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Abstract

The notion of exponential Dowling structures is introduced, generalizing Stanley’s original the-
ory of exponential structures. Enumerative theory is developed to determine the Möbius function
of exponential Dowling structures, including a restriction of these structures to elements whose
types satisfy a semigroup condition. Stanley’s study of permutations associated with exponential
structures leads to a similar vein of study for exponential Dowling structures. In particular, for the
extended r-divisible partition lattice we show the Möbius function is, up to a sign, the number of
permutations in the symmetric group on rn + k elements having descent set {r, 2r, . . . , nr}. Using
Wachs’ original EL-labeling of the r-divisible partition lattice, the extended r-divisible partition
lattice is shown to be EL-shellable.

1 Introduction

Stanley introduced the notion of exponential structures, that is, a family of posets that have the par-
tition lattice Πn as the archetype [19, 21]. His original motivation was to explain certain permutation
phenomena. His theory ended up inspiring many mathematicians to study the partition lattice and
other exponential structures from enumerative, representation theoretic and homological perspectives.

For example, Stanley studied the r-divisible partition lattice Πr
n and computed its Möbius num-

bers [19]. Calderbank, Hanlon and Robinson [6] derived plethystic formulas in order to determine the
character of the representation of the symmetric group on its top homology, while Wachs determined
the homotopy type, gave explicit bases for the homology and cohomology and studied the Sn action on
the top homology [26]. For the poset of partitions with block sizes divisible by r and having cardinality
at least rk, a similar array of questions have been considered by Björner and Wachs, Browdy, Linusson,
Sundaram and Wachs [3, 5, 14, 22, 27]. Other related work can be found in [1, 4, 13, 23, 24, 28], as
well as work of Sagan [17], who showed certain examples of exponential structures are CL-shellable.

In this paper we extend Stanley’s notion of exponential structures to that of exponential Dowling
structures. The prototypical example is the Dowling lattice [7]. It can most easily be viewed as the
intersection lattice of the complex hyperplane arrangement in (2.1). See Section 2 for a review of the
Dowling lattice.
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In Section 3 we introduce exponential Dowling structures. We derive the compositional formula
for exponential Dowling structures analogous to Stanley’s theorem on the compositional formula for
exponential structures [19]. As an application, we give the generating function for the Möbius numbers
of an exponential Dowling structure.

An important method to generate new exponential Dowling structures from old ones is given in
Example 3.4. Loosely speaking, in this new structure an r-divisibility condition holds for the “non-zero
blocks” and the cardinality of the “zero block” satisfies the more general condition of being greater
than or equal to k and congruent to k modulo r. We will return to many important special cases of
this example in later sections.

In Section 4 we consider restricted forms of both exponential and exponential Dowling structures.
In the case the exponential Dowling structure is restricted to elements whose type satisfies a semigroup
condition, the generating function for the Möbius function of this poset is particularly elegant. See
Corollary 4.3 and Proposition 4.4. When the blocks have even size, the generating function is nicely
expressed in terms of the hyperbolic functions. See Corollary 4.6.

In Section 5 we continue to develop the connection between permutations and structures first
studied by Stanley in the case of exponential structures. In particular we consider the lattice Πr,j

m , an
extension of the r-divisible partition lattice Πr

m. In Section 6 we verify that Wachs’ EL-labeling of
the r-divisible partition lattice Πr

m naturally extends to the new lattice Πr,j
m .

We end with remarks and open questions regarding further exponential Dowling structures and
their connections with permutation statistics.

2 The Dowling lattice

Let G be a finite group of order s. The Dowling lattice Ln(G) = Ln has the following combinatorial
description. For the original formulation, see Dowling’s paper [7]. Define an enriched block B̃ = (B, f)
to be a non-empty subset B of {1, . . . , n} and a function f : B −→ G. Two enriched blocks B̃ = (B, f)
and C̃ = (C, g) are said to be equivalent if B = C and the functions f and g differ only by a
multiplicative scalar, that is, there exists α ∈ G such that f(b) = g(b) · α for all b in B. Hence there
are only s|B|−1 possible ways to enrich a non-empty set B, up to equivalence. Let B̃ = (B, f) and
C̃ = (C, g) be two disjoint enriched blocks and let α be an element in G. We can define a function h
on the block B ∪ C by

h(b) =

{
f(b) if b ∈ B,

α · g(b) if b ∈ C.

Since the group element α can be chosen in s possible ways, there are s possible ways to merge two
enriched blocks.

For E a subset of {1, . . . , n}, an enriched partition π̃ = {B̃1, . . . , B̃m} on the set E is a partition
π = {B1, . . . , Bm} of E, where each block Bi is enriched with a function fi. The elements of the
Dowling lattice Ln are the collection

Ln =
{
(π̃, Z) : Z ⊆ {1, . . . , n} and π̃ is an enriched partition of Z = {1, . . . , n} − Z

}
.
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The set Z is called the zero block. Define the cover relation on Ln by the following two relations:

({B̃1, B̃2, . . . , B̃m}, Z) ≺ ({B̃2, . . . , B̃m}, Z ∪B1),
({B̃1, B̃2, . . . , B̃m}, Z) ≺ ({B̃1 ∪ B̃2, . . . , B̃m}, Z).

