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Abstract. The notion of the negative q-binomial was recently introduced by Fu, Reiner, Stanton and Thiem. Mirroring
the negative q-binomial, we show the classical q-Stirling numbers of the second kind can be expressed as a pair of
statistics on a subset of restricted growth words. The resulting expressions are polynomials in q and (1+q). We extend
this enumerative result via a decomposition of the Stirling poset, as well as a homological version of Stembridge’s
q = −1 phenomenon. A parallel enumerative, poset theoretic and homological study for the q-Stirling numbers of
the first kind is done beginning with de Médicis and Leroux’s rook placement formulation. Letting t = 1 + q we give
a bijective combinatorial argument à la Viennot showing the (q, t)-Stirling numbers of the first and second kind are
orthogonal.

Résumé. La notion de la q-binomial négatif était introduit par Fu, Reiner, Stanton et Thiem. Réfléchissant la q-
binomial négatif, nous démontrons que les classiques q-nombres de Stirling de deuxième espèce peuvent exprimés
comme une paire des statistiques sur un sous-ensemble des mots qui a de croissance restreinte. Les expressions
résultants sont les polynômes en q et 1+q. Nous étendons cet résultat énumérative via d’une décomposition de la poset
de Stirling, ainsi que d’une version homologique du q = −1 phénomène de Stembridge. Un parallèle énumérative,
poset théoretique et étude homologique des q-nombres de Stirling de première espèce se fait en commençant par le
formulation du placement des tours par suite des auteurs de Médicis et Leroux. On laisse t = 1 + q ce que donner les
arguments combinatoires et bijectives à la Viennot que démontrent que les (q, t)-nombres de Stirling de première et
deuxième espèces sont orthogonaux.
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1 Introduction
The notion of the negative q-binomial has been recently introduced by Fu, Reiner, Stanton and Thiem [7].
It is defined by substituting −q for q in the Gaussian coefficient and adjusting the sign:[n

k

]′
q

= (−1)k(n−k)
[n
k

]
−q
.
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Recall
[
n
k

]
q

=
[n]q !

[k]q ![n−k]q ! is the Gaussian polynomial, that is, the familiar q-analogue of the binomial
coefficient, where [m]q = 1+q+ · · ·+qm−1 and [m]q! = [1]q[2]q · · · [m]q . At first blush, the substitution
of −q for q may seem naive. However, it is not unmotivated. Substituting values for q, such as roots of
unity, non-roots of unity, or even zero in the theory of quantum groups can yield vital information.

Two well-known combinatorial interpretations of the the Gaussian polynomial are (i) it counts inver-
sions in Ω(n, k) = {0n−k, 1k}, that is, the set of all 0-1 bit strings consisting of (n−k) zeroes and k ones,
and (ii) it enumerates the number of k-dimensional subspaces from an n-dimensional vector space over a
finite field with q elements. The negative q-binomial enjoys similar properties: (i) it can be expressed as
a generalized inversion number of a subset Ω(n, k)′ of 0-1 bit strings in Ω(n, k):[n

k

]′
q

=
∑

ω∈Ω(n,k)′

wt(ω) =
∑

ω∈Ω(n,k)′

qa(ω)(q − 1)p(ω), 0 ≤ k ≤ n, (1.1)

for statistics a(ω) and p(ω) [7, Theorem 1], (ii) it counts a certain subset of the k-dimensional subspaces
of Fnq [7, Section 6.2], (iii) it reveals a representation theory connection with unitary subspaces and a
two-variable version exhibits a cyclic sieving phenomenon [7, Sections 4, 5].

The goal of this paper is to develop negative q-Stirling numbers of the first and second kind and discuss
their poset and topological implications. The full version of this paper may be found on the arXiv, as well
as the authors’ websites.

2 RG-words
Recall a set partition on the n elements {1, 2, . . . , n} is a decomposition into mutually disjoint nonempty
sets called blocks. Unless otherwise indicated, throughout all set partitions will be written in standard
form, that is, a partition into k blocks will be denoted by π = B1/B2/ · · · /Bk, where the blocks are
ordered so that min(B1) < · · · < min(Bk). We denote the set of all partitions of {1, . . . , n} by Πn.

