A Poset View of the Major Index

Richard Ehrenborg*and Margaret Readdy[†]

Abstract

We introduce the Major MacMahon map from $\mathbb{Z}\langle \mathbf{a}, \mathbf{b} \rangle$ to $\mathbb{Z}[q]$, and show how this map commutes with the pyramid and bipyramid operators. When the Major MacMahon map is applied to the **ab**-index of a simplicial poset, it yields the *q*-analogue of *n*! times the *h*-polynomial of the polytope. Applying the map to the Boolean algebra gives the distribution of the major index on the symmetric group, a seminal result due to MacMahon. Similarly, when applied to the cross-polytope we obtain the distribution of one of the major indexes on the signed permutations, due to Reiner.

2010 Mathematics Subject Classification. Primary 06A07; Secondary 05A05, 52B05.

Key words and phrases. The major index; permutations and signed permutations; the Boolean algebra and the face lattice of a cross-polytope; simplicial posets; and principal specialization.

1 Introduction

One hundred and one years ago in 1913 Major Percy Alexander MacMahon [9] (see also his collected works [11]) introduced the major index of a permutation $\pi = \pi_1 \pi_2 \cdots \pi_n$ of the multiset $M = \{1^{\alpha_1}, 2^{\alpha_2}, \ldots, k^{\alpha_k}\}$ of size *n* to be the sum of the elements of its descent set, that is,

$$\operatorname{maj}(\pi) = \sum_{\pi_i > \pi_{i+1}} i.$$

He showed that the distribution of this permutation statistic is given by the q-analogue of the multinomial Gaussian coefficient, that is, the following identity holds:

$$\sum_{\pi} q^{\mathrm{maj}(\pi)} = \frac{[n]!}{[\alpha_1]! \cdot [\alpha_2]! \cdots [\alpha_k]!} = \begin{bmatrix} n\\ \alpha \end{bmatrix},\tag{1.1}$$

where π ranges over all permutations of the multiset M. Here $[n]! = [n] \cdot [n-1] \cdots [1]$ denotes the q-analogue of n!, where $[n] = 1 + q + \cdots + q^{n-1}$.

Many properties of the descent set of a permutation π , that is, $\text{Des}(\pi) = \{i : \pi_i > \pi_{i+1}\}$, have been studied by encoding the set by its **ab**-word; see for instance [6, 12]. For a multiset

^{*}Corresponding author: Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, USA, jrge@ms.uky.edu, phone +1 (859) 257-4090, fax +1 (859) 257-4078.

[†]Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, USA, readdy@ms.uky.edu.

permutation $\pi \in \mathfrak{S}_M$ the **ab**-word is given by $u(\pi) = u_1 u_2 \cdots u_{n-1}$, where $u_i = \mathbf{b}$ if $\pi_i > \pi_{i+1}$ and $u_i = \mathbf{a}$ otherwise.

Inspired by this definition, we introduce the *Major MacMahon map* Θ on the ring $\mathbb{Z}\langle \mathbf{a}, \mathbf{b} \rangle$ of non-commutative polynomials in the variables \mathbf{a} and \mathbf{b} to $\mathbb{Z}[q]$, polynomials in the variable q, by

$$\Theta(w) = \prod_{i \,:\, u_i = \mathbf{b}} q^i,$$

for a monomial $w = u_1 u_2 \cdots u_n$ and extend Θ to all of $\mathbb{Z}\langle \mathbf{a}, \mathbf{b} \rangle$ by linearity. In short, the map Θ sends each variable \mathbf{a} to 1 and the variables \mathbf{b} to q to the power of its position, read from left to right. A Swedish example is $\Theta(\mathbf{abba}) = q^5$.

2 Chain enumeration and products of posets

Let P be a graded poset of rank n + 1 with minimal element $\hat{0}$, maximal element $\hat{1}$ and rank function ρ . Let the rank difference be defined by $\rho(x, y) = \rho(y) - \rho(x)$. The flag f-vector entry f_S , for $S = \{s_1 < s_2 < \cdots < s_k\}$ a subset $\{1, 2, \ldots, n\}$, is the number of chains $c = \{\hat{0} = x_0 < x_1 < x_2 < \cdots < x_{k+1} = \hat{1}\}$ such that the rank of the element x_i is s_i , that is, $\rho(x_i) = s_i$ for $1 \le i \le k$. The flag h-vector is defined by the invertible relation

$$h_S = \sum_{T \subseteq S} (-1)^{|S-T|} \cdot f_T$$

For a subset S of $\{1, 2, ..., n\}$ define two **ab**-polynomials of degree n by $u_S = u_1 u_2 \cdots u_n$ and $v_S = v_1 v_2 \cdots v_n$ by

$$u_i = \begin{cases} \mathbf{a} & \text{if } i \notin S, \\ \mathbf{b} & \text{if } i \in S, \end{cases} \text{ and } v_i = \begin{cases} \mathbf{a} - \mathbf{b} & \text{if } i \notin S, \\ \mathbf{b} & \text{if } i \in S. \end{cases}$$

The **ab**-index of the poset P is defined by the two equivalent expressions:

$$\Psi(P) = \sum_{S} f_S \cdot v_S = \sum_{S} h_S \cdot u_S,$$

where the two sums range over all subsets S of $\{1, 2, ..., n\}$. For more details on the **ab**-index see [7] or the book [16, Section 3.17].