The first relation says that a block is allowed to merge with the zero set. The second relation says that
two blocks are allowed to be merged together. The minimal element 0̂ corresponds to the partition
having all singleton blocks and empty zero block, while the maximal element 1̂ corresponds to the
partition where all the elements lie in the zero block. Observe that the Dowling lattice Ln is graded
of rank n.

When the group G is the cyclic group of order s, that is, Zs, the Dowling lattice has the following
geometric description. Let ζ be a primitive sth root of unity. The Dowling lattice Ln(Zs) is the
intersection lattice of the complex hyperplane arrangement{

zi = ζh · zj for 1 ≤ i < j ≤ n and 0 ≤ h ≤ s− 1,
zi = 0 for 1 ≤ i ≤ n,

(2.1)

that is, the collection of all possible intersections of these hyperplanes ordered by reverse inclusion.

In the notation we will suppress the Dowling lattice’s dependency on the group G. Only the order s
of the group will matter in this paper. In Section 5 the order s will be specialized to the value 1.

For an element x = (π̃, Z) in the Dowling lattice Ln, define the type of x to be (b; a1, a2, . . . , an),
where ai is the number of blocks in π̃ of size i in x and b is the size of the zero block Z. Observe that
the interval [x, 1̂] in the Dowling lattice is isomorphic to Ln−ρ(x) where ρ denotes the rank function.
Moreover, the interval [0̂, x] is isomorphic to Lb ×Πa1

1 × · · · ×Πan
n , where (b; a1, a2, . . . , an) is the type

of x and Πaj

j denotes the Cartesian product of aj copies of the partition lattice on j elements.

Lemma 2.1 In the Dowling lattice Ln there are

sn · n!
sb · b! · (s · 1!)a1 · a1! · (s · 2!)a2 · a2! · · · (s · n!)an · an!

elements of type (b; a1, a2, . . . , an).

Proof: For an element of type (b; a1, a2, . . . , an) in the Dowling lattice Ln we can choose the b elements
in the zero-set in

(n
b

)
ways. The underlying partition on the remaining n− b elements can be chosen

in (
n− b

1, . . . , 1︸ ︷︷ ︸
a1

, 2, . . . , 2︸ ︷︷ ︸
a2

, . . . , n, . . . , n︸ ︷︷ ︸
an

)
· 1
a1! · a2! · · · an!

ways. For a block of size k there are sk−1 signings, so the result follows. 2
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3 Dowling exponential structures

Stanley introduced the notion of an exponential structure. See [19] and [21, Section 5.5].

Definition 3.1 An exponential structure Q = (Q1, Q2, . . .) is a sequence of posets such that

(E1) The poset Qn has a unique maximal element 1̂ and every maximal chain in Qn contains n
elements.

(E2) For an element x in Qn of rank k, the interval [x, 1̂] is isomorphic to the partition lattice on
n− k elements, Πn−k.

(E3) The lower order ideal generated by x ∈ Qn is isomorphic to Qa1
1 ×· · ·×Qan

n . We call (a1, . . . , an)
the type of x.

(E4) The poset Qn has M(n) minimal elements. The sequence (M(1),M(2), . . .) is called the denom-
inator sequence.

Analogous to the definition of an exponential structure, we introduce the notion of an exponential
Dowling structure.

Definition 3.2 An exponential Dowling structure R = (R0, R1, . . .) associated to an exponential
structure Q = (Q1, Q2, . . .) is a sequence of posets such that

(D1) The poset Rn has a unique maximal element 1̂ and every maximal chain in Rn contains n + 1
elements.

(D2) For an element x ∈ Rn, [x, 1̂] ∼= Ln−ρ(x).

(D3) Each element x in Rn has a type (b; a1, . . . , an) assigned such that the lower order ideal generated
by x in Rn is isomorphic to Rb ×Qa1

1 × · · · ×Qan
n .

(D4) The poset Rn has N(n) minimal elements. The sequence (N(0), N(1), . . .) is called the denomi-
nator sequence.

Observe that R0 is the one element poset and thus N(0) = 1. Also note if x has type (b; a1, . . . , an)
then an−b+1 = · · · = an = 0.

Condition (D3) has a different formulation than condition (E3). The reason is that there could
be cases where the lower order ideal generated by an element does not factor uniquely into the form
Rb ×Qa1

1 × · · · ×Qan
n . However, in the examples we consider the type of an element will be clear.

Proposition 3.3 Let R = (R0, R1, . . .) be an exponential Dowling structure with associated expo-
nential structure Q = (Q1, Q2, . . .). The number of elements in Rn of type (b; a1, . . . , an) is given
by

N(n) · sn · n!
N(b) · sb · b! · (M(1) · s · 1!)a1 · a1! · · · (M(n) · s · n!)an · an!

