic polynomial ®o, does not divide Q,(t).
(ii) If n has four 1’s in its binary expansion and p > 5 then the cyclotomic
polynomial ®o does not divide Q,(t).
(iii) If n has five 1’s in its binary expansion and p > 11 then the cyclotomic
polynomial ®o, does not divide Qy(t).

Proof. The cyclotomic polynomial ®,, evaluated at —1 equals the prime p. Since
Qn(—1)=2"-(1/2 — p(n)) the result follows by consulting Table 1. O

7. QUADRATIC FACTORS IN THE DESCENT SET POLYNOMIAL

In order to study the double root behavior of the descent set polynomial @, (t),
equivalently, quadratic factors in @, (f), we need to prove a few identities for the
descent set statistics. We begin by introducing the multivariate ab- and cd-indexes.
Let aj,ag, ... and by, b, ... be non-commutative variables. For S C [n — 1] let ug
be the monomial ujug -« - u,_1 where u; = a; if i ¢ S and u; = b; if i € S. The
multivariate ab-index of a poset P of rank n is defined as the sum

U(P) = hsus,
5

where S ranges over all subsets of [n — 1].

Lemma 7.1. For an Fulerian poset P the multivariate ab-index can be written in
terms of the non-commutative variables ¢; = a; +b; and d; ;11 = a;b; 1 +bsa; 1.

In this case, we call the resulting polynomial the multivariate cd-indexr. Observe
that for a rank n Fulerian poset each of the indices 1 through n appears in each
monomial of the multivariate cd-index.

Proposition 7.2. Let hg be the flag h-vector of an Eulerian poset P of rank n,
or more generally, belong to the generalized Dehn-Sommerville subspace. Let T C
[n — 1] such that T contains an interval [s,t] = {s,s + 1,...,t} of odd cardinality
with s —1,t +1 ¢ T. Then

> (=Dl s =0,

S
where S ranges over all subsets of [n — 1].
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Proof. The sum is obtained from the multivariate ab-index of the poset P by setting

a; = 1 and
L[ -1 ifieT,
r 1  otherwise.

Notice that ¢; = 0 for ¢ € [s,t] and that ds_1,5s = dy441 = 0. If s = 1 we set
doy =0and if ¢t =n—1set d,—1,, = 0. Since P is Eulerian, the multivariate
ab-index can be written in terms of multivariate cd-monomials. A multivariate cd-
monomial that contains ds_1 s or d; 11 evaluates to zero. Since the interval [s, ]
has odd size, a multivariate cd-monomial not containing ds—; s and d; ;41 must
contain at least one variable ¢; with ¢ € [s,¢]. Hence this monomial also evaluates
to zero. [l

Observe that the identity in Proposition 7.2 is a part of the generalized Dehn-
Sommerville relations; see [1].

Theorem 7.3. If the binary expansion of n has two 1’s and n > 3, then ®3
divides Qn(t).

Proof. Assume that n = mq + mo, where m; = 21, moy = 292, and j; > jo. From
the proof of Theorem 3.4 we have
() 1 mod2 if|SN{mi,ma} =0,2,
T 10 mod2 if|SN{mi,me}| =1

Hence
Qn(=1) = > B(S)- (-1
S
= Z(_l)lsﬁ{mumz}\ -B(S)
S
which is zero by Proposition 7.2. (]

Theorem 7.4. If n =2/ > 4 then ®3 divides Q,(t).

Proof. Let m = n/2. The proof of Theorem 3.5 states that 3(S) = (—1)!5~{"} mod
4. Let i be the imaginary unit, so that i2 = —1. Observe -1 = (—1)*. Evalu-
ating @', (¢t) at the imaginary unit i, we obtain

Qui) = YA PO
S
= Dy ),

s
By Proposition 7.2, @/, (i) = 0, since S—{m} =Sn{l,...,m—1,m+1,...,n—1}
and m — 1 is odd. (]

The next result applies to prime powers that have two 1’s in their binary expan-
sion. The only cases known so far are the five known Fermat primes 3, 5, 17,257, 65537
and the prime power 32.
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Theorem 7.5. Let ¢ = p' be a prime power, where p is an odd prime and assume
that q¢ has two 1’s in its binary expansion. Then the cyclotomic polynomial <I>§p

divides Qa4(t).