Given a partition π ∈ Πn, we encode it using a restricted growth word w(π) = w1 · · ·wn, where
wi = j if the element i occurs in the jth block Bj of π. For example, the partition π = 14/236/57 has
RG-word w = 1221323. Restricted growth words are also known as restricted growth functions. They
have been studied by Hutchinson [11], Milne [16, 17] and Rota [20].

Two facts about RG-words follow immediately from using the standard form for set partitions.

Proposition 2.1 The following properties are satisfied by RG-words:

1. Any RG-word begins with the element 1.

2. For an RG-word ω let ε(j) be the smallest index such that ωε(j) = j. Then ε(1) < ε(2) < · · · .

The q-Stirling numbers of the second kind are defined by

Sq[n, k] = Sq[n− 1, k − 1] + [k]q · Sq[n− 1, k], for 0 ≤ k ≤ n, (2.1)

with boundary conditions Sq[n, 0] = δn,0 and Sq[0, k] = δ0,k, where δi,j is the usual Kronecker delta
function. Setting q = 1 gives the familiar Stirling number of the second kind S(n, k) which enumerates
the number of partitions π ∈ Πn with exactly k blocks. There is a long history of studying set partition
statistics and q-Stirling numbers; see for example [1, 2, 4, 8, 9, 15, 17, 20, 27].
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We begin by presenting a new statistic on RG-words which generate the q-Stirling numbers of the
second kind. This differs from inversion type statistics others have used [15, 16, 21, 27]. Let R(n, k)
denote the set of all RG-words of length n with maximum letter k. For w ∈ R(n, k), form the weight
wt(w) = Πn

i=1wti(w), where for mi = max{w1, . . . , wi} let wt1(w) = 1 and for 2 ≤ i ≤ n, let

wti(w) =

{
qwi−1 if wi ≤ mi−1,
1 if wi > mi−1.

(2.2)

For example, wt(1221323) = 1 · 1 · q1 · 1 · 1 · q1 · q2 = q4. As a comment, the wt statistic differs from
that of the ls statistic used in [27, page 29] which has an extra factor of q(

k
2).

Lemma 2.2 The q-Stirling number of the second kind is given by

Sq[n, k] =
∑

w∈R(n,k)

wt(w).

3 Allowable RG-words
Mirroring the negative q-binomial, in this section we define a subset of RG-words and statistics A(π) and
B(π) which generate the classical q-Stirling number of the second kind as a polynomial in q and (1 + q).
We will see in Sections 4 and 5 that this has poset and topological implications.

Definition 3.1 An RG-word π ∈ R(n, k) is allowable if it is of the form

π = u1 · 2 · u3 · 4 · u5 · · · ,

where u2i−1 is a word on the alphabet {1, 3, . . . , 2i − 1}. Denote by A(n, k) the set of all allowable
RG-words inR(n, k).

For anRG-word π = π1 · · ·πn define the weight wt′(π) = Πn
i=1wt′i(π), where formi = max{π1, . . . , πi}

wt′i(π) =

 qπi−1 · (1 + q) if πi < mi−1,
qπi−1 if πi = mi−1,
1 if πi > mi−1 or i = 1.

(3.1)

For completeness, we decompose the weight statistic wt′ into two statistics on RG-words. Let

Ai(π) =

{
πi − 1 if πi ≤ mi−1,
0 if πi > mi−1 or i = 1.

, Bi(π) =

{
1 if πi < mi−1,
0 otherwise. (3.2)

Define

A(π) =

n∑
i=1

Ai(π) and B(π) =

n∑
i=1

Bi(π).

Theorem 3.2 The q-Stirling number of the second kind can be expressed as a weighting over the set of
allowable RG-words as follows:

Sq[n, k] =
∑

π∈A(n,k)

wt′(π) =
∑

π∈A(n,k)

qA(π)(1 + q)B(π). (3.3)
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Proposition 3.3 The number of allowable words satisfies the recurrence

|A(n, k)| = |A(n− 1, k − 1)|+
⌈
k

2

⌉
|A(n− 1, k)|.

Topological implications of Theorem 3.2 will be discussed in Section 5.

4 The Stirling poset of the second kind
In order to understand the q-Stirling numbers more deeply, we give a poset structure on R(n, k) which
we call the Stirling poset of the second kind, denoted by Π(n, k), as follows. For π, ω ∈ R(n, k) let
π = π1π2 · · ·πn ≺ ω if ω = π1π2 · · · (πi + 1) · · ·πn for some index i. See Figure 1 for an example. It
is clear that if π ≺ ω then wt(ω) = q · wt(π), where the weight is defined as in (2.2). Thus the Stirling
poset is graded. For basic terminology regarding posets, we refer the reader to Stanley’s treatise [23].

As a remark, Park has a notion of the Stirling poset which arises from the theory of P -partitions [18].
It has no connection with the Stirling posets in this paper.

12333

12233 12323 12332

11233 12223 12232 12313 12322 1233112133

11223 11232 12123 12213 12231 12312 1232112132

11123 11213 11231 12113 12131 12311

Fig. 1: The matching of the Stirling poset Π(5, 3). The matched elements are indicated by arrows. The unmatched
elements have weight 1 + q2 + q4.

We next review Kozlov’s formulation of a Morse matching [14]. This will enable us to find a natural
decomposition of the Stirling poset of the second kind, and to later be able to draw homological conclu-
sions. A partial matching on a poset P is a matching on the underlying graph of the Hasse diagram of
P , that is, a subset M ⊆ P × P satisfying (i) the ordered pair (a, b) ∈ M implies a ≺ b, and (ii) each
element a ∈ P belongs to at most one element in M . When (a, b) ∈M , we write u(a) = b and d(b) = a.
A partial matching on P is acyclic if there does not exist a cycle

b1 � d(b1) ≺ b2 � d(b2) ≺ · · · ≺ bn � d(bn) ≺ b1
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with n ≥ 2, and the elements b1, . . . , bn distinct.
We define a matching M on the Stirling poset Π(n, k) in the following manner. Let πi be the first entry

in π = π1π2 · · ·πn ∈ R(n, k) such that π is weakly decreasing, that is, π1 ≤ π2 ≤ · · · ≤ πi−1 ≥ πi
and where we require the inequality πi−1 ≥ πi to be strict unless both πi−1 and πi are even. We have
two subcases. If πi is even then let d(π) = π1π2 · · ·πi−1(πi − 1)πi+1 · · ·πn. Immediately we have
wt(d(π)) = q−1 · wt(π). Otherwise, if πi is odd then let u(π) = π1π2 · · ·πi−1(πi + 1)πi+1 · · ·πn and
we have wt(u(π)) = q · wt(π). If π has no index where it is weakly decreasing, then π is unmatched in
the poset. Again, we refer to Figure 1.

Lemma 4.1 For the partial matching M described on the poset Π(n, k) the unmatched words U(n, k)
are of the form

π =

{
u1 · 2 · u3 · 4 · u5 · 6 · · ·uk−1 · k, for k even
u1 · 2 · u3 · 4 · u5 · 6 · · · k − 1 · uk, for k odd (4.1)

where u2i−1 = (2i− 1)ji , that is, u2i−1 is a word consisting of ji ≥ 1 copies of the odd integer 2i− 1.

As an example, the unmatched words inR(5, 3) are 12333, 11233 and 11123.
To show this matching on Π(n, k) is acyclic, we need the following result of Kozlov [14, Theorem

11.2].

Theorem 4.2 (Kozlov) A partial matching on P is acyclic if and only if there exists a linear extension L
of P such that the elements a and u(a) follow consecutively in L.

By defining a linear extension of the partial order on Π(n, k) and considering a case-by-case analysis,
we have the following result.

Theorem 4.3 The matching M described for Π(n, k) is an acyclic matching.

5 Decomposition of the Stirling poset
We next decompose the Stirling poset Π(n, k) into Boolean algebras indexed by the allowable words.
This gives a poset explanation for the factorization of the q-Stirling number Sq[n, k] in terms of powers
of q and (1 + q). To state this decomposition, we need one definition. For ω ∈ A(n, k) an allowable word
let Inv(ω) = {ωi : ωj > ωi for some j < i} be the set of all entries in ω that contribute to an inversion.
Such an entry ωi must be odd since in a given allowable word any entry occurring to the left of an even
entry must be strictly less than it.

Theorem 5.1 The Stirling poset of the second kind Π(n, k) can be decomposed as a disjoint union of
Boolean algebras, where each corresponds to an allowable word, that is,

Π(n, k) ∼=
⋃

w∈A(n,k)

B|Inv(w)|.

Furthermore, if w ∈ A(n, k) has weight wt′(w) = qi(1 + q)j , then the rank of w is i, and w is the
minimal element of a Boolean algebra on j elements occurring in Π(n, k).

See Figure 2 for an example of this decomposition.
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12333

12233 12323 12332

11233 12223 12232 12313 12322 1233112133

11223 11232 12123 12213 12231 12312 1232112132

11123 11213 11231 12113 12131 12311

Fig. 2: The decomposition of the Stirling poset Π(5, 3) into Boolean algebras B0, B1 and B2. Based on the ranks
of the minimal elements in each Boolean algebra, one can read the weight of the poset as Sq[5, 3] = 1 + 2(1 + q) +
3(1 + q)2 + q2 + 3q2(1 + q) + q4.

6 Homological q = −1 phenomenon
Stembridge’s q = −1 phenomenon [24, 25], and the more general cyclic sieving phenomenon of Reiner,
Stanton and White [19] counts symmetry classes in combinatorial objects by evaluating their q-generating
series at a primitive root of unity. Recently Hersh, Shareshian and Stanton [10] have given a homological
interpretation of the q = −1 phenomenon by viewing it as an Euler characteristic computation on a chain
complex supported by a poset. In the best scenario, the homology is concentrated in dimensions of the
same parity and one can identify a homology basis. For further information about algebraic discrete Morse
theory, see [12, 13, 22].

With this preparation, we have the graded poset Π(n, k) supporting an algebraic complex (C, ∂) and a
boundary map ∂. The aforementioned matching for Π(n, k) (Theorem 4.3) is a discrete Morse matching
for this complex. Hence using standard discrete Morse theory [6], we can give a basis for the homology.

The boundary map ∂ is defined as follows: for any ω ∈ Π(n, k), let E(ω) = {ωi1 . . . , ωij : i1 < · · · <
ij , ωik is even with ωr ≥ ωik for some r < ik} be the set of all repeated even entries in ω arranged by
index. Then ∂(ω) =

∑
ωir∈E(ω)(−1)r−1ω1 · · ·ωir−1(ωir − 1)ωir+1 · · ·ωn. If E(ω) is empty (in which

case ω ∈ A(n,K)), define ∂(ω) = 0.
We first need to verify that ∂ is actually a boundary map.

Lemma 6.1 The map ∂ is a boundary map on the algebraic complex (C, ∂) with the poset Π(n, k) as
support.

Lemma 6.2 The weighted generating function of the unmatched words U(n, k) in Π(n, k) is given by the
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q2-binomial coefficient ∑
u∈U(n,k)

wt(u) =

[
n− 1− bk2 c
bk−1

2 c

]
q2

.

Notice that when we substitute q2 = 1, the q2-binomial coefficient reduces to the number of unmatched
words.

We will need a lemma due to Hersh, Shareshian and Stanton [10, Lemma 3.2]. This is part (ii) of the
original statement of the lemma.

Lemma 6.3 (Hersh–Shareshian–Stanton) Let P be a graded poset supporting an algebraic complex
(C, ∂) and assume P has a Morse matchingM such that for all q = M(p) with q < p, one has ∂p,q ∈ Fx.
If all unmatched poset elements occur in ranks of the same parity, then dimHi(C, d) = |P unM

i |, that is,
the number of unmatched elements of rank i.

Theorem 6.4 For the algebraic complex (C, ∂) supported by the Stirling poset Π(n, k), the basis for
homology is given by the increasing allowable RG-words in A(n, k). Furthermore, we have

∑
i≥0

(dimHi)q
i =

[
n− 1− bk2 c
bk−1

2 c

]
q2

.

7 q-Stirling numbers of the first kind: Combinatorial interpretation
The (unsigned) q-Stirling number of the first kind is defined by the recurrence formula

c[n, k] = c[n− 1, k − 1] + [n− 1]q · c[n− 1, k], (7.1)

where c[n, 0] = δn,0 and [m]q = 1 + q + · · ·+ qm−1.
One way to express q-Stirling numbers of the first kind is via rook placements. This is due to de Médicis

and Leroux [3]. This is predated by work of Garsia and Remmel [8], who expressed q-Stirling numbers
of the second kind using rook placements.

Definition 7.1 LetP(m,n) be the set of all ways to place n rooks onto a staircase chessboard of lengthm
such that no two rooks are in the same column. Moreover, for any rook placement T ∈ P(m,n), denote
by s(T ) the number of squares to the south of the rooks in T .

Theorem 7.2 (de Médicis–Leroux) The q-Stirling number of the first kind is given by

c[n, k] =
∑

T∈P(n−1,n−k)

qs(T ),

where the sum is over all rook placements of n− k rooks on a staircase board of length n− 1.

We now define a subset Q(n − 1, n− k) of rook placements in P(n − 1, n− k) so that the q-Stirling
number of the first kind c[n, k] can be expressed as a statistic on the subset involving q and q + 1.

Definition 7.3 Given any staircase chessboard, assign it a chequered pattern such that every other an-
tidiagonal strip of squares is shaded, beginning with the lowest antidiagonal. Let Q(m,n) = {T ∈
P(m,n) : all rooks are placed in shaded squares}. For any T ∈ Q(m,n), let r(T ) denote the number of
rooks in T that are not in the first row. For T ∈ Q(m,n), define the weight to be wt(T ) = qs(T )(1+q)r(T ).
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Theorem 7.4 The q-Stirling number of the first kind is given by

c[n, k] =
∑

T∈Q(n−1,n−k)

wt(T ) =
∑

T∈Q(n−1,n−k)

qs(T )(1 + q)r(T ),

where the sum is over all rook placements of n − k rooks on an alternating shaded staircase board of
length n− 1.

q2 q2(1 + q) (1 + q)2 (1 + q) (1 + q)

Fig. 3: Computing the q-Stirling number of the first kind c[4, 2] usingQ(3, 2).

Note that when we substitute q = −1 into the q-Stirling number of the first kind, the weight wt(T ) of a
rook placement T will be 0 if there is a rook in T that is not in the first row. Hence the Stirling number of
the first kind c[n, k] evaluated at q = −1 counts the number of rook placements in Q(n− 1, n− k) such
that all of the rooks occur in the first row. Thus we have

Corollary 7.5 The q-Stirling number of the first kind c[n, k] evaluated at q = −1 gives the number of
rook placements in Q(n− 1, n− k) where all of the rooks occur in the first row, that is,

c[n, k]q=−1 =

(
bn2 c
n− k

)
.

8 Structure and topology of Stirling poset of the first kind
We define a poset structure on rook placements on a staircase shape board. For T and T ′ in P(m,n), let
T ≺ T ′ if T ′ can be obtained from T by moving a rook to the left (west) or up (north) by one square.
We call this poset the Stirling poset of the first kind and denote it by Γ(m,n). We again wish to study its
topological properties.

We define a matching on the poset as follows. Given T ∈ Γ(m,n), let r be the first rook (reading from
left to right) that is not in a shaded square in the first row. Then T is matched to T ′ where T ′ is obtained
from T by moving r one square down if r is not in a shaded square, or one square up if r is in a shaded
square but not in the first row. As the matching is defined, it is straightforward to check that the unmatched
rook placements are the ones with all the rooks in the shaded squares appearing in the first row.

As an example, the matching on Γ(3, 2) is shown in Figure 4, where an upward arrow indicates a match-
ing and the other edges indicate the remaining cover relations. Observe the unmatched rook placements
are the ones with all the rooks occurring in the shaded squares in the first row. By the way a chessboard is
shaded, the unmatched rook placements only appear in even ranks in the poset.
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Fig. 4: The matching on Γ(3, 2). There is one unmatched rook placement on rank 2.

Theorem 8.1 For the Stirling poset of the first kind Γ(m,n), the generating function on unmatched words
is ∑

T∈P(m,n)

T unmatched

wt(T ) = qn(n−1)

[
bm+1

2 c
n

]
q2
.

This theorem is a q-analogue of Corollary 7.5.
Using a similar linear extension argument as for Π(n, k), we have the following result.

Theorem 8.2 This matching on Γ(m,n) is an acyclic matching.

To apply Lemma 6.3, we need to define a boundary map on Γ(m,n). LetN(T ) be the set of all rooks ri
in a rook placement T ∈ Γ(m,n) that are not in shaded squares and I(T ) be the set of indices for the rooks
in N(T ) arranged in increasing order, that is, I(T ) = {ij : rij ∈ N(T ) and i1 < i2 < · · · < i|N(T )|}.

Lemma 8.3 The map ∂(T ) =
∑

rij∈N(T )

(−1)j−1Trij defined on the algebraic complex supported by the

Stirling poset of the first kind Γ(m,n) is a boundary map.

Applying Theorem 8.1, Theorem 8.2 and Lemma 8.3 to Lemma 6.3, we have the following result.

Theorem 8.4 For the algebraic complex (C, ∂) supported by the Stirling poset of the first kind Γ(m,n)
we have ∑

i≥0

dim(Hi)q
i = qn(n−1)

[
bm+1

2 c
n

]
q2
.
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9 Generating Function and Orthogonality
There are a number of two-variable Stirling numbers of the second kind using bistatistics on RG-words
and rook placements. See [27] and the references therein. In this section, we give natural two variable
(q, t)-analogues for Stirling numbers of the first and second kind, and their generating polynomials.

Definition 9.1 Define the (q, t)-Stirling numbers of the first and second kind by

sq,t[n, k] = (−1)n−k ·
∑

T∈Q(n−1,n−k)

qs(T ) · tr(T ) and Sq,t[n, k] =
∑

π∈A(n,k)

qA(π) · tB(π), (9.1)

where t = q + 1.

Recall the generating polynomials for the q-Stirling numbers are

(x)n,q =

n∑
k=0

sq[n, k] · xk , and xn =

n∑
k=0

Sq[n, k] · (x)k,q , (9.2)

where (x)k,q = Πk−1
m=0(x− [m]q). See [8, pp. 270–271], as well as the overview article [5]. We generalize

these to (q, t)-polynomials. Let [k]q,t = (qk−2 + qk−4 + · · · + 1) · t when k is even and [k]q,t =
qk−1 + (qk−3 + qk−5 + · · ·+ 1) · t when k is odd.

Theorem 9.2 The generating polynomials for the (q, t)-Stirling numbers are

(x)n,q,t =

n∑
k=0

sq,t[n, k] · xk and xn =

n∑
k=0

Sq,t[n, k] · (x)k,q,t , (9.3)

where (x)k,q,t = Πk−1
m=0(x− [m]q,t). When k = 0, define (x)0,q,t = 1.

In [26] Viennot has some beautiful results which give combinatorial bijections for orthogonal poly-
nomials. One well-known relation between the ordinary signed Stirling numbers of first kind and Stir-
ling numbers of the second kind is their orthogonality. A bijective proof of the orthogonality of their
q-analogues via 0–1 tableaux was given by de Médicis and Leroux [3, Proposition 3.1].

We show orthogonality holds combinatorially for the (q, t)-version of the Stirling numbers via a sign-
reversing involution on ordered pairs of rook placements and RG-words.

Theorem 9.3 The (q, t)-Stirling numbers are orthogonal, that is,

n∑
k=m

sq,t[n, k] · Sq,t[k,m] = δm,n , and
n∑

k=m

Sq,t[n, k] · sq,t[k,m] = δm,n . (9.4)

Furthermore, this orthogonality holds bijectively.
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