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Abstract. We introduce and prove the n-dimensional Pizza Theorem: Let H be a hyperplane
arrangement in Rn. If K is a measurable set of finite volume, the pizza quantity of K is the
alternating sum of the volumes of the regions obtained by intersecting K with the arrangement H.
We prove that if H is a Coxeter arrangement different from An1 such that the group of isometries W
generated by the reflections in the hyperplanes of H contains the map − id, and if K is a translate of
a convex body that is stable under W and contains the origin, then the pizza quantity of K is equal
to zero. Our main tool is an induction formula for the pizza quantity involving a subarrangement of
the restricted arrangement on hyperplanes of H that we call the even restricted arrangement. More
generally, we prove that for a class of arrangements that we call even (this includes the Coxeter
arrangements above) and for a sufficiently symmetric set K, the pizza quantity of K+a is polynomial
in a for a small enough, for example if K is convex and 0 ∈ K + a. We get stronger results in the
case of balls, more generally, convex bodies bounded by quadratic hypersurfaces. For example, we
prove that the pizza quantity of the ball centered at a having radius R ≥ ‖a‖ vanishes for a Coxeter
arrangement H with |H| − n an even positive integer. We also prove the Pizza Theorem for the
surface volume: When H is a Coxeter arrangement and |H| − n is a nonnegative even integer, for
an n-dimensional ball the alternating sum of the (n−1)-dimensional surface volumes of the regions
is equal to zero.

1. Introduction

Given a disc in the plane select any point in the disc. Cut the disc by four lines through this
point that are equally spaced. We obtain eight slices of the disc, each having angle π/4 at the
point. The alternating sum of the areas of these eight slices is equal to zero. This is known as
the Pizza Theorem and was first stated as a problem in Mathematics Magazine by Upton [17] and
solved by Goldberg [8]. There are many two-dimensional extensions of this result; see [7, 13] and
the references therein. An especially interesting solution to the original problem is by Carter and
Wagon [4], who prove the result by a dissection.

In hyperplane arrangement terminology four equally spaced lines through one point is equivalent
to the B2 arrangement. Goldberg [8] pointed out that the Pizza Theorem also holds for 2k equally
spaced lines through a point inside a disc, that is, the dihedral arrangement I2(2k). We extend these
results to hyperplane arrangements in higher dimensions. Given a base chamber, every chamber T
of an arrangement has a natural sign (−1)T . We define the pizza quantity of a measurable set K
with finite volume to be the alternating sum P (H,K) =

∑
(−1)T · Vol(K ∩ T ), where the sum

ranges over all chambers T of the arrangement H; see equation (2.1).
We first establish an expression that relates the variation of the pizza quantity P (H,K) when

we translate a set K to pizza quantities of arrangements on hyperplanes in H known as the even
restricted arrangements; see Theorem 3.4. Using this formula and induction on the dimension of V ,
we show that if B(a,R) is the closed ball with center a and radius R and if |H| and dim(V ) have the
same parity, then the pizza quantity P (H,B(a,R)) is polynomial in the pair (R, a), homogeneous of
degree dim(V ) and only having terms of even degree in R as long as B(a,R) contains the origin; see
Theorem 1.1. When |H| and dim(V ) do not have have the same parity then we can only say that
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P (H,B(a,R)) is a real analytic function of (a,R). If the arrangement H has enough symmetries,
we can use them to show that the lower degree terms of P (H,B(a,R)) vanish, and in some cases,
that the pizza quantity P (H,B(a,R)) itself vanishes. More precisely, we obtain the following result
(see Theorem 7.6 and Corollary 7.10 for more general statements):

Theorem 1.1. Let H be a Coxeter arrangement on a finite-dimensional inner product space V
such that |H| ≥ dim(V ). Assume that the ball B(a,R) contains the origin, that is, R ≥ ‖a‖.

(i) If the number of hyperplanes is strictly greater than the dimension of V and has the same
parity as that dimension then the pizza quantity P (H,B(a,R)) vanishes.

(ii) If the number of hyperplanes is strictly greater than the dimension of V and does not have
the same parity as that dimension then the pizza quantity P (H,B(a,R)) tends to 0 as the
radius R tends to infinity (when the center a is fixed).

(iii) If the number of hyperplanes is equal to the dimension of V then P (H,B(a,R)) is indepen-
dent of the radius R.

In the case when V is 3-dimensional and H is the arrangement of type A1×I2(2k), this corollary
specializes to the Calzone Theorem; see [1] and [7, page 32].

Note that if V is 1-dimensional, ifH consists of the hyperplane {0} and if K is a segment centered
at 0, then the pizza quantity P (H,K+a) is equal to 2a as long as 0 ∈ K+a, so it is polynomial in a
and independent of K. Building on this observation, we prove a similar result in higher dimensions
for an even arrangement H (see Definition 4.2) and a measurable set that is sufficiently symmetric
with respect to H (see Definition 5.1). In particular, if H is a Coxeter arrangement then it is even
if and only if − idV is in its Coxeter group (Corollary 4.7). Furthermore, we show any measurable
set stable by its Coxeter group is sufficiently symmetric (Corollary 5.4). We then conclude the
following result, which is a particular case of Theorem 6.9 (recall that a convex body is a compact
convex set):

Theorem 1.2. Let H be a Coxeter arrangement on a finite-dimensional inner product space V such
that the map − idV belongs to the Coxeter group. Equivalently, let H be a product arrangement where
the factors are from the types A1, Bn for n ≥ 3, D2m for m ≥ 2, E7, E8, F4, H3, H4 and I2(2k)
for k ≥ 2. Let K be a convex body stable under reflections in the hyperplanes of the arrangement H
such that the translate K + a contains the origin. Then the pizza quantity P (H,K + a) is given by

P (H,K + a) =

{
2n · a1 · · · an if H is of type An1 ,

0 otherwise.