Proof. In this case n = 2-¢ = m+2, where m = 27. From the proof of Theorem 3.4
we have

B(S) = 1 mod2 if|SN{2,m}|=0,2,
T 10 mod2 if|SN{2,m} =1.

Hence combining it with the proof of Corollary 5.3, we have

(=D)IS=HB mod 2p if [SN{2,m}]| =0,2,
p+ (—1)ISHI mod 2p if [SN{2,m}| = 1.

Thus for ¢ = R(¢) + I(¢) - ¢ a 2p-th primitive root of unity, we have that

8(S) =

m _qyls—{a}l
Cﬂ(S) — (_1)\50{27 }H 'C( 1) a
— (—1)lsnzml (gR(O +(—)s-1al g0 Z) ,
Evaluating the sum and using the fact that |[S N {2,m} +|S — {¢}| = |SN

{2,¢,m}| mod 2 we have
Q) = D B(S)- ¢
S

RC) - Y (=D)L B(8) + §(¢) -+ Y (—1)!SNBemil. 5(g),

S S
where both sums vanish by Proposition 7.2. O

8. THE SIGNED DESCENT SET POLYNOMIAL

Similar to the descent set polynomial we can define the signed descent set poly-
nomial:
+
Qu(t)=> 7,
s

where S ranges over all subsets of [n]. The degree of this polynomial is the nth
signed Euler number EF. Yet again, for n > 1 this polynomial is divisible by 2t.
Theorem 4.6 can now be stated as follows.

Theorem 8.1. For n > 2 the signed descent set polynomial QX (t) has the cyclo-
tomic factor ®4.

The space of quasisymmetric function of type B are defined as BQSym = Z[s] ®
QSym. Quasisymmetric functions of type B were first defined by Chow [5]. We will
view them to be functions in the variables s, wi,ws, ..., that are quasisymmetric
in wy,wa, ... for a composition (g, ...,ax). Define the monomial quasisymmetric
function of type B to be

— 05071 .
(@0,a1,esa) — 5 M(Oflv--wolk)'
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A third method to encode the flag vector data of a poset P of rank at least 1 is
the quasisymmetric function of type B:

where the sum ranges over all chains ¢ = {O =<1 << xR = i} in the
poset P. See [11]. A different way to write equation (8.1) is
(8.2) Fp(P)= > s~ F(lx,1)).

O<z<i

Recall that the diamond product of two posets P and Q is P o Q = (P — {0}) x
(Q —{0})U{0}. Using identity (8.2) one can show that the type B quasisymmetric
function of a poset is multiplicative with respect to the diamond product of posets,
that is, Fp(PoQ) = Fp(P)-Fp(Q). Applying the bijection D between compositions
and subsets, we have

Fp(P) = Z fs- Mg,

SC[n—1]
where we write Mg instead of Mg(s), and the poset P has rank n. The fundamental
quasisymmetric function of type B, denoted by L2 is given by
L7 =Y Mg
TCS

Then the flag h-vector appears as the coefficients in the type B quasisymmetric
function
Fp(P)= >  hs-LE,

SC[n—1]
where the poset P has rank n.

Finally, recall that the cubical lattice C}, has rank n 4+ 1 and is obtained as a
diamond power of the Boolean algebra Bs, that is, C,, = B$". Therefore we have
the following result.

Lemma 8.2. The type B quasisymmetric function of the cubical lattice is given by
FB(Cn) = (S +2- M(l))n

Theorem 8.3. Forp an odd prime the cyclotomic polynomial ®4, divides the signed
descent set polynomial Q;,t(t).

Proof. Observe that modulo 4 we have

Fp(Cp) = (s+2-My))P
sp+2-p~sp_1~M(1)
M1y +2-p- M)

= M@ + 2- M{p}
= Y (-0 Lg+2- >y (-nls-t L
S peS

S (=D LE 4+ (-1t L mod 4.
PES peS
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Hence the signed descent statistics satisfy 5+(S) = (—1)*~{P} mod 4 for S C [p].
Now modulo p we have

Fp(Cp) = (s+2-Muy)?
Sp+2‘M(p)

B B
Mpiy +2- Mp )
My+2- M{l} mod p.

This directly implies that 5%(S)
ments we obtain

71)‘3’{1}| mod p. Combining these two state-

Il
—

(=1)I3l mod4p if 1,p¢g S,

(—1)l8I=1 mod 4p if 1,p €S,
2-p+ (=15 mod4dp ifl1&S pes,
2-p+ (=18 moddp ifleS pds.

(8.3) FE(S) =

Observe that for p ¢ S we have *(S) = (S U {p}) + 2 - p mod 4p, implying
that Cﬁi(s) = _Cﬁi(Su{p}) for ¢ a 4p-th primitive root of unity. Now sum over all
subsets of [p], and the result follows. O

Theorem 8.4. Forp an odd prime, @ZP does not divide the signed descent set poly-
nomial Qf (t). In fact, evaluating the derivative of the signed descent set polynomial
Q;‘E(t) at , where € is a 4p-th primitive root of unity, gives

QO =30 i ()P By

Proof. From (8.3) we have:

COQ = L) ¢
= Zgi 1)ISH{Lp} L (DT
= Zgi 1)lsnitah
Zﬂi 1)ISn{tp} L (_1)IS={1}1,

The first sum is zero by Proposition 7.2. The second sum simplifies to
Zﬁi ISﬂ[l,p 1l

This sum can evaluated by settinga; =1, b; =---=b,_; = —1 and b, = 1 in the
the multivariate ab-index of the cubical lattice C},. Observe that c; =--- =cp_1 =
0 and d,_1,, = 0. Hence the only surviving cd-monomialisd; 2 ---dp_2 p—1¢,. The
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n degree cyclotomic factors of Q,(t)
3 2 &,
4 5 &3
5 16 ®2- &5
6 61 ®Z.P2- Dy
7 272 @,
8 1385 &2 Dog
9 7936 B2 . Pg - Dy
10 50521 B2 - Dg - B2, - Byg - Py
11 353792 &, - Bg - Boo

12 2702765 3 - Pg - D1 - Prg - Pog - Pag - Pep - Pr1o - Pios

13 22368256 P, - Pog

14 1.993-10% ®g- Py Py Prg- Pry- Pog - Pos - Prs2

15 1.904-10° —

16 1.939-10' @3- ®yp- Pog - Pya - Psa - oo - Pise - Pazo - Paso - Pora

17 2,099 10" &2 . Py

18 2.405-10'2 @3- PZ - P15 - P3g - Pio2 - P3os

19 2.909-101% &, - Bag

20 3.704-10' @2 B - Pyg - Pyp - Pay - Phg - Pro2 - Pr1a - Pivo
‘D190 - P510 - P70 - Poas - P193s - P3230 - Posoo

21 4.951-101° @, - Dy Dy - Puo

22 6.935-1016 By Py Dyy- Bog - Dog - Prsy

23 1.015-10'% —

TABLE 2. Cyclotomic factors of @, (t).

coefficient of this monomial is computed as follows.
[d@—l)/%} u(C,) = 20-n/2. [(Qd)(P—l)/QC} u(C,)
— o-1)/2, ([(ab)@—l)/?a} a-U(B,)
n [(ab)@*l)/?b} a- qf(Bp))
= o1/2 . {b(ab)(p—fi)ﬂ} U(B,_1)
— o-1)/2 p-E,y.

The third step is MacMahon’s “Multiplication Theorem” (see [12, Article 159]). It
can be stated in terms of the ab-indices as follows.

m+4+n

0] (B ) + (b0 (Byp) = ( ) OB, + [ U(B,).

m

where v and v have degrees m — 1 and n— 1, respectively. The monomial itself eval-
uates to (—2)P~1/2.2 since dig2=---=dp_2,-1 = —2and ¢, = 2. Combining
all the factors, the evaluation at ¢ follows. O
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degree cyclotomic factors of Q;F(t)

3 Py
361 @4 Dig- Pag - P32 - Pyo
2763 P4 - Pg- Doy - P3o - Pyg - Py - P120 - P16o
24611 P4 - Pg- Doy - Pog - P32 P - Prgs - Poos
250737 P4 - P32 - Dgy - Poog - Puas - Ps12
2873041 @4 - Pig - P32 - D3 - Pes - Pop - P1g2 - Pogs - Paas
D21, - Dyrg - Prgaa - Prsse - Paos2 - Pacos
10 36581523 P4 - Dg- oy - Pyg - s - Pra - P120 - P1g2 - P3op - P30
“Dyyg - Ps12 - Popo - P1344 - P1536 + Pao4o - Paseo - Por20 - Preso
11 5.123-10° @4 Pg- Pyg - Pag - Poa - Pss - Pro2 - 320 - Puso
‘D512 - D704 - Popo - P2112 * Paseo - P3s20 - Pses2
12 7.828-107 P4 Pip- Pso - Pus - Pog - P16o - Pi76 - Poss - Paso
D450 - Ps12 - Psog - P1o56 - Praao - P1s36 - P1760 - Paseo
®3168 - Pasos - Prago - Pre32
13 1296 - 10" @4 P16 - P3o - Pus - Psa - Prgo - Poos - Pas2 - Pais
P21, - Peoa - P1s36 - Pr7eo - Pooso - Pasze - Pses2 - Pesse
14 2.310-10"2 P4 - Dg- Pgo - Dpg - Proa - Pooa - Paso - Paie - Poio
D798 - P1536 - Posea - Pag12 - P3584 - Pusre - Ps632 - Pe6se
“Dog + D120 - P160 - P1es - Paoa - Pago - Pare - Puso - Ps12
“Dg72 - Pgap - P1120 - P124s - P1s36 + P20so - Paseo - P2g12 * Pa3eo
“D5632 - Pg240 - Pos56 * Preso - Psr3e
16 8.986 - 10" @4 - Py - Pros - P1go - P32g - Peao - Psos - Poso
“D1024 - P1664 - P3072 * Paaso - Ps120 - Pr32o
17 1.945-101% &, - By - Pgs - Pros - Poso - Psos
D204 - Pross - Por7e - Passo - Ps120
18 4.458 107 @4 Pg - Doy - Pro - Pros - P13 - Pasa - Paos - Poao
“DP1o24 - P1152 - P1224 - P1920 - P2176 * P3o72 - Ps760 - Pos2s - Po216

© 00~ O Uk w NS

TABLE 3. Cyclotomic factors of QF(¢).

9. CONCLUDING REMARKS

Is there a reason why p(n) — 1/2 factors so nicely?

The two main results for unsigned permutations in Section 3, Theorems 3.1
and 3.4, can also be proved using the ab-index and the mixing operator; see [7].
‘We have omitted this approach since the quasisymmetric viewpoint is more succinct

in this case.

Here are several observations about the data in Table 2:

(i) All the indices k of the cyclotomic polynomials are even.
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(ii) Any prime factor p that occurs in an index k of a cyclotomic polynomial
;. factor of @, (t) is less than or equal to n.
(iii) If ®%, and @y, are factors of Q, (), s0 is Pyeq(i,,k,)- That is, the set of
indices is closed under the meet operation in the divisor lattice.
(iv) If ky divides ko, ko divides k3 and @, and P, occur as factors in Q,(t),
then so does ®,. This is convexity in the divisor lattice.
(v) If both @, and Py, divide Q,(t), where k; divides ks, then the multiplicity
of @, is greater than or equal to the multiplicity of ®y,.
(vi) If p is not a Mersenne prime then the largest cyclotomic factor occurring
in Qp(t) is Pop.
(vii) When p(n) # 1/2 then there are no cyclotomic factors in the descent set
polynomial @, (t).
(viii) For all primes p we conjecture <I>§p divides Q2p.

Moreover for the signed descent set polynomial we observe that:

(ix) For n > 3 the the cyclotomic polynomial ®4,, divides the signed descent set
polynomial Q:F(t).

(x) For n > 5 the the cyclotomic polynomial ®,(,,—1) divides the signed de-
scent set polynomial QF (t).

Can these phenomena be explained?

For what pairs of an integer n and a prime number p does the descent set
statistics 3,,(S) only take two values modulo p?

Finally, we end with two number theoretic questions. Are there infinitely many
primes whose binary expansion has three 1’s? The only reference for these primes
we found is The On-Line Encyclopedia of Integer Sequences, sequence A081091.
Are there any more prime powers with two or three ones in its binary expansion?
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