Recall that a graded poset P is *Eulerian* if every non-trivial interval has the same number of elements of even as odd rank. Equivalently, a poset is Eulerian if its Möbius function satisfies $\mu(x, y) = (-1)^{\rho(x,y)}$ for all $x \leq y$ in P. When the graded poset P is Eulerian then the **ab**-index $\Psi(P)$ can be written in terms of the non-commuting variables $\mathbf{c} = \mathbf{a} + \mathbf{b}$ and $\mathbf{d} = \mathbf{ab} + \mathbf{ba}$ and it is called the **cd**-index; see [2]. For an *n*-dimensional convex polytope P its face lattice $\mathcal{L}(P)$ is an Eulerian poset of rank n + 1. In this case we write $\Psi(P)$ for the **ab**-index (**cd**-index) instead of the cumbersome $\Psi(\mathcal{L}(P))$.

There are also two products on posets that we will study. The first is the *Cartesian product*, defined by $P \times Q = \{(x, y) : x \in P, y \in Q\}$ with the order relation $(x, y) \leq_{P \times Q} (z, w)$ if $x \leq_{P} z$

and $y \leq_Q w$. Note that the rank of the Cartesian product of two graded posets of ranks m and n is m + n. As a special case we define $\operatorname{Pyr}(P) = P \times B_1$, where B_1 is the Boolean algebra of rank 1. The geometric reason is that this operation corresponds to the geometric operation of taking the pyramid of a polytope, that is, $\mathcal{L}(\operatorname{Pyr}(P)) = \operatorname{Pyr}(\mathcal{L}(P))$ for a polytope P.

The second product is the *dual diamond product*, defined by

$$P \diamond^* Q = (P - \{\widehat{1}_P\}) \times (Q - \{\widehat{1}_Q\}) \cup \{\widehat{1}\}.$$

The rank of the product $P \diamond^* Q$ is the sum of the ranks of P and Q minus one. This is the dual to the diamond product \diamond defined by removing the minimal elements of the posets, taking the Cartesian product and adjoining a new minimal element. The product \diamond behaves well with the quasi-symmetric functions of type B. (See Sections 5 and 6.) However, we will dualize our presentation and keep working with the product \diamond^* .

Yet again, we have an important special case. We define $\operatorname{Bipyr}(P) = P \diamond^* B_2$. The geometric motivation is the connection to the bipyramid of a polytope, that is, $\mathcal{L}(\operatorname{Bipyr}(P)) = \operatorname{Bipyr}(\mathcal{L}(P))$ for a polytope P.

3 Pyramids and bipyramids

Define on the ring $\mathbb{Z}\langle \mathbf{a}, \mathbf{b} \rangle$ of non-commutative polynomials in the variables \mathbf{a} and \mathbf{b} the two derivations G and D by

$$G(1) = 0$$
, $G(\mathbf{a}) = \mathbf{b}\mathbf{a}$, $G(\mathbf{b}) = \mathbf{a}\mathbf{b}$,
 $D(1) = 0$, $D(\mathbf{a}) = D(\mathbf{b}) = \mathbf{a}\mathbf{b} + \mathbf{b}\mathbf{a}$.

Extend these two derivations to all of $\mathbb{Z}\langle \mathbf{a}, \mathbf{b} \rangle$ by linearity. The *pyramid* and the *bipyramid operators* are given by

$$Pyr(w) = G(w) + w \cdot \mathbf{c}$$
 and $Bipyr(w) = D(w) + \mathbf{c} \cdot w$.

These two operators are suitably named, since for a poset P we have

$$\Psi(\operatorname{Pyr}(P)) = \operatorname{Pyr}(\Psi(P))$$
 and $\Psi(\operatorname{Bipyr}(P)) = \operatorname{Bipyr}(\Psi(P)).$

For further details, see [7].

Theorem 3.1. The Major MacMahon map Θ commutes with right multiplication by \mathbf{c} , the derivation G, the pyramid and the bipyramid operators as follows:

$$\Theta(w \cdot \mathbf{c}) = (1 + q^{n+1}) \cdot \Theta(w), \tag{3.1}$$

$$\Theta(G(w)) = q \cdot [n] \cdot \Theta(w), \qquad (3.2)$$

$$\Theta(\operatorname{Pyr}(w)) = [n+2] \cdot \Theta(w), \tag{3.3}$$

$$\Theta(\operatorname{Bipyr}(w)) = [2] \cdot [n+1] \cdot \Theta(w), \tag{3.4}$$

where w is a homogeneous **ab**-polynomial of degree n.

Proof. It is enough to prove the four identities for an **ab**-monomial w of degree n. Directly we have that $\Theta(w \cdot \mathbf{a}) = \Theta(w)$ and $\Theta(w \cdot \mathbf{b}) = q^{n+1} \cdot \Theta(w)$. Adding these two identities yields equation (3.1).

Assume that w consists of k b's. We will label the n letters of w as follows: The k b's are labeled 1 through k reading from right to left, whereas the n - k a's are labeled k + 1 through n reading left to right. As an example, the word w = aababba is written as $w_4w_5w_3w_6w_2w_1w_7$.

The theorem is a consequence of the following claim. Applying the derivation G only to the letter w_i and then applying the Major MacMahon map yields $q^i \cdot \Theta(w)$, that is,

$$\Theta(u \cdot G(w_i) \cdot v) = q^i \cdot \Theta(u \cdot w_i \cdot v), \qquad (3.5)$$

where w is factored as $u \cdot w_i \cdot v$. To see this, first consider when $1 \le i \le k$. There are i **b**'s to the right of w_i including w_i itself. They each are shifted one step to the right when replacing $w_i = \mathbf{b}$ with $G(\mathbf{b}) = \mathbf{a}\mathbf{b}$ and hence we gain a factor of q^i . The second case is when $k + 1 \le i \le n$. Then w_i is an **a** and is replaced by **ba** under the derivation G. Assume that there are j **b**'s to the right of w_i . When these j **b**'s are shifted one step to the right they contribute a factor of q^j . We also create a new **b**. It has i - k - 1 **a**'s to the left and k - j **b**'s to the left. Hence the position of the new **b** is (i - k - 1) + (k - j) + 1 = i - j and thus its contribution is q^{i-j} . Again the factor is given by $q^j \cdot q^{i-j} = q^i$, proving the claim. Now by summing over these n cases, identity (3.2) follows. Identity (3.3) is the sum of identities (3.1) and (3.2).

To prove identity (3.4), we use a different labeling of the monomial w. This time label the k b's with the subscripts 0 through k-1, rather than 1 through k. That is, in our example w = **aababba** is now labeled as $w_4w_5w_2w_6w_1w_0w_7$. We claim that for $w = u \cdot w_i \cdot v$ we have that

$$\Theta(u \cdot D(w_i) \cdot v) = q^i \cdot [2] \cdot \Theta(w).$$

The first case is $0 \le i \le k - 1$. Then $w_i = \mathbf{b}$ has *i* b's to its right. Thus when replacing **b** with **ba** there are *i* b's that are shifted one step, giving the factor q^i . Similarly, when replacing w_i with **ab**, there are i + 1 b's that are shifted one step, giving the factor q^{i+1} . The sum of the two factors is $q^i \cdot [2]$. The second case is $k + 1 \le i \le n$. It is as the second case above when replacing w_i with **ba**, yielding the factor q^i . When replacing w_i with **ab** there is one more shift, giving q^{i+1} . Adding these two subcases completes the proof of the claim.

It is straightforward to observe that

$$\Theta(\mathbf{c} \cdot w) = q^k \cdot [2] \cdot \Theta(w).$$

Calling this the case i = k, the identity (3.4) follows by summing the n + 1 cases $0 \le i \le n$. \Box

Iterating equations (3.3) and (3.4) we obtain that the Major MacMahon map of the **ab**-index of the *n*-dimensional simplex Δ_n and the *n*-dimensional cross-polytope C_n^* .

Corollary 3.2. The n-dimensional simplex Δ_n and the n-dimensional cross-polytope C_n^* satisfy

$$\Theta(\Psi(\Delta_n)) = [n+1]!,$$

$$\Theta(\Psi(C_n^*)) = [2]^n \cdot [n]!.$$

4 Simplicial posets

A graded poset P is simplicial if all of its lower order intervals are Boolean, that is, for all elements $x < \hat{1}$ the interval [0, x] is isomorphic to the Boolean algebra $B_{\rho(x)}$. It is well-known that all the

flag information of a simplicial poset of rank n + 1 is contained in the *f*-vector (f_0, f_1, \ldots, f_n) , where $f_0 = 1$ and $f_i = f_{\{i\}}$ for $1 \le i \le n$. The *h*-vector, equivalently, the *h*-polynomial $h(P) = h_0 + h_1 \cdot q + \cdots + h_n \cdot q^n$, is defined by the polynomial relation

$$h(q) = \sum_{i=0}^{n} f_i \cdot (q-1)^{n-i}$$

See for instance [19, Section 8.3]. The h-polynomial and the bipyramid operation commutes as follows

$$h(\operatorname{Bipyr}(P)) = (1+q) \cdot h(P)$$

We can now evaluate the Major MacMahon map on the **ab**-index of a simplicial poset.

Theorem 4.1. For a simplicial poset P of rank n + 1 the following identity holds:

$$\Theta(\Psi(P)) = [n]! \cdot h(P). \tag{4.1}$$

Proof. Let $B_n \cup \{\widehat{1}\}$ denote the Boolean algebra B_n with a new maximal element added. Note that $B_n \cup \{\widehat{1}\}$ is indeed a simplicial poset and its *h*-polynomial is 1. Furthermore, equation (4.1) holds for $B_n \cup \{\widehat{1}\}$ since

$$\Theta(\Psi(B_n \cup \{\widehat{1}\})) = \Theta(\Psi(B_n) \cdot \mathbf{a}) = \Theta(\Psi(B_n)) = [n]! = [n]! \cdot h(B_n \cup \{\widehat{1}\}).$$

Also, if (4.1) holds for a poset P then it also holds for Bipyr(P), since we have

$$\Theta(\Psi(\text{Bipyr}(P))) = [2] \cdot [n+1] \cdot \Theta(\Psi(P)) = [2] \cdot [n+1] \cdot [n]! \cdot h(P) = [n+1]! \cdot h(\text{Bipyr}(P)).$$

Observe that both sides of (4.1) are linear in the *h*-polynomial. Hence to prove it for any simplicial poset P it is enough to prove it for a basis of the span of all simplicial posets of rank n+1. Such a basis is given by the posets

$$\mathcal{B}_n = \left\{ \text{Bipyr}^i(B_{n-i} \cup \{\widehat{1}\}) \right\}_{0 \le i \le n}$$

This is a basis since the polynomials $h(\text{Bipyr}^i(B_{n-i} \cup \{\widehat{1}\})) = (1+q)^i$, for $0 \le i \le n$, are a basis for polynomials of degree at most n.

Finally, since every element in the basis is built up by iterating bipyramids of the posets $B_n \cup \{\hat{1}\}$, the theorem holds for all simplicial posets.

Observe that the poset Bipyr^{*i*}($B_{n-i} \cup \{\widehat{1}\}$) is the face lattice of the simplicial complex consisting of the 2^i facets of the *n*-dimensional cross-polytope in the cone $x_1, \ldots, x_{n-i} \ge 0$.

For an Eulerian simplicial poset P, the *h*-vector is symmetric, that is, $h_i = h_{n-i}$. In other words, the *h*-polynomial is palindromic. Stanley [15] introduced the simplicial shelling components, that is, the **cd**-polynomials $\check{\Phi}_{n,i}$ such that the **cd**-index of an Eulerian simplicial poset P of rank n + 1is given by

$$\Psi(P) = \sum_{i=0}^{n} h_i \cdot \check{\Phi}_{n,i}.$$
(4.2)

These **cd**-polynomials satisfies the recursion $\check{\Phi}_{n,0} = \Psi(B_n) \cdot \mathbf{c}$ and $\check{\Phi}_{n,i} = G(\check{\Phi}_{n-1,i-1})$; see [7, Section 8]. The Major MacMahon map of these polynomials is described by the next result.

Corollary 4.2. The Major MacMahon map of the simplicial shelling components is given by

$$\Theta(\check{\Phi}_{n,i}) = q^i \cdot [2(n-i)] \cdot [n-1]!.$$

Proof. When i = 0 we have $\Theta(\check{\Phi}_{n,0}) = \Theta(\Psi(B_n) \cdot \mathbf{c}) = (1+q^n) \cdot [n]! = [2n] \cdot [n-1]!$. Also when $i \ge 1$ we obtain $\Theta(\check{\Phi}_{n,i}) = \Theta(G(\check{\Phi}_{n-1,i-1})) = q \cdot [n-1] \cdot \Theta(\check{\Phi}_{n-1,i-1}) = q^i \cdot [2(n-i)] \cdot [n-1]!$. \Box

We end with the following observation.

Theorem 4.3. For an Eulerian poset P of rank n + 1, the polynomial $[2]^{\lceil n/2 \rceil}$ divides $\Theta(\Psi(P))$.

Proof. It is enough to show this result for a **cd**-monomial w of degree n. A **c** in an odd position i of w yields a factor of $1 + q^i$. A **d** that covers an odd position i of w yields either $q^{i-1} + q^i$ or $q^i + q^{i+1}$. Each of these polynomials contributes a factor of 1 + q. The result follows since there are $\lceil n/2 \rceil$ odd positions.

5 The Cartesian product of posets

We now study how the Major MacMahon map behaves under the Cartesian product. Recall that for a poset P the **ab**-index $\Psi(P)$ encodes the flag f-vector information of the poset P. There is another encoding of this information as a quasi-symmetric function. For further information about quasi-symmetric functions, see [17, Section 7.19].

A composition α of n is a list of positive integers $(\alpha_1, \alpha_2, \ldots, \alpha_k)$ such that $\alpha_1 + \alpha_2 + \cdots + \alpha_k = n$. Let $\operatorname{Comp}(n)$ denote the set of compositions of n. There are three natural bijections between **ab**monomials u of degree n, subsets S of the set $\{1, 2, \ldots, n\}$ and compositions of n + 1. Given a composition $\alpha \in \operatorname{Comp}_{n+1}$ we have the subset S_{α} , the **ab**-monomial u_{α} and the **ab**-polynomial v_{α} defined by

$$S_{\alpha} = \{\alpha_{1}, \alpha_{1} + \alpha_{2}, \dots, \alpha_{1} + \dots + \alpha_{k-1}\},\$$

$$u_{\alpha} = \mathbf{a}^{\alpha_{1}-1} \cdot \mathbf{b} \cdot \mathbf{a}^{\alpha_{2}-1} \cdot \mathbf{b} \cdots \mathbf{b} \cdot \mathbf{a}^{\alpha_{k}-1},\$$

$$v_{\alpha} = (\mathbf{a} - \mathbf{b})^{\alpha_{1}-1} \cdot \mathbf{b} \cdot (\mathbf{a} - \mathbf{b})^{\alpha_{2}-1} \cdot \mathbf{b} \cdots \mathbf{b} \cdot (\mathbf{a} - \mathbf{b})^{\alpha_{k}-1}.$$

For S a subset of $\{1, 2, \ldots, n\}$ let co(S) denote associated composition.

The monomial quasi-symmetric function M_{α} is defined as the sum

$$M_{\alpha} = \sum_{i_1 < i_2 < \dots < i_k} t_{i_1}^{\alpha_1} \cdot t_{i_2}^{\alpha_2} \cdots t_{i_k}^{\alpha_k}.$$

A second basis is given by the fundamental quasi-symmetric function L_{α} defined as

$$L_{\alpha} = \sum_{S_{\alpha} \subseteq T \subseteq \{1, 2, \dots, n\}} M_{\operatorname{co}(T)}.$$

Following [8] define an injective linear map $\gamma : \mathbb{Z}\langle \mathbf{a}, \mathbf{b} \rangle \longrightarrow \text{QSym}$ by

$$\gamma\left(v_{\alpha}\right) = M_{\alpha},$$

for a composition α of $n \geq 1$. The image of γ is all quasi-symmetric functions without constant term. Moreover, the image of the **ab**-monomial u_{α} under γ is the fundamental quasi-symmetric function L_{α} , that is,

$$\gamma(u_{\alpha}) = L_{\alpha}$$

Another way to encode the flag vectors of a poset P is by the quasi-symmetric function of the poset. It is quickly defined as $F(P) = \gamma(\Psi(P))$. A more poset-oriented definition is the following limit of sums over multichains

$$F(P) = \lim_{k \to \infty} \sum_{\hat{0} = x_0 \le x_1 \le \dots \le x_k = \hat{1}} t_1^{\rho(x_0, x_1)} \cdot t_2^{\rho(x_1, x_2)} \cdots t_k^{\rho(x_{k-1}, x_k)}$$

For more on the quasi-symmetric function of a poset, see [5].

The stable principal specialization of a quasi-symmetric function is the substitution $ps(f) = f(1, q, q^2, ...)$. Note that this is a homeomorphism, that is, $ps(f \cdot g) = ps(f) \cdot ps(g)$.

For a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$ let α^* denote the reverse composition, that is, $\alpha^* = (\alpha_k, \dots, \alpha_2, \alpha_1)$. This involution extends to an anti-automorphism on QSym by $M^*_{\alpha} \mapsto M_{\alpha^*}$. Define ps^{*} by the relation ps^{*}(f) = ps(f^{*}). Informally speaking, this corresponds to the substitution ps^{*}(f) = f(\dots, q^2, q, 1).

Theorem 5.1. For a homogeneous **ab**-polynomial w of degree n-1 the Major MacMahon map is given by

$$\Theta(w) = (1-q)^n \cdot [n]! \cdot \mathrm{ps}^*(\gamma(w)).$$
(5.1)

For a poset P of rank n this identity is

$$\Theta(\Psi(P)) = (1-q)^n \cdot [n]! \cdot \operatorname{ps}^*(F(P)).$$
(5.2)

Proof. It is enough to prove identity (5.1) for an **ab**-monomial w of degree n-1. Let α be the composition of n corresponding to the reverse monomial w^* . Furthermore, let $e(\alpha)$ be the sum $\sum_{i \in S_{\alpha}} (n-i)$. Note that $e(\alpha)$ is in fact the sum $\sum_{i \in S} i$, where S is the subset associated with the **ab**-monomial w. That is, we have $q^{e(\alpha)} = \Theta(w)$. Equation (5.1) follows from Lemma 7.19.10 in [17]. By applying the first identity to $\Psi(P)$, we obtain identity (5.2).

Since the quasi-symmetric function is multiplicative under the Cartesian product, we have the next result.

Theorem 5.2. For two posets P and Q of ranks m, respectively n, the following identity holds:

$$\Theta(\Psi(P \times Q)) = \begin{bmatrix} m+n\\n \end{bmatrix} \cdot \Theta(\Psi(P)) \cdot \Theta(\Psi(Q)).$$
(5.3)

Proof. The proof is a direct verification as follows:

$$\Theta(\Psi(P \times Q)) = (1 - q)^{m+n} \cdot [m+n]! \cdot \operatorname{ps}(F(P^* \times Q^*))$$

= $\begin{bmatrix} m+n \\ m \end{bmatrix} \cdot (1 - q)^{m+n} \cdot [m]! \cdot [n]! \cdot \operatorname{ps}(F(P^*)) \cdot \operatorname{ps}(F(Q^*))$
= $\begin{bmatrix} m+n \\ m \end{bmatrix} \cdot \Theta(\Psi(P)) \cdot \Theta(\Psi(Q)).$

6 The dual diamond product

Define the quasi-symmetric function of type B^* of a poset P to be the expression

$$F_{B^*}(P) = \sum_{\widehat{0} \le x < \widehat{1}} F([\widehat{0}, x]) \cdot s^{\rho(x, \widehat{1}) - 1}.$$

This is an element of the algebra $QSym \otimes \mathbb{Z}[s]$ which we view as the quasi-symmetric functions of type B^* . We view $QSym_{B^*}$ as an subalgebra of $\mathbb{Z}[t_1, t_2, \ldots; s]$, which is quasi-symmetric in the variables t_1, t_2, \ldots . For instance, a basis for $QSym_{B^*}$ is given by a $M_{\alpha} \cdot s^i$ where α ranges over all compositions and i over all non-negative integers.

Furthermore, the type B^* quasi-symmetric function F_{B^*} is multiplicative respect to the product \diamond^* , that is, $F_{B^*}(P \diamond^* Q) = F_{B^*}(P) \cdot F_{B^*}(Q)$; see [8, Theorem 13.3].

Let f be a homogeneous quasi-symmetric function such that $f \cdot s^j$ is a quasi-symmetric function of type B^* . We define the *stable principal specialization* of the quasi-symmetric function $f \cdot s^j$ of type B^* to be $ps_{B^*}(f \cdot s^j) = q^{\deg(f)} \cdot ps^*(f)$. This is the substitution s = 1, $t_k = q$, $t_{k-1} = q^2$, ... as k tends to infinity, since $f(\ldots, q^3, q^2, q) = q^{\deg(f)} \cdot f(\ldots, q^2, q, 1)$. Especially, for a poset P we have

$$ps_{B^*}(F_{B^*}(P)) = \sum_{\widehat{0} \le x < \widehat{1}} q^{\rho(x)} \cdot ps^*(F([\widehat{0}, x])).$$
(6.1)

Theorem 6.1. For a poset P of rank n + 1 the relationship between the Major MacMahon map and the stable principal specialization of type B^* is given by

$$\Theta(\Psi(P)) = (1-q)^n \cdot [n]! \cdot \mathrm{ps}_{B^*}(F_{B^*}(P^*)).$$
(6.2)

Especially, for a homogeneous **ab**-polynomial w of degree n the Major MacMahon map is given by

$$\Theta(w) = (1 - q)^n \cdot [n]! \cdot \mathrm{ps}_{B^*}(\gamma_{B^*}(w^*)).$$
(6.3)

Proof. For the poset P we have

$$ps^{*}(F(P)) = \lim_{k \to \infty} \sum_{\hat{0}=x_{0} \le x_{1} \le \dots \le x_{k} = \hat{1}} (q^{k-1})^{\rho(x_{0},x_{1})} \cdots (q^{2})^{\rho(x_{k-3},x_{k-2})} \cdot q^{\rho(x_{k-2},x_{k-1})} \cdot 1^{\rho(x_{k-1},x_{k})}$$

$$= \lim_{k \to \infty} \sum_{\hat{0}=x_{0} \le x_{1} \le \dots \le x_{k} = \hat{1}} (q^{k-1})^{\rho(x_{0},x_{1})} \cdots (q^{2})^{\rho(x_{k-3},x_{k-2})} \cdot q^{\rho(x_{k-2},x_{k-1})}$$

$$= \lim_{k \to \infty} \sum_{\hat{0}=x_{0} \le x_{1} \le \dots \le x_{k} = \hat{1}} q^{\rho(x_{k-1})} \cdot (q^{k-2})^{\rho(x_{0},x_{1})} \cdots q^{\rho(x_{k-3},x_{k-2})} \cdot 1^{\rho(x_{k-2},x_{k-1})}$$

$$= \sum_{\hat{0} \le x \le \hat{1}} q^{\rho(x)} \cdot ps^{*}(F([\hat{0},x])) + q^{n+1} \cdot ps^{*}(F(P)).$$

Rearranging terms yields

$$\begin{split} \sum_{\widehat{0} \le x < \widehat{1}} q^{\rho(x)} \cdot \mathrm{ps}^*(F([\widehat{0}, x])) &= (1 - q^{n+1}) \cdot \mathrm{ps}^*(F(P)) \\ &= (1 - q^{n+1}) \cdot \mathrm{ps}(F(P^*)) \\ &= (1 - q^{n+1}) \cdot \frac{\Theta(\Psi(P))}{(1 - q)^{n+1} \cdot [n+1]!} \\ &= \frac{\Theta(\Psi(P))}{(1 - q)^n \cdot [n]!}. \end{split}$$

Combining the last identity with (6.1) yields the desired result.

Theorem 6.2. For two posets P and Q of ranks m + 1, respectively n + 1, the identity holds:

$$\Theta(\Psi(P\diamond^* Q)) = \begin{bmatrix} m+n\\n \end{bmatrix} \cdot \Theta(\Psi(P)) \cdot \Theta(\Psi(Q)).$$
(6.4)

Proof. The proof is a direct verification as follows:

$$\Theta(\Psi(P \diamond^* Q)) = (1-q)^{m+n} \cdot [m+n]! \cdot \operatorname{ps}_{B^*}(F_{B^*}(P^* \diamond^* Q^*))$$

$$= \begin{bmatrix} m+n \\ m \end{bmatrix} \cdot (1-q)^{m+n} \cdot [m]! \cdot [n]! \cdot \operatorname{ps}_{B^*}(F_{B^*}(P^*)) \cdot \operatorname{ps}_{B^*}(F_{B^*}(Q^*))$$

$$= \begin{bmatrix} m+n \\ m \end{bmatrix} \cdot \Theta(\Psi(P)) \cdot \Theta(\Psi(Q)).$$

7 Permutations

One connection between permutations and posets is via the concept of *R*-labelings. For more details, see [16, Section 3.14]. Let $\mathcal{E}(P)$ be the set of all cover relations of *P*, that is, $\mathcal{E}(P) = \{(x, y) \in P^2 : x \prec y\}$. A graded poset *P* has an *R*-labeling if there is a map $\lambda : \mathcal{E}(P) \longrightarrow \Lambda$, where

 Λ is a linearly ordered set, such that in every interval [x, y] in P there is a unique maximal chain $c = \{x = x_0 \prec x_1 \prec \cdots \prec x_k = y\}$ such that $\lambda(x_0, x_1) \leq \lambda(x_1, x_2) \leq \cdots \leq \lambda(x_{k-1}, x_k)$.

For a maximal chain c in the poset P of rank n, let $\lambda(c)$ denote the list $(\lambda(x_0, x_1), \lambda(x_1, x_2), \ldots, \lambda(x_{k-1}, x_k))$. The Jordan-Hölder set of P, denoted by JH(P), is the set of all the lists $\lambda(c)$ where c ranges over all maximal chains of P. The descent set of a list of labels $\lambda(c)$ is the set of positions where there are descents in the list. Similarly, we define the descent word of $\lambda(c)$ to be $u_{\lambda(c)} = u_1 u_2 \cdots u_{n-1}$ where $u_i = \mathbf{b}$ if $\lambda(x_{i-1}, x_i) > \lambda(x_i, x_{i+1})$ and $u_i = \mathbf{a}$ otherwise.

The bridge between posets and permutations is given by the next result.

Theorem 7.1. For an R-labeling λ of a graded poset P we have that

$$\Psi(P) = \sum_{c} u_{\lambda(c)},$$

where the sum is over the Jordan-Hölder set JH(P).

This a reformulation of a result of Björner and Stanley [3, Theorem 2.7]. The reformulation can be found in [6, Lemma 3.1].

As a corollary we obtain MacMahon's classical result on the major index on a multiset; see [9]. For a composition α of n let \mathfrak{S}_{α} denote all the permutations of the multiset $\{1^{\alpha_1}, 2^{\alpha_2}, \ldots, k^{\alpha_k}\}$.

Corollary 7.2 (MacMahon). For a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$ of *n* the following identity holds:

$$\sum_{\pi \in \mathfrak{S}_{\alpha}} q^{\operatorname{maj}(\pi)} = \frac{[n]!}{[\alpha_1]! \cdot [\alpha_2]! \cdots [\alpha_k]!}.$$

Proof. Let P_i denote the chain of rank α_i for i = 1, ..., k. Furthermore, label all the cover relations in P_i with *i*. Let *L* denote the distributive lattice $P_1 \times P_2 \times \cdots \times P_k$. Furthermore, let *L* inherit an *R*-labeling from its factors, that is, if $x = (x_1, x_2, ..., x_k) \prec (y_1, y_2, ..., y_k) = y$ let the label $\lambda(x, y)$ be the unique coordinate *i* such that $x_i \prec y_i$. Observe that the Jordan-Hölder set of *L* is \mathfrak{S}_{α} . Direct computation yields $\Psi(P_i) = \mathbf{a}^{\alpha_i - 1}$, so the Major MacMahon map is $\Theta(\Psi(P_i)) = 1$. Iterating Theorem 5.2 evaluates the Major MacMahon map on *L*:

$$\sum_{\pi \in \mathfrak{S}_{\alpha}} q^{\operatorname{maj}(\pi)} = \Theta\left(\sum_{\pi \in \mathfrak{S}_{\alpha}} u(\pi)\right) = \Theta\left(\Psi(L)\right) = \begin{bmatrix} n \\ \alpha \end{bmatrix}.$$

For a vector $\mathbf{r} = (r_1, r_2, \ldots, r_n)$ of positive integers let an \mathbf{r} -signed permutation be a list $\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_{n+1}) = ((j_1, \pi_1), (j_2, \pi_2), \ldots, (j_n, \pi_n), 0)$ such that $\pi_1 \pi_2 \cdots \pi_n$ is a permutation in the symmetric group \mathfrak{S}_n and the sign j_i is from the set $S_{\pi_i} = \{-1\} \cup \{2, \ldots, r_{\pi_i}\}$. On the set of labels $\Lambda = \{(j, i) : 1 \leq i \leq n, j \in S_i\} \cup \{0\}$ we use the lexicographic order with the extra condition that 0 < (j, i) if and only if 0 < j. Denote the set of \mathbf{r} -signed permutations by $\mathfrak{S}_n^{\mathbf{r}}$. The descent set of an \mathbf{r} -signed permutation σ is the set $\mathrm{Des}(\sigma) = \{i : \sigma_i > \sigma_{i+1}\}$ and the major index is defined as $\mathrm{maj}(\sigma) = \sum_{i \in \mathrm{Des}(\sigma)} i$. Similar to Corollary 7.2, we have the following result.

Figure 1: The poset P_i with its *R*-labeling used in the proof of Corollary 7.3.

Corollary 7.3. The distribution of the major index for **r**-signed permutations is given by

$$\sum_{\sigma \in \mathfrak{S}_n^{\mathbf{r}}} q^{\operatorname{maj}(\sigma)} = [n]! \cdot \prod_{i=1}^n (1 + (r_i - 1) \cdot q).$$

Proof. The proof is the same as Corollary 7.2 except we replace the chains with the posets P_i in Figure 1. Note that $\Psi(P_i) = \mathbf{a} + (r_i - 1) \cdot \mathbf{b}$. Let L be the lattice $L = P_1 \diamond^* P_2 \diamond^* \cdots \diamond^* P_n$. Let L inherit the labels of the cover relations from its factors with the extra condition that the cover relations attached to the maximal element receive the label 0. This is an R-labeling and the labels of the maximal chains are exactly the \mathbf{r} -signed permutations.

For signed permutations, that is, $\mathbf{r} = (2, 2, ..., 2)$, the above result follows from an identity due to Reiner [13, Equation (5)].

8 Concluding remarks

We suggest the following q, t-extension of the Major MacMahon map Θ . Define $\Theta^{q,t} : \mathbb{Z}\langle \mathbf{a}, \mathbf{b} \rangle \longrightarrow \mathbb{Z}[q, t]$ by

$$\Theta^{q,t}(w) = \Theta(w) \cdot w_{|\mathbf{a}=1,\mathbf{b}=q} = \prod_{i: u_i=\mathbf{b}} q^i \cdot t, \tag{8.1}$$

for an **ab**-monomial $w = u_1 u_2 \cdots u_n$. Applying this map to the **ab**-index of the Boolean algebra yields one of the four types of q-Eulerian polynomials:

$$\Theta^{q,t}(\Psi(B_n)) = A_n^{\operatorname{maj,des}}(q,t) = \sum_{\pi \in \mathfrak{S}_n} q^{\operatorname{maj}(\pi)} t^{\operatorname{des}(\pi)}$$

The following identity has been attributed to Carlitz [4], but goes back to MacMahon [10, Volume 2, Chapter IV, §462],

$$\sum_{k\geq 0} [k+1]^n \cdot t^k = \frac{A_n^{\text{maj,des}}(q,t)}{\prod_{j=0}^n (1-t \cdot q^j)}.$$
(8.2)

For recent work on the q-Eulerian polynomials, see Shareshian and Wachs [14]. It is natural to ask if there is a poset approach to identity (8.2).

There are several different ways to extend the major index to signed permutations. Two of our favorites are [1, 18].

Acknowledgements

The first author was partially supported by National Security Agency grant H98230-13-1-0280. This work was partially supported by a grant from the Simons Foundation (#206001 to Margaret Readdy).

References

- R. ADIN AND Y. ROICHMAN, The flag major index and group actions on polynomial rings, European J. Combin. 22 (2001), 431–446.
- [2] M. BAYER AND A. KLAPPER, A new index for polytopes, *Discrete Comput. Geom.* 6 (1991), 33–47.
- [3] A. BJÖRNER, Shellable and Cohen-Macaulay partially ordered sets, Trans. Am. Math. Soc. 260 (1980), 159–183.
- [4] L. CARLITZ, A combinatorial property of q-Eulerian numbers, Amer. Math. Monthly 82 (1975), 51–54.
- [5] R. EHRENBORG, On posets and Hopf algebras, Adv. Math. 119 (1996), 1–25.
- [6] R. EHRENBORG AND M. READDY, The r-cubical lattice and a generalization of the cd-index, European J. Combin. 17 (1996), 709–725.
- [7] R. EHRENBORG AND M. READDY, Coproducts and the cd-index, J. Algebraic Combin. 8 (1998), 273–299.
- [8] R. EHRENBORG AND M. READDY, The Tchebyshev transforms of the first and second kind, Ann. Comb. 14 (2010), 211–244.
- [9] P. A. MACMAHON, The Indices of Permutations and the Derivation Therefrom of Functions of a Single Variable Associated with the Permutations of any Assemblage of Objects, Amer. J. Math. 35 (1913), 281–322.
- [10] P. A. MACMAHON, Combinatory Analysis, Chelsea Publishing Co., New York, 1960.
- [11] P. A. MACMAHON, Collected papers. Vol. I. Combinatorics. Mathematicians of Our Time. Edited and with a preface by George E. Andrews. With an introduction by Gian-Carlo Rota., MIT Press, Cambridge, Mass.-London, 1978.
- [12] M. READDY, Extremal problems for the Möbius function in the face lattice of the noctahedron, Discrete Math., Special issue on Algebraic Combinatorics 139 (1995), 361–380.
- [13] V. REINER, Signed permutation statistics, European J. Combin. 14 (1993), 553–567.
- [14] J. SHARESHIAN AND M. WACHS, q-Eulerian polynomials: excedance number and major index, Electron. Res. Announc. Amer. Math. Soc. 13 (2007), 33–45.

- [15] R. P. STANLEY, Flag f-vectors and the cd-index, Math. Z. 216 (1994), 483–499.
- [16] R. P. STANLEY, Enumerative Combinatorics, Vol 1, second edition, Cambridge University Press, Cambridge, 2012.
- [17] R. P. STANLEY, Enumerative Combinatorics, Vol 2, Cambridge University Press, Cambridge, 1999.
- [18] E. STEINGRÍMSSON, Permutation statistics of indexed permutations, European J. Combin. 15 (1994), 187–205.
- [19] G. M. ZIEGLER, Lectures on Polytopes, Springer-Verlag, Berlin, 1994.