When the arrangement H has type An1 , we assume that it is given by the coordinate hyperplanes
{xi = 0 : 1 ≤ i ≤ n}, the base chamber is T0 = (R>0)n and the point a is given by a = (a1, . . . , an).

The paper is organized as follows. In Section 2 we introduce the pizza quantity, review Coxeter
and product arrangements, and point out some basic properties of these notions. In Section 3 we
define the even restricted arrangement. This is a subarrangement of the restricted arrangement.
Using this notion we develop a recursion to compute the pizza quantity; see Theorem 3.4. In
Section 4 we introduce the notion of an even restriction sequence, that is, a sequence iterating the
notion of the even restricted arrangement. This yields the notion of an even arrangement, that is,
an arrangement such that every even restriction sequence extends to a sequence that has length
equal to the dimension of the space. In Corollary 4.7 we classify all the even Coxeter arrangements.
One equivalent condition is that the negative of the identity map belongs to the Coxeter group.
In Section 5 we introduce the notion of a sufficiently symmetric measurable set. For sufficiently
symmetric measurable sets K of finite volume and for a ∈ V satisfying some conditions, we show for
example that the pizza quantity of K+a only depends on the shift a and is given by the associated

2



polynomial of the even arrangement; see Theorem 6.3. In Section 7 we restrict our attention to
balls and to convex bodies bounded by quadratic surfaces. For a Coxeter arrangement H such that
|H| > dim(V ), we show that the pizza quantity P (H,B(a,R)) is equal to 0 if |H| and dim(V ) have
the same parity, and that otherwise P (H,B(a,R)) −→ 0 as R −→ +∞ (with the center a fixed).
Moreover if H = dim(V ) we show that P (H,B(a,R)) is independent of R. In all these cases, we
always assume that the ball B(a,R) contains the origin. In Section 8 we look at the case of the
n-dimensional ball and consider the alternating sum of the surface volume of the regions. This
is the Pizza Theorem for the (n − 1)st intrinsic volume; see Theorem 8.2. Finally, in Section 9
we briefly consider the problem of sharing pizza among more than two people, and state some
concluding remarks and open questions.

2. Initial remarks and definitions

Let V be an n-dimensional real vector space endowed with an inner product: for v, w ∈ V ,
we denote their inner product by (v, w). Let E be a collection of unit vectors in V such that no
two vectors of E are linearly dependent. In other words, the intersection E ∩ (−E) is empty. By
restricting to unit vectors, we will avoid having normalization factors in our expressions. Let H
be the central hyperplane arrangement corresponding to E, that is, H = {He : e ∈ E} where
He = {x ∈ V : (e, x) = 0}. Note that each hyperplane contains the origin. Let |H| denote the
number of hyperplanes in the arrangement H, that is, the cardinality of the index set E. A chamber
of a hyperplane arrangement is a connected component of the complement of the arrangement in V .
Let T = T (H) be the collection of chambers of H. For two chambers T1 and T2 in T , define the
separation set S(T1, T2) to be the set of all indices e ∈ E such that the two chambers lie on different
sides of the hyperplane He.

The arrangement H is oriented by the data of the set E: if e ∈ E then the hyperplane He cuts V
into a positive and a negative half-space, where the positive half-space is the one containing the
vector e. If T is a chamber of H then it gives rise to a sign vector in {±}E whose e-component, for
e ∈ E, is + if and only if T is included in the positive half-space bounded by He. We assume that
there is a chamber T0 whose corresponding sign vector only has + components, and we call it the
base chamber. The base chamber also determines the direction of each vector in the set E: for each
H ∈ H, the corresponding vector is the unique normal unit vector e of H such that T0 and e are on
the same side of H. Each chamber T has a sign (−1)T , which is −1 to the number of hyperplanes of

the arrangement one must pass through when walking from T0 to T , that is, (−1)T = (−1)|S(T0,T )|.
For a reference on hyperplane arrangements, see [2, Chapter 1] or [15, Section 3.11].

Let a be a point in the vector space V and let R be a nonnegative real number. Let B(a,R) be
the ball of radius R centered at a, that is,

B(a,R) = {x ∈ V : ‖x− a‖ ≤ R}.

The space V with its inner product is isomorphic to Rn, and we denote by VolV or just Vol
the pullback by such an isomorphism of Lebesgue measure on Rn. This does not depend on the
choice of the isomorphism, because Lebesgue measure is invariant under isometries. For every
Lebesgue measurable subset K of V that has finite volume, define the pizza quantity for K to be
the alternating sum

P (H,K) =
∑
T∈T

(−1)T ·Vol(K ∩ T ).(2.1)

There is a slight abuse of notation here: the quantity in (2.1) not only depends on the arrange-
ment H, but also on the base chamber T0. More generally, if f : V −→ C is any L1 function, we
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define the pizza quantity for f to be

P (H, f) =
∑
T∈T

(−1)T ·
∫
T
f(x) dV.