(3.1)
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Proof: Consider pairs of elements (x, y) satisfying y ≤ x, where the element x has type (b; a1, . . . , an)
and y is a minimal element of Rn. We count such pairs in two ways. The number of minimal elements
y ∈ Rn is given by N(n). Given such a minimal element y, the number of x’s is given in Lemma 2.1.
Alternatively, we wish to count the number of x’s. The number of y’s given an element x equals the
number of minimal elements occurring in the lower order ideal generated by x. This equals the number
of minimal elements in Rb ×Qa1

1 × · · · ×Qan
n , that is, N(b) ·M(1)a1 · · ·M(n)an . Thus the answer is as

in (3.1). 2

Let Q be an exponential structure and r a positive integer. Stanley defines the exponential
structure Q(r) by letting Q

(r)
n be the subposet Qrn of all elements x of type (a1, a2, . . .) where ai = 0

unless r divides i. The denominator sequence of Q(r) is given by

M (r)(n) =
M(rn) · (rn)!
M(r)n · n! · r!n

.

Example 3.4 Let R be an exponential Dowling structure associated with the exponential struc-
ture Q. Let r be a positive integer and k a non-negative integer. Let R

(r,k)
n be the subposet of Qrn+k

consisting of all elements x of type (b; a1, a2, . . .) such that b ≥ k, b ≡ k mod r and ai = 0 unless r

divides i. Then R(r,k) = (R(r,k)
0 , R

(r,k)
1 , . . .) is an exponential Dowling structure associated with the

exponential structure Q(r). The minimal elements of R
(r,k)
n are the elements of Rrn+k having types

given by b = k, ar = n and ai = 0 for i 6= n. The denominator sequence of R(r,k) is given by

N (r,k)(n) =
N(rn + k) · (rn + k)! · s(r−1)·n

N(k) · k! ·M(r)n · r!n · n!
.

Stanley [19] proved the following structure theorem.

Theorem 3.5 (The Compositional Formula for Exponential Structures) Let Q = (Q1, Q1, . . .) be an
exponential structure with denominator sequence (M(1),M(2), . . .). Let f : P → C and g : N → C be
given functions such that g(0) = 1. Define the function h : N → C by

h(n) =
∑

x∈Qn

f(1)a1 · f(2)a2 · · · f(n)an · g(a1 + · · ·+ an), (3.2)

for n ≥ 1, where type(x) = (a1, . . . , an), and h(0) = 1. Define the formal power series F,G,K ∈ C[[x]]
by

F (x) =
∑
n≥1

f(n) · xn

M(n) · n!

G(x) =
∑
n≥0

g(n) · xn

n!

H(x) =
∑
n≥0

h(n) · xn

M(n) · n!
.

Then H(x) = G(F (x)).
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For Dowling structures we have an analogous theorem.

Theorem 3.6 (The Compositional Formula for Exponential Dowling Structures) Let R = (R0, R1, . . .)
be an exponential Dowling structure with denominator sequence (N(0), N(1), . . .) and associated ex-
ponential structure Q = (Q1, Q2, . . .) with denominator sequence (M(1),M(2), . . .). Let f : P → C,
g : N → C and k : N → C be given functions. Define the function h : N → C by

h(n) =
∑

x∈Rn

k(b) · f(1)a1 · f(2)a2 · · · f(n)an · g(a1 + · · ·+ an), (3.3)

for n ≥ 0, where type(x) = (b; a1, . . . , an). Define the formal power series F,G,K, H ∈ C[[x]] by

F (x) =
∑
n≥1

f(n) · xn

M(n) · n!

G(x) =
∑
n≥0

g(n) · xn

n!

K(x) =
∑
n≥0

k(n) · xn

N(n) · n!

H(x) =
∑
n≥0

h(n) · xn

N(n) · n!

Then H(x) = K(x) ·G(1/s · F (s · x)).

Proof: By applying the compositional formula of generating functions to the (exponential) generating
functions 1/s · F (sx) =

∑
n≥1 f(n)/(M(n) · s) · (sx)n/n! and G(x), we obtain

G(1/s · F (sx)) =
∑
n≥0

∑
π∈Πn

∏
B∈π

f(|B|)
M(|B|) · s

· g(|π|) · (sx)n

n!

=
∑
n≥0

∑
1·a1+···+n·an=n

sn · n!
(M(1) · s · 1!)a1 · a1! · · · (M(n) · s · n!)an · an!

·f(1)a1 · · · f(n)an · g(a1 + · · ·+ an) · xn

n!
.

Multiply this identity with the (exponential) generating function K(x) =
∑

n≥0 k(n)/N(n) · xn/n! to
obtain

K(x) ·G(1/s · F (sx))

=
∑
n≥0

n∑
b=0

∑
1·a1+···+(n−b)·an−b=n−b

(
n

b

)
· k(b)
N(b)

· sn−b · (n− b)!
(M(1) · s · 1!)a1 · a1! · · · (M(n− b) · s · (n− b)!)an−b · an−b!

·f(1)a1 · · · f(n)an · g(a1 + · · ·+ an−b) ·
xn

n!

=
∑
n≥0

n∑
b=0

∑
1·a1+···+n·an=n−b

sn · n!
N(b) · sb · b! · (M(1) · s · 1!)a1 · a1! · · · (M(n) · s · n!)an · an!
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·k(b) · f(1)a1 · · · f(n)an · g(a1 + · · ·+ an) · xn

n!

=
∑
n≥0

∑
x∈Rn

k(b) · f(1)a1 · · · f(n)an · g(a1 + · · ·+ an) · xn

N(n) · n!
= H(x). 2

Example 3.7 Let R = (R0, R1, . . .) be an exponential Dowling structure with denominator sequence
(N(0), N(1), . . .) and associated exponential structure Q = (Q1, Q2, . . .) with denominator sequence
(M(1),M(2), . . .). Let Vn(t) be the polynomial

Vn(t) =
∑

x∈Qn

tρ(x,1̂).

In Example 5.5.6 in [21] Stanley obtains the generating function

∑
n≥0

Vn(t) · xn

M(n) · n!
= exp

∑
n≥1

xn

M(n) · n!

t

,

by setting f(n) = 1 and g(n) = tn in Theorem 3.5. Similarly, defining Wn(t) by

Wn(t) =
∑

x∈Rn

tρ(x,1̂),

we obtain ∑
n≥0

Wn(t) · xn

N(n) · n!
=

∑
n≥0

xn

N(n) · n!

 · exp

∑
n≥1

(s · x)n

M(n) · n!

 t
s

,

by setting f(n) = 1, g(n) = tn and k(n) = 1 in Theorem 3.6.

Corollary 3.8 Let R = (R0, R1, . . .) be an exponential Dowling structure with denominator sequence
(N(0), N(1), . . .) and associated exponential structure Q = (Q1, Q2, . . .) with denominator sequence
(M(1),M(2), . . .). Then the Möbius function of the posets Qn ∪ {0̂}, respectively Rn ∪ {0̂}, has the
generating function:

∑
n≥1

µ(Qn ∪ {0̂}) ·
xn

M(n) · n!
= − ln

∑
n≥0

xn

M(n) · n!

 , (3.4)

∑
n≥0

µ(Rn ∪ {0̂}) ·
xn

N(n) · n!
= −

∑
n≥0

xn

N(n) · n!

 ·

∑
n≥0

(s · x)n

M(n) · n!

−1/s

. (3.5)

Proof: Setting f(n) = 1 and g(n) = (−1)n−1 · (n− 1)! and using that

µ(Qn ∪ {0̂}) = −
∑

x∈Qn

µ(x, 1̂) = −
∑

x∈Qn

g(a1 + · · ·+ an),
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equation (3.4) follows by Theorem 3.5. Similarly, to prove the second identity (3.5), redefine g(n) to
be the Möbius function of the Dowling lattice Ln of rank n, that is,

g(n) = (−1)n · 1 · (s + 1) · (2 · s + 1) · · · ((n− 1) · s + 1).

By the binomial theorem we have
∑

n≥0 g(n)xn

n! = (1 + s · x)−1/s. Moreover, let k(n) = 1. Using the
recurrence

µ(Rn ∪ {0̂}) = −
∑

x∈Rn

µ(x, 1̂) =
∑

x∈Rn

g(a1 + · · ·+ an),

and Theorem 3.6, the result follows. 2

4 The Möbius function of restricted structures

Let I be a subset of the positive integers P. For an exponential structure Q = (Q1, Q2, . . .) define the
restricted poset QI

n to be all elements x in Qn whose type (a1, . . . , an) satisfies ai > 0 implies i ∈ I.
For n ∈ I let µI(n) denote the Möbius function of the poset QI

n with a 0̂ adjoined, that is, the poset
QI

n ∪ {0̂}. For n 6∈ I let µI(n) = 0.

For any positive integer n define

mn =
∑

x∈QI
n∪{0̂}

µI(0̂, x) = 1 +
∑

x∈QI
n

µI(0̂, x).

Observe that for n ∈ I we have that QI
n has a maximal element and hence mn = 0. Especially for

n 6∈ I we have the expansion

mn = 1−
∑∑

i∈I
i·ai=n

(−1)
∑

i∈I
ai

M(n) · n!
(M(1) · 1!)a1 · a1! · · · (M(n) · n!)an · an!

· µI(1)a1 · · ·µI(n)an .

The following theorem was inspired by work of Linusson [14].

Theorem 4.1

∑
i∈I

µI(i)
xi

M(i) · i!
= − ln

∑
n≥0

xn

M(n) · n!
−
∑
n6∈I

mn ·
xn

M(n) · n!

 .

Proof: Expand the product

−1 +
∏
i∈I

exp

(
−µI(i)

xi

M(i) · i!

)
= −1 +

∏
i∈I

1− µI(i)
xi

M(i) · i!
+

1
2
·
(

µI(i)
xi

M(i) · i!

)2

− · · ·


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=
∑
n≥1

∑∑
i∈I

i·ai=n

∏
i∈I

1
ai!

·
(
−µI(i)

xi

M(i) · i!

)ai

=
∑
n≥1

∑∑
i∈I

i·ai=n

(−1)
∑

i∈I
ai · (µI(1)a1 · · ·µI(n)an)

· M(n) · n!
(M(1) · 1!)a1 · a1! · · · (M(n) · n!)an · an!

xn

M(n) · n!

=
∑
n≥1

(1−mn) · xn

M(n) · n!

=
∑
n≥1

xn

M(n) · n!
−
∑
n6∈I

mn ·
xn

M(n) · n!
.

The result now follows. 2

Let I be a subset of the positive integers P and J be a subset of the natural numbers N. For an
exponential Dowling structure R = (R0, R1, . . .), define the restricted poset RI,J

n to be all elements x
in Rn whose type (b; a1, . . . , an) satisfies b ∈ J and ai > 0 implies i ∈ I.

For n ∈ J define µI,J(n) to be the Möbius function of the poset RI,J
n ∪ {0̂}, that is, RI,J

n with a
minimal element 0̂ adjoined. For n 6∈ J let µI,J(n) = 0. Define for any non-negative integer n

pn =
∑

x∈RI,J
n ∪{0̂}

µI,J(0̂, x) = 1 +
∑

x∈RI,J
n

µI,J(0̂, x).

Observe that for n ∈ J we have pn = 0 since the poset RI,J
n ∪ {0̂} has a maximal element. For n 6∈ J

we have

pn = 1 +
∑

(b;a1,...,an)

(−1)a1+···+an · N(n) · sn · n!
N(b) · sb · b! · (M(1) · s · 1!)a1 · a1! · · · (M(n) · s · n!)an · an!

·µI,J(b) · µI(1)a1 · · ·µI(n)an ,

where the sum is over all types (b; a1, . . . , an) where b ∈ J , ai > 0 implies i ∈ I, and b+
∑

i∈I i ·ai = n.

Theorem 4.2

∑
b∈J

µI,J(b) · xb

N(b) · b!
=

−
∑
n≥0

xn

N(n) · n!
+
∑
n6∈J

pn ·
xn

N(n) · n!∑
n≥0

(s · x)n

M(n) · n!
−
∑
n6∈I

mn ·
(s · x)n

M(n) · n!

1/s

Proof: By similar reasoning as in the proof of Theorem 4.1, we have

exp

(
−
∑
i∈I

µI(i) ·
xi

M(i) · s · i!

)
=

∑
(a1,...,an)

∏
i∈I

1
ai!

·
(
− µI(i) · xi

M(i) · s · i!

)ai

.
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Multiplying with
∑

b∈J µI,J(b) · xb

N(b)·sb·b! and expanding, we obtain∑
b∈J

µI,J(b) · xb

N(b) · sb · b!

 · exp

(
−
∑
i∈I

µI(i) ·
xi

M(i) · s · i!

)

=
∑
n≥0

∑
b∈J

∑
(a1,...,an−b)

(
µI,J(b) · xb

N(b) · sb · b!

)
·
∏
i∈I

1
ai!

·
(
− µI(i) · xi

M(i) · s · i!

)ai

=
∑
n≥0

(pn − 1) · xn

N(n) · sn · n!

Substituting x 7−→ sx, we can rewrite this equation as∑
b∈J

µI,J(b) · xb

N(b) · b!

=

∑
n≥0

(pn − 1) · xn

N(n) · n!

 · exp

(
1
s
·
∑
i∈I

µI(i) ·
(s · x)i

M(i) · i!

)

=

∑
n≥0

(pn − 1) · xn

N(n) · n!

 · exp

(∑
i∈I

µI(i) ·
(s · x)i

M(i) · i!

)1/s

By applying Theorem 4.1 to the last term, the result follows. 2

As a corollary to Theorems 4.1 and 4.2, we have

Corollary 4.3 Let I ⊆ P be a semigroup and J ⊆ N such that I + J ⊆ J . Then the Möbius function
of the restricted poset QI

n ∪ {0̂} and RI,J
n ∪ {0̂} respectively has the generating function:

∑
n∈I

µI(n) · xn

M(n) · n!
= − ln

 ∑
n∈I∪{0}

xn

M(n) · n!

 , (4.1)

∑
n∈J

µI,J(n) · xn

N(n) · n!
= −

(∑
n∈J

xn

N(n) · n!

)
·

 ∑
n∈I∪{0}

(s · x)n

M(n) · n!

−1/s

. (4.2)

Proof: The semigroup condition implies that the poset QI
n is empty when n 6∈ I and hence mn = 1.

Similarly, the other condition implies that the poset RI
n is empty when n 6∈ J , so pn = 1. 2

Let D be the Dowling structure consisting of the Dowling lattices, that is, D = (L0, L1, . . .).

Proposition 4.4 For the exponential Dowling structure D(r,k) we have

∑
n≥0

µ
(
D(r,k)

n ∪ {0̂}
)
· xrn+k

(rn + k)!
=

∑
n≥0

xrn+k

(rn + k)!

 ·

∑
n≥0

(s · x)rn

(rn)!

−1/s

.
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This can be proven from Corollary 4.3 using I = r · P and J = k + r · N. This also follows from
Corollary 3.8 by using the Dowling structure D(r,k).

When r = 1 we have the following corollary.

Corollary 4.5 Let k ≥ 1. Then the Möbius function of the poset D
(1,k)
n ∪ {0̂} is given by

µ
(
D(1,k)

n ∪ {0̂}
)

= (−1)n ·
(

n + k − 1
k − 1

)
.

Furthermore, the Möbius function does not depend on the order s.

Proof: We have

∑
n≥0

µ
(
D(1,k)

n ∪ {0̂}
)
· xn+k

(n + k)!
=

∑
n≥0

xn+k

(n + k)!

 · exp(−x).

Differentiate with respect to x gives

∑
n≥0

µ
(
D(1,k)

n ∪ {0̂}
)
· xn+k−1

(n + k − 1)!
=

∑
n≥0

xn+k−1

(n + k − 1)!

 · exp(−x)−

∑
n≥0

xn+k

(n + k)!

 · exp(−x)

=
xk−1

(k − 1)!
· exp(−x)

=
∑
n≥0

(−1)n ·
(

n + k − 1
k − 1

)
· xn+k−1

(n + k − 1)!
. 2

When r = 2 we can express the generating function for the Möbius function in terms of hyperbolic
functions. We have two cases, depending on whether k is even or odd.

Corollary 4.6 The Möbius function of the poset D
(2,k)
n ∪ {0̂} is given by

∑
n≥0

µ
(
D(2,2j)

n ∪ {0̂}
)
· x2n+2j

(2n + 2j)!
=

cosh(x)−
j−1∑
i=0

x2i

(2i)!

 · sech (s · x)1/s , (4.3)

∑
n≥0

µ
(
D(2,2j+1)

n ∪ {0̂}
)
· x2n+2j+1

(2n + 2j + 1)!
=

sinh(x)−
j−1∑
i=0

x2i+1

(2i + 1)!

 · sech (s · x)1/s . (4.4)

5 Permutations and partitions with restricted block sizes

For a permutation σ = σ1σ2 · · ·σn in the symmetric group Sn define the descent set of σ to be the set
{i : σi < σi+1}. An equivalent notion is the descent word of σ, which is the ab-word u = u1u2 · · ·un−1
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of degree n− 1 where ui = a if σi < σi+1 and ui = b otherwise. For an ab-word u of length n− 1 let
β (u) be the number of permutations σ in Sn with descent word u. Similarly, define the q-analogue
βq(u) to be the sum

βq(u) =
∑
σ

qinv(σ),

where the sum ranges over all permutations σ in Sn with descent word u and inv(σ) is the number
of inversions of σ. Let [n] denote 1 + q + · · · + qn−1 and [n]! = [1] · [2] · · · [n]. Finally, let

[n
k

]
denote

the Gaussian coefficient [n]!/([k]! · [n− k]!).

Lemma 5.1 For two ab-words u and v of degree n − 1, respectively m − 1, the following identity
holds: [

n + m

n

]
· βq(u) · βq(v) = βq(u · a · v) + βq(u · b · v) .

This is “the Multiplication Theorem” due to MacMahon [15, Article 159]. Using this identity, we
obtain the following lemma for Eulerian generating functions.

Lemma 5.2 Let (un)n≥1 and (vn)n≥1 be two sequences of ab-words such that the nth word has degree
n− 1. Then the following Eulerian generating function identity holds:∑

n≥1

cn · βq(un) · xn

[n]!

 ·

∑
n≥1

dn · βq(vn) · xn

[n]!


=

∑
n≥2

∑
i+j=n
i,j≥1

ci · dj · (βq(ui · a · vj) + βq(ui · b · vj)) ·
xn

[n]!
.

Now we obtain the following proposition. In the special case when w = ai, where 0 ≤ i ≤ r − 1,
the result is due to Stanley [18]. See also [20, Section 3.16].

Proposition 5.3 Let w be an ab-word of degree k − 1. Then Eulerian generating function for the
descent statistic βq

(
(ar−1b)n · w

)
is given by

∑
n≥0

(−1)n · βq

(
(ar−1b)n · w

)
· xrn+k

[rn + k]!
=

∑
n≥0

βq(arn · w) · xrn+k

[rn + k]!∑
n≥0

xrn

[rn]!

.

Proof: Consider the following product of generating functions:∑
n≥1

βq

(
arn−1

)
· xrn

[rn]!

 ·

∑
n≥0

(−1)n · βq

(
(ar−1b)n · w

)
· xrn+k

[rn + k]!


12



=
∑
n≥0

 ∑
i+j=n

i≥1

(−1)j ·
(
βq

(
ari(ar−1b)j · w

)
+ βq

(
ar(i−1)(ar−1b)j+1 · w

)) · xrn+k

[rn + k]!

=
∑
n≥0

(
βq(arn · w) + (−1)n−1 · βq

(
(ar−1b)n · w

))
· xrn+k

[rn + k]!
.

Now add
∑

n≥0(−1)n · βq
(
(ar−1b)n · w

)
· xrn+k/[rn + k]! to both sides and the desired identity is

established. 2

For r a positive integer and n a non-negative integer let m = rn. Define the poset Πr
m to be the

collection of all partitions π of the set {1, . . . ,m} such that each block size is divisible by r together
with a minimal element 0̂ adjoined. This is the well-known and well-studied r-divisible partition lattice.
See [6, 17, 19, 26]. Other restrictions of the partition lattice and the Dowling lattice can be found
in [2, 11, 12].

A natural extension of the r-divisible partition lattice is the following. For r a positive integer,
and n and j non-negative integers, let m = rn + j. Define the poset Πr,j

m to be the collection of all
partitions π of the set {1, . . . ,m} such that

(i) a block B of π containing the element m must have cardinality at least j,

(ii) a block B of π not containing the element m must have cardinality divisible by r,

together with a minimal element 0̂ adjoined to the poset. We order all such partitions in the usual
way by refinement. For instance, Π1,1

m is the classical partition lattice Πm with 0̂ adjoined. Observe
that the poset Πr,j

m − {0̂} is a filter (upper order ideal) of the partition lattice Πm. Hence Πr,j
m is a

finite semi-join lattice and we can conclude that it is a lattice. The same argument holds for Πr
m.

By combining Propositions 4.4 and 5.3, we obtain the next result.

Theorem 5.4 Let r and k be positive integers and n a non-negative integer and let m = rn + k +
1. Then the Möbius function of the lattice Πr,k+1

m is given by the sign (−1)n times the number of
permutations on m− 1 elements with the descent set {r, 2r, . . . , nr}, that is,

µ(Πr,k+1
m ) = (−1)n · β

(
(ar−1b)n · ak−1

)
.

Proof: Begin to observe that Πr,k+1
m is isomorphic to the poset D

(r,k)
n when s = 1. Namely, remove

the element m from the block B that contains this element and rename this block to be the zero block.
The result follows now by observing that setting w = ak−1 and q = 1 in Proposition 5.3 gives the
same generating function as setting s = 1 in Proposition 4.4. 2

For completeness, we also consider the case j = 1.
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Theorem 5.5 Let r and n be positive integers and let m = rn + 1. Then the Möbius function of the
lattice Πr,1

m is 0.

Proof: This follows directly from Proposition 4.4 by setting k = 0 and s = 1. A direct combinatorial
argument is the following. Each of the atoms of the lattice Πr,1

m has the element m in a singleton block.
The same holds for the join of all the atoms and hence the join of all the atoms is not the maximal
element 1̂ of the lattice. Thus by Corollary 3.9.5 in [20] the result is obtained. 2

Setting k = r − 1 in Theorem 5.4, we obtain the following corollary due to Stanley [19].

Corollary 5.6 For r ≥ 2 and m = rn the Möbius function of the r-divisible partition lattice Πr
m is

given by the sign (−1)n−1 times the number of permutations of rn − 1 elements with the descent set
{r, 2r, . . . , (n− 1)r}, that is,

µ(Πr
m) = (−1)n−1 · β

(
(ar−1b)n−1 · ar−2

)
.

When r = 2 this corollary reduces to (−1)n−1 · E2n−1, where Ei denotes the ith Euler number. This
result is originally due to G. S. Sylvester [25]. The odd indexed Euler numbers are known as the
tangent numbers and the even indexed ones as the secant numbers. Setting r = 2 and k = 2 in
Theorem 5.4 we obtain that the Möbius function of the partitions where all blocks have even size
except the block containing the largest element, which has an odd size greater than or equal to three,
is given by the secant numbers, that is, (−1)n−1 · E2n.

6 EL-labeling

It is a natural question to ask if the poset Πr,j
m occurring in Theorems 5.4 and 5.5 is EL-shellable.

The answer is positive. An EL-labeling that works is the one using Wachs’ EL-labeling [26] for the
r-divisible partition lattice Πr

m, which we state here for the extended partition lattice Πr,j
m . Let r and j

be positive integers and n a non-negative integer and let m = rn + j. Define the labeling λ as follows.
First consider the edges in the Hasse diagram not adjacent to the minimal element 0̂. Let x and y be
two elements in Πr,k+1

m − {0̂} such that x is covered by y and B1 and B2 are the blocks of x that are
merged to form the partition y. Assume that max(B1) < max(B2). Set

λ(x, y) =

{
−max(B1) if max(B1) > min(B2),
max(B2) otherwise.

(6.1)

Now consider the edges between the minimal element 0̂ and the atoms. There are M = (m−1)!/(n!·r!n·
(j−1)!) number of atoms. For each atom a = {B1, B2, . . . , Bn+1} order the blocks such that min(B1) <
min(B2) < · · · < min(Bn+1). Let ã be the permutation in Sm that is obtained by going through the
blocks in order and writing down the elements in each block in increasing order. For instance, for
the atom a = 16|23|459|78 we obtain the permutation ã = 162345978. It is straightforward to see
that different atoms give rise to different permutations by considering where the largest element m
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is. Finally, order the atoms a1 < a2 < · · · < aM such that the permutations ã1 < ã2 < · · · < ãM are
ordered in lexicographic order. Define the label of the edge from the minimal element to an atom by

λ(0̂, ai) = 0i (6.2)

Order the labels by

{−m < −(m− 1) < · · · < −1 < 01 < 02 < · · · < 0M < 1 < · · · < m}.

Let Ar,j
m be the collection of all permutations σ ∈ Sm such that the descent set of σ is {r, 2r, . . . , nr}

and σ(m) = m. Note that when j = 1 there are no such permutations since the condition σ(m) = m
forces nr to be an ascent. Given a permutation σ ∈ Ar,j

m , let t1, . . . , tn be the permutation of 1, . . . , n
such that

σ(rt1) > σ(rt2) > · · · > σ(rtn).

Define the maximal chain fσ in Πr,j
m whose i-block partition is obtained by splitting σ at rt1, rt2, . . .,

rti−1. As an example, for σ = 562418379 where r = 2, n = 3, j = 3 and m = 9, we have the maximal
chain

f562418379 = {0̂ < 56|24|18|379 < 56|2418|379 < 562418|379 < 562418379 = 1̂}.

Observe that different permutations in Ar,j
m give different maximal chains.

Theorem 6.1 The labeling (λ(x, y),−ρ(x)) where λ is defined in equations (6.1) and (6.2), ρ denotes
the rank function and the ordering is lexicographic on the pairs, is an EL-labeling for the poset Πr,j

m .
The falling maximal chains are given by {fσ : σ ∈ Ar,j

m }.

The proof that this labeling is an EL-labeling mimics the proof of Theorem 5.2 in Wachs’ paper [26]
and hence is omitted.

We distinguish between the cases j = 1 and j ≥ 2 in the following two corollaries.

Corollary 6.2 The chain complex of Πr,1
m is contractible.

Corollary 6.3 The chain complex of Πr,j
m is homotopy equivalent to a wedge of β

(
(ar−1b)n · aj−2

)
number of (n− 1)-dimensional spheres. Hence all the poset homology of the poset Πr,j

m is concentrated
in the top homology which has rank β

(
(ar−1b)n · aj−2

)

7 Concluding remarks

Can more examples of exponential Dowling structures be given? For instance, find the Dowling
extension of counting matrices with non-negative integer entries having a fixed row and column sum.
See [21, Chapter 5].
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Theorem 5.4 has been generalized in [10]. As we have seen in this theorem the generating
function for the Möbius function of D

(r,k)
n ∪ {0̂} in Proposition 4.4 in the case when the order s

is equal to 1 has a permutation enumeration analogue. It would be interesting to find a permu-
tation interpretation for this generating function for general values of the order s. Similar gen-
erating functions have appeared when enumerating classes of r-signed permutations. A few ex-
amples are (sin(px) + cos((r − p)x)/ cos(rx) counting p-augmented r-signed permutations in [8],
r
√

1/(1− sin(rx)) counting augmented André r-signed permutations in [9], and r
√

1/(1− rx) count-
ing r-multipermutations in [16].

There are several other questions to raise. Is there a q-analogue of the partition lattice such that
a natural q-analogue of Theorem 5.4 also holds? We only use the case w = ak−1 in Proposition 5.3.
Are there other poset statistics that correspond to other ab-words w?

The symmetric group Sm−1 acts naturally on the lattice Πr,j
m . Hence it also acts on the top

homology group of Πr,j
m . In a forthcoming paper we study the representation of this Sm−1 action.

Similar questions arise concerning the poset D
(r,k)
n ∪{0̂}; see Proposition 4.4. Is this poset shellable?

Is the homology of this poset concentrated in the top homology? Note that the wreath product G oSn

acts on the Dowling lattice Ln(G) = Ln. Hence G o Sn acts on the exponential Dowling structure
D

(r,k)
n ∪ {0̂}. What can be said about the action of the wreath product G o Sn on the homology

group(s) of D
(r,k)
n ∪ {0̂}?
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