We then have P (H,K) = P (H, 11K), where 11K is the characteristic function of K.
The 2-dimensional Pizza Theorem is as follows:

Theorem 2.1 (Goldberg [8]). Let H be the dihedral arrangement I2(2k) in R2 for k ≥ 2. For
every a ∈ R2 and every R ≥ ‖a‖, the pizza quantity for the ball B(a,R) vanishes:

P (H,B(a,R)) = 0.

A hyperplane arrangement H is a Coxeter arrangement if the group W generated by the or-
thogonal reflections in the hyperplanes of H is finite and the arrangement is closed under all such
reflections. There is a vast literature concerning Coxeter arrangements and their associated root
systems; see [3, 11]. The group W is known as the Coxeter group of the arrangement.

We say a subset L of V is stable with respect to a Coxeter group W acting on V if W leaves it
invariant, that is, w(L) = L for all w ∈ W . We define the translate of L by a ∈ V to be the set
L + a = {x + a : x ∈ L}. If f : V −→ C is a function, we say that it is stable with respect to a
Coxeter group W if f(w(x)) = f(x) for every w ∈W and x ∈ V . We then have that a subset L of V
is stable by W if and only if 11L is stable. For a ∈ V , we denote the shift of function x 7−→ f(x−a)
by fa. Then we have (11L)a = 11L+a for every a ∈ V .

Proposition 2.2. Let u : V −→ V ′ be an isometry, where V ′ is another real inner product
space, and let H be a hyperplane arrangement in V . Let u(H) be the hyperplane arrangement
{u(H) : H ∈ H} with base chamber u(T0). For any L1 function f : V ′ −→ C, the following equality
holds:

P (u(H), f) = P (H, f ◦ u).

Proof. The map u induces a bijection between the chambers of H and those of u(H) that respects
the cardinality of the separation set, that is, |S(T1, T2)| = |S(u(T1), u(T2))|. The conclusion follows
from the fact that u, being an isometry, is volume-preserving. �

Corollary 2.3. Let H be a Coxeter arrangement with Coxeter group W and f : V −→ C be an
L1 function. Then for every w ∈W we have

P (H, f ◦ w) = det(w) · P (H, f).

In particular, if f is stable by a reflection in W then we have P (H, f) = 0.

Proof. The first statement is just Proposition 2.2, because w(H) = H and (−1)|S(T0,w(T0))| = det(w)
for every w ∈ W . The second statement follows from the first and from the fact that reflections
have determinant −1. �

Remark 2.4. Note that the situation where f is stable by a reflection s in W occurs if f = ga,
with g : V −→ C an L1 function that is stable by W and a a point belonging to the hyperplane H
of the arrangement H, where s is the orthogonal reflection in H.

Given two hyperplane arrangements H1 = {He}e∈E1 and H2 = {He}e∈E2 in the vector space V1,
respectively V2, define the product arrangement H1×H2 in V1×V2, where the index set of vectors
is E = (E1 × {0}) ∪ ({0} × E2). Note that in this construction the hyperplanes inherited from H1

are orthogonal to the hyperplanes inherited from H2. Furthermore, if Ti,0 is the base chamber of Hi
then T1,0 × T2,0 is the base chamber of H1 ×H2.
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3. The even restricted arrangement

In this section we obtain a recursion for evaluating the pizza quantity in terms of lower di-
mensional pizza quantities on certain subarrangements of the given arrangement. We begin by
introducing two definitions.

Definition 3.1. (a) Let V ′ ⊆ V be a subspace of codimension 2. The intersection multiplicity of
the arrangement H = {He : e ∈ E} at the subspace V ′ is the cardinality

imult(V ′) = |{e ∈ E : He ⊇ V ′}|.

(b) For e ∈ E the even restricted arrangement He is the arrangement inside the vector space He

consisting of the hyperplanes He ∩ Hf (these are codimension 2 subspaces of V ) with even
intersection multiplicity, that is,

He = {He ∩Hf : f ∈ E, e 6= f, imult(He ∩Hf ) ≡ 0 mod 2}.

The even restricted arrangement He is a subarrangement of the arrangement H restricted to the
hyperplane He, for brevity known as the restricted arrangement, that is, H′′e = {He ∩ Hf : f ∈
E, e 6= f}; see [15, Section 3.11.2]. In general these two arrangements are different. Even though
the letter e appears in the notation for He, the arrangement He only depends on He, and not on
the choice of its normal vector e.

Proposition 3.2. Suppose that H is a Coxeter arrangement, and let e ∈ E.

(i) Let e′ ∈ E − {e}. Then the intersection multiplicity of H at He ∩He′ is even if and only if
there exists f ∈ E − {e} such that He ∩Hf = He ∩He′ and that (e, f) = 0.

(ii) Let F = {f ∈ E : (e, f) = 0} = E ∩ He. Then He is the hyperplane arrangement (He ∩
Hf )f∈F on He, and it is a Coxeter arrangement.

Proof. (i) Let E′ = {f ∈ E − {e} : He ∩ Hf = He ∩ He′}. Then |E′| + 1 is the intersection
multiplicity of H at the intersection He ∩ He′ , and we have se(E

′) = E′, where se is the
orthogonal reflection in the hyperplane He. As s2

e = 1, the set E′ has odd cardinality if and
only if se has a fixed point on E′. But f ∈ E′ is fixed by se if and only if se(Hf ) = Hf ,
which is equivalent to the condition that (e, f) = 0.

(ii) The first statement follows from (i). It remains to prove that He is a Coxeter arrangement.
For every f ∈ F , if sf is the orthogonal reflection in the hyperplane Hf , then sf (He) = He

and sf (F ) = F . In particular, sf preserves the arrangement He. We conclude that He is a
Coxeter arrangement on He.

�

For a hyperplane He define the open half spaces H+
e and H−e to be

H+
e = {x ∈ V : (e, x) > 0} and H−e = {x ∈ V : (e, x) < 0}.

An (open) face of the arrangement H = {He : e ∈ E} is a non-empty intersection of the form⋂
e∈E0

He ∩
⋂
e∈E+

H+
e ∩

⋂
e∈E−

H−e ,

where E = E0 t E+ t E− and t denotes disjoint union. For a face F of an arrangement H and a
vector v, let the composition F ◦ v denote the face G of the arrangement H such that x+ ε · v ∈ G
for all x ∈ F and ε > 0 small enough. See [2, pages 8 and 102] where the composition is defined
for signed vectors.
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Lemma 3.3. Let U1 and U2 be two chambers in the restricted arrangement H′′e . Let Zi be the
unique chamber in the even restricted arrangement He containing Ui. Then the parities of the two
separation sets SH(U1 ◦ e, U2 ◦ e) and SHe(Z1, Z2) agree, that is,

|SH(U1 ◦ e, U2 ◦ e)| ≡ |SHe(Z1, Z2)| mod 2.

Proof. We denote by X the set of hyperplanes of He and by S the set of vectors f ∈ E − {e} such
that He∩Hf has even intersection multiplicity. Let ι : S −→ X the map sending f ∈ S to He∩Hf .
We claim that:

(a) The set SH(U1 ◦ e, U2 ◦ e)− S has even cardinality.
(b) The image of S ∩ SH(U1 ◦ e, U2 ◦ e) under ι is SHe(Z1, Z2).
(c) The fibers of ι all have odd cardinality.

These three statements immediately imply the result, so it suffices to prove them.
Consider the equivalence relation ∼ on E−{e} defined by f ∼ f ′ if and only if He∩Hf = He∩Hf ′ .

Then S is a union of equivalence classes for ∼. We claim that SH(U1 ◦ e, U2 ◦ e) is also a union
of equivalence classes for ∼. This follows from the fact that e 6∈ SH(U1 ◦ e, U2 ◦ e) and that if
f ∈ E − {e} then f ∈ SH(U1 ◦ e, U2 ◦ e) if and only if Hf ∩He separates U1 and U2. In particular,
the set SH(U1 ◦ e, U2 ◦ e)− S is also a union of equivalence classes of ∼. But if f ∈ E − {e}, then
its equivalence class for ∼ is the set of f ′ ∈ E − {e} such that Hf ∩ He ⊂ Hf ′ , so it has even
cardinality if and only if f 6∈ S. This shows that SH(U1 ◦ e, U2 ◦ e) − S is a disjoint union of sets
of even cardinality and proves (a). Also, as the fibers of ι are exactly the equivalence classes of ∼
that are contained in S, we obtain (c). We finally prove (b). If f ∈ S ∩ SH(U1 ◦ e, U2 ◦ e) then U1

and U2 are on opposite sides of He ∩ Hf and He ∩ Hf ∈ He, so Z1 and Z2 must be on opposite
sides of He ∩Hf . Conversely, consider a hyperplane H of He such that Z1 and Z2 are on opposite
sides of H. We can write H = He ∩Hf with f ∈ S. The chambers U1 and U2 are on opposite sides
of the hyperplane Hf , so f ∈ SH(U1 ◦ e, U2 ◦ e). �

For e ∈ E, let Z be a chamber of the even restricted arrangement He. Note that the closure of Z
is a union of closures of chambers in the restricted arrangement H′′e , that is, Z = ∪U∈QU for some

subset Q of chambers of H′′e . By Lemma 3.3 the sign (−1)U◦e is independent of U ∈ Q and hence
we define (−1)Z◦e = (−1)U◦e for any U ∈ Q.

Theorem 3.4. Let H = {He : e ∈ E} be a central hyperplane arrangement with base chamber T0.
Let f : V −→ C be an L1 function.

(i) Let T be a chamber of H. Then for every a ∈ V , we have∫
T
fa(x) dV −

∫
T
f(x) dV =

∑
U

(−1)T (−1)U◦eU (a, eU )

∫ 1

0

(∫
U
fta(y) dVHeU

)
dt,(3.1)

where the sum runs over all facets U of T and, for each such U , the vector eU is the unique
element of E such that U ⊂ HeU .

(ii) For e ∈ E, let Z0(e) be an arbitrarily chosen base chamber of the even restricted arrange-
ment He. Let a be a vector in V . Then we have

P (H, fa)− P (H, f) = 2 ·
∑
e∈E

(−1)Z0(e)◦e · (a, e) ·
∫ 1

0
P (He, fta|He)dt.(3.2)

In particular, if K is a measurable subset of V that has finite volume, we obtain

P (H,K + a)− P (H,K) = 2 ·
∑
e∈E

(−1)Z0(e)◦e · (a, e) ·
∫ 1

0
P (He, (K + ta) ∩He) dt.(3.3)
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Proof of Theorem 3.4. For this proof we assume that the vector space V is Rn with the usual
inner product (·, ·). Hence we write x = (x1, . . . , xn) and a = (a1, . . . , an). Suppose first that the
function f is C∞ with compact support. Next, let F : Rn −→ Rn be the vector field F (x) =
f(x− ta) · a. Note that

div(F ) =
n∑
i=1

ai
∂

∂xi
f(x− ta) = − ∂

∂t
f(x− ta).

Let T be a chamber of H. The function t 7−→
∫
T fta(x) dV is also C∞. By the Leibniz integral rule

and Gauss’s divergence theorem we have

d

dt

∫
T
fta dV =

∫
T

∂

∂t
f(x− ta) dV(3.4)

=

∫
T

div(F ) dV

= −
∫
∂T
F ·m dS,

where m is the unit normal vector pointing outward from the chamber T .
Let T ′ be the collection of (n−1)-dimensional faces in the arrangement H. We call the elements

in T ′ subchambers since they are one dimension less than that of the chambers in T . Note that
each subchamber U ∈ T ′ is a subset of exactly one hyperplane in H. Let eU denote the unique
vector f in E such that U ⊆ Hf .

The normal vector m at a point in U ⊆ ∂T is ±eU . Since m points out from T we have
−(−1)T (a,m) = (−1)U◦m(a,m) = (−1)U◦eU (a, eU ), where the last equality is true since either both
factors change sign or neither does. We conclude that the last integral appearing in equation (3.4)
is the sum over all subchambers U of H included in ∂T , that is,

d

dt

∫
T
fta dV = (−1)T (−1)U◦eU (a, eU )

∫
U
f(x− ta) dS.

Also note that the surface differential dS is the natural volume on U . We deduce equation (3.1) by
integrating both sides, and this proves point (i) in the case when f is C∞ with compact support.

To deduce the general case of (i) from the case of a C∞ function with compact support, it suffices
to prove that both sides of equation (3.1) are continuous for the L1 norm, because the space of C∞

functions with compact support is dense in the set of L1 functions for that norm. This is clear for the
left-hand side of equation (3.1). To show the continuity of the right-hand side, we need to see that

for every subchamber U of H such that (a, eU ) 6= 0 the function f 7−→
∫ 1

0

∫
U f(x− ta) dVHeU (x)dt

is continuous for the L1 norm. As (a, eU ) 6= 0, we know that a 6∈ HeU . By Fubini’s theorem, the

double integral
∫ 1

0

∫
U f(x − ta) dVHeU (x)dt equals, up to a constant, the integral of f on the set

{z + ta : z ∈ U, 0 ≤ t ≤ 1} for the measure V on Rn, so the result follows.
We now prove point (ii). Let f : V −→ R be an L1 function. Summing equation (3.1) over

all chambers T of H and noting that each subchamber U appears in the boundary of exactly two
chambers, we obtain

P (H, fa)− P (H, f) = 2 ·
∑
U∈T ′

(−1)U◦eU · (a, eU ) ·
∫ 1

0

∫
U
f(x− ta) dVHeU dt.(3.5)

To simplify the expression (3.5), consider a subchamber U . It lies in a unique hyperplane He,
where e = eU . Furthermore, the subchamber U is contained in a unique chamber Z of the even
restricted arrangement He. Pick a base chamber U0(e) of the restricted arrangement H′′e inside the
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H He H He
An An−2 E7 D6

B2 A1 E8 E7

B3 B2 or A1 ×A1 F4 B3

Bn Bn−1 or A1 ×Bn−2, for n ≥ 4 H3 A1 ×A1

D4 A3
1 H4 H3

D5 A1 ×A3 I2(2k) A1

Dn A1 ×Dn−2, for n ≥ 6 I2(2k + 1) ∅
Table 1. The possible types of even restricted subarrangements for simple Coxeter
arrangements of dimension ≥ 2. For the type An arrangement the even restricted
subarrangements have type An−2 inside an (n − 1)-dimensional space, that is, the
even restricted subarrangements are not essential. Similarly for the odd dihedral
arrangement I2(2k + 1), each of the even restricted subarrangements is the empty
1-dimensional arrangement.

chamber Z0(e). We then have by Lemma 3.3

(−1)U◦e = (−1)U0(e)◦e · (−1)S(U0(e)◦e,U◦e) = (−1)Z0(e)◦e · (−1)S(Z0(e),Z) = (−1)Z0(e)◦e · (−1)Z .

Hence we can collect terms in the sum in equation (3.5) by first summing over vectors e in E and
then chambers Z of the even restricted arrangement He. This gives that

P (H, fa)− P (H, f) = 2 ·
∑
e∈E

∑
Z∈T (He)

(−1)Z0(e)◦e · (−1)Z · (a, e) ·
∫ 1

0

∫
Z
f(x− ta) dVHe dt

= 2 ·
∑
e∈E

(−1)Z0(e)◦e · (a, e) ·
∫ 1

0
P (He, fta|He) dt,

which is equation (3.2). �

4. Even restriction sequences

For a sequence (e1, e2, . . . , er) in the Cartesian power Er, define the subspace He1,...,er to be the
intersection He1,...,er =

⋂r
i=1Hei .

Definition 4.1. An even restriction sequence (e1, e2, . . . , er) and its associated hyperplane arrange-
ment He1,...,er on He1,...,er is defined recursively by:

(a) The empty sequence is an even restriction sequence. This is the case r = 0 and we set
H∅ = H.

(b) If r ≥ 1, the sequence (e1, e2, . . . , er−1) is an even restriction sequence and the subspace
He1,e2,...,er is a hyperplane in the arrangement He1,e2,...,er−1 then (e1, e2, . . . , er) is an even
restriction sequence. Furthermore, let f ∈ He1,e2,...,er−1 be a unit normal vector of the
hyperplane He1,e2,...,er , that is, He1,e2,...,er = {x ∈ He1,e2,...,er−1 : (f, x) = 0}. We then set

He1,e2,...,er to be the even restricted arrangement
(
He1,e2,...,er−1

)
f

in the subspace He1,e2,...,er .

Finally, let Pr ⊆ Er denote the set of all even restriction sequences of length r.

We introduce the following definitions.

Definition 4.2. Let H = {He : e ∈ E} be a hyperplane arrangement.
8



(a) We say that an even restriction sequence (e1, . . . , er) ∈ Pr is maximal if it cannot be
extended to a longer even restriction sequence. More formally, there is no er+1 ∈ E such
that (e1, . . . , er, er+1) is an even restriction sequence. We denote by P the set of maximal
even restriction sequences of the arrangement H.

(b) We say that the arrangementH is even if for every r ≥ 0 and every even restriction sequence
(e1, . . . , er) ∈ Pr the arrangement He1,...,er is essential.

Lemma 4.3. Let H be an n-dimensional hyperplane arrangement.

(i) If (e1, . . . , er) ∈ Pr then dim(He1,...,er) = n − r (in particular, the vectors e1, . . . , er are
linearly independent) and every element of He1,...,er is an intersection of hyperplanes of H.

(ii) We have Pr = ∅ for r > n.
(iii) The following statements are equivalent:

(a) The arrangement H is even.
(b) Every even restriction sequence can be extended to an even restriction sequence of

length n, that is, for every 0 ≤ r ≤ n and every (e1, . . . , er) ∈ Pr, there exist
er+1, . . . , en ∈ E such that (e1, e2, . . . , en) ∈ Pn.

(c) We have P = Pn.

Proof. If 1 ≤ i ≤ r then by definition of He1,...,ei we have dim(He1,...,ei) = dim(He1,...,ei−1)− 1. This
implies the first statement of (i). We prove the second statement of (i) by induction on r. It is
clear if r = 0, so assume that r ≥ 1 and that the conclusion holds for He1,...,er−1 . As He1,...,er is
a subarrangement of the restriction of He1,...,er−1 to the hyperplane He1,...,er = He1,...,er−1 ∩Her of
He1,...,er−1 , each element of He1,...,er is the intersection of Her and an element of He1,...,er−1 . This
implies (i).

Statement (ii) follows immediately from (i).
We now prove statement (iii). Suppose that (a) holds. We prove (b) by descending induction

on r. If r = n, there is nothing to prove. Suppose that r < n and that we know the statement
for r+ 1, and let (e1, . . . , er) ∈ Pr. As the arrangement He1,...,er is an essential arrangement in the
(n− r)-dimensional space He1,...,er , and as n− r > 0, this arrangement has at least one hyperplane.
By the second statement of (i), there exists er+1 ∈ E such that (e1, . . . , er+1) ∈ Pr+1. We finish
the proof by applying the induction hypothesis to (e1, . . . , er+1).

Conversely, suppose that (b) holds, and let (e1, . . . , er) ∈ Pr, with 0 ≤ r ≤ n. By (b), there exist
vectors er+1, . . . , en ∈ E such that (e1, . . . , en) ∈ Pn. By (i), we know that He1,...,en = {0} and that
He1,...,en is an intersection of hyperplanes of He1,...,er . This implies that He1,...,er is essential, and
hence (a) holds.

Finally, in light of statement (ii), it is clear that (b) and (c) are equivalent. �

Definition 4.4. If (e1, . . . , er) ∈ P then the arrangementHe1,...,er is empty, so it only has one cham-
ber Z = He1,...,er . By the discussion before Theorem 3.4, we have a well-defined sign (−1)Z◦er◦···◦e1 ,
and we denote this sign by (−1)er◦···◦e1 .

Remark 4.5. (1) Let (e1, . . . , er) ∈ P . Then (−1)er◦···◦e1 is the sign of any chamber of H that
contains the vector v + εer + ε2er−1 + · · · + εre1, for v ∈ He1,...,er nonzero and ε > 0 small
enough.

(2) Suppose that H is an even arrangement. Then P = Pn by Lemma 4.3. So for any
(e1, . . . , en) ∈ Pn, we have a sign (−1)en◦···◦e1 , which is the sign of the chamber of H
containing the vector εen + ε2en−1 + · · ·+ εne1 for ε > 0 small enough.

For r a nonnegative integer, we introduce the following equivalence relation on the Cartesian
power Er: (e1, . . . , er) ∼ (f1, . . . , fr) if and only if He1,...,ei = Hf1,...,fi for every 0 ≤ i ≤ r. The
following facts are straightforward consequences of the definition of this equivalence relation.

9



(1) If 0 ≤ i ≤ r, (e1, . . . , er) ∈ Er and (f1, . . . , fi) ∈ Ei then (e1, . . . , ei) ∼ (f1, . . . , fi) if and
only if (e1, . . . , er) ∼ (f1, . . . , fi, ei+1, . . . , er).

(2) If (e1, . . . , er) ∼ (f1, . . . , fr) then (e1, . . . , er) ∈ Pr if and only if (f1, . . . , fr) ∈ Pr. If this
condition holds then He1,...,er = Hf1,...,fr .

(3) If (e1, . . . , er) ∼ (f1, . . . , fr) then (e1, . . . , er) ∈ P if and only if (f1, . . . , fr) ∈ P . If this
condition holds then (−1)er◦···◦e1 = (−1)fr◦···◦f1 .

We now specialize these notions to the case of Coxeter arrangements. Suppose that H is a

Coxeter arrangement and let r be a nonnegative integer. Then we denote by E
(0)
r ⊆ Er the set of

sequences (e1, . . . , er) of pairwise orthogonal elements of E.

Proposition 4.6. Suppose that H = (He)e∈E is a Coxeter arrangement and let r be a nonnegative
integer.

(i) Let (e1, . . . , er) ∈ Pr. Then He1,...,er is a Coxeter arrangement on He1,...,er given by the
finite set of vectors E ∩He1,...,er .

(ii) If (e1, . . . , er), (f1, . . . , fr) ∈ E(0)
r and (e1, . . . , er) ∼ (f1, . . . , fr) then the equality (e1, . . . , er)

= (f1, . . . , fr) holds.

(iii) Let (e1, . . . , er) ∈ Er. Then (e1, . . . , er) is in Pr if and only if there exists (f1, . . . , fr) ∈ E(0)
r

such that (e1, . . . , er) ∼ (f1, . . . , fr). Furthermore, this sequence (f1, . . . , fr) is necessarily
unique by (ii).

In particular, we have E
(0)
r ⊆ Pr, and this inclusion induces a bijection E

(0)
r ' Pr/ ∼.

(iv) Let (e1, . . . , er) ∈ E(0)
r . Then (e1, . . . , er) ∈ P if and only if E ∩ {e1, . . . , er}⊥ = {0}.

(v) There exists an integer r with 0 ≤ r ≤ n such that P = Pr.

Proof. We prove (i) by induction on r. The result is clear if r = 0. So assume that r ≥ 1
and that we know the result for r − 1, and let (e1, . . . , er) ∈ Pr. By the induction hypothesis,
the arrangement He1,...,er−1 is a Coxeter arrangement, and its hyperplanes are the codimension
one subspaces orthogonal to the vectors in E ∩ He1,...,er−1 . By Proposition 3.2, the arrangement
He1,...,er is also Coxeter and the elements of He1,...,er are exactly the intersections He1,...,er ∩ Hf ,
where f ∈ E ∩ He1,...,er−1 is such that (f, er) = 0. In other words, they are the intersections
He1,...,er ∩Hf , with f ∈ He1,...,er . This finishes the proof.

We prove (ii) by induction on r. If r ≤ 1 the result is clear, so assume that r ≥ 2 and that we know

the result for r − 1. Let (e1, . . . , er), (f1, . . . , fr) ∈ E(0)
r such that (e1, . . . , er) ∼ (f1, . . . , fr). Then

(e1, . . . , er−1), (f1, . . . , fr−1) ∈ E(0)
r−1 and (e1, . . . , er−1) ∼ (f1, . . . , fr−1), so ei = fi for 1 ≤ i ≤ r − 1

by the induction hypothesis. The assumption that He1,...,er = He1,...,er−1,fr shows that the families

(e1, . . . , er) and (e1, . . . , er−1, fr) span the same subspace of V and, as er, fr ∈ Span(e1, . . . , er−1)⊥,
we conclude that er and fr are colinear, hence equal.

We prove (iii), again by induction on r. If r ≤ 1 then Er = Pr = E
(0)
r and the result follows.

Suppose that r ≥ 2 and that we know the result for r − 1. Let (e1, . . . , er) ∈ Er. Suppose that
(e1, . . . , er) ∈ Pr. Then (e1, . . . , er−1) ∈ Pr−1, so by the induction hypothesis and observations (1)

and (2) above we may assume that (e1, . . . , er−1) ∈ E(0)
r−1. As He1,...,er is an element of He1,...,er−1 ,

there exists by (i) an element f of E ∩ He1,...,er−1 such that He1,...,er = Hf ∩ He1,...,er−1 . Then

(e1, . . . , er−1, f) ∈ E
(0)
r and (e1, . . . , er−1, f) ∼ (e1, . . . , er), so we are done. Now suppose that

there exists (f1, . . . , fr) ∈ E(0)
r such that (e1, . . . , er) ∼ (f1, . . . , fr). By observation (2) above, it

suffices to show that (f1, . . . , fr) ∈ Pr, so we may assume that (e1, . . . , er) ∈ E(0)
r . By the induction

hypothesis, we have (e1, . . . , er−1) ∈ Pr−1 and by (i) the hyperplane He1,...,er is an element of
He1,...,er−1 , which shows that (e1, . . . , er) ∈ Pr.

Point (iv) immediately follows from point (iii) and from the definition of P .
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To prove (v), we need to see that all maximal subsets of pairwise orthogonal elements of E have
the same cardinality, which is a well-known fact. For crystallographic root systems this follows, for
example, from Lemma 5.7 of [9] and from the fact that all 2-structures are conjugated under the
Weyl group, as asserted before Theorem 5.5 of [9]; for the general case, see Appendix B of [5]. �

Corollary 4.7. Suppose H is a Coxeter arrangement with Coxeter group W in an n-dimensional
vector space V . Then the following four statements are equivalent:

(a) The arrangement H is even.
(b) Every sequence of pairwise orthogonal elements of E can be extended to a sequence of

pairwise orthogonal elements of length n, that is, for 0 ≤ r ≤ n and (e1, . . . , er) ∈ E
(0)
r ,

there exist vectors er+1, . . . , en ∈ E such that (e1, . . . , en) ∈ E(0)
n .

(c) The map − idV belongs to the Coxeter group W .
(d) The arrangement H is a Cartesian product of arrangements of type A1, Bn for n ≥ 2, Dn

for n ≥ 4 even, E7, E8, F4, H3, H4 and I2(2k) for k ≥ 2.

The equivalence of (b), (c) and (d) is well-known. For completeness we include a proof.

Proof of Corollary 4.7. The equivalence of (a) and (b) follows from Lemma 4.3 (iii) by using state-
ments (ii) and (iii) of Proposition 4.6.

We prove that (b) and (d) are equivalent. As both conditions hold for a Cartesian product of
two arrangements if and only if they hold for each arrangement, we may assume that H is a simple
Coxeter arrangement. If H is of type An for n ≥ 2, Dn for n ≥ 5 odd, I2(m) for m ≥ 3 odd or E6,
then Φ does not contain a family of n pairwise orthogonal pseudo-roots, so a fortiori condition (b)
does not hold. If H is of type A1, B2 or I2(2k) with k ≥ 2, then condition (b) is clear. Suppose that
H is of type Bn with n ≥ 3, Dn with n ≥ 4 even, E7, E8, F4, H3 or H4. It suffices to show that if
e ∈ E then the arrangement on He given by the vectors of E ∩He, which is He by statement (i) of
Proposition 4.6, satisfies condition (b). This follows from a straightforward induction using Table 1.

Suppose that H satisfies (b). Then there exists a family of pairwise orthogonal pseudo-roots
(α1, . . . , αn) ∈ Φ; in particular, this family generates V . Denote by sα the reflection corresponding
to a root α. We obtain that − idV = sα1 · · · sαn ∈W , which is (c).

Finally, we show by induction on n that (c) implies (a). If n = 1, then (c) implies that H is not
empty, hence even. Suppose that n ≥ 2 and that we know the result for Coxeter arrangements on
vector spaces of dimension n − 1. Let e ∈ E and set We = {w ∈ W : w(e) = e}. By a theorem
of Steinberg [16, Theorem 1.5], the group We is a reflection subgroup of W , hence it is generated
by reflections sf , for f ∈ E, where sf is as before the orthogonal reflection in the hyperplane Hf .
As sf (e) = e if and only if (e, f) = 0, the group We is exactly the subgroup of W generated
by the reflections sf for (e, f) = 0, in other words, it is the Coxeter group of the even restricted
arrangement He. As − idV ∈W , we have −se ∈W and, as −se(e) = e, we conclude that −se ∈We.
But −se acts by − idHe on the hyperplane He, so we conclude that the Coxeter arrangement He
satisfies condition (c), hence that it is even by the induction hypothesis. So we have shown that
He is even for every e ∈ E, which implies that H is even. �

5. Sufficiently symmetric sets

We now turn our attention to a collection of measurable sets that we call sufficiently symmetric
for which the evaluation of the pizza quantity is easier. We conclude the section by showing that for
Coxeter arrangements a measurable set of finite volume that is stable with respect to the reflections
in the arrangement is sufficiently symmetric.

Definition 5.1. For a nonempty n-dimensional arrangement H, we say that a measurable subset
of V with finite volume K is sufficiently symmetric with respect to H if, for every 0 ≤ r ≤ n−1, for
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every even restriction sequence (e1, . . . , er) ∈ Pr that is not maximal, and for every a ∈ H⊥e1,...,er ,
the pizza quantity P (He1,...,er , (K + a) ∩He1,...,er) vanishes.

We can check this condition inductively.

Lemma 5.2. Let H = (He)e∈E be a nonempty hyperplane arrangement and let K be a measurable
subset of V with finite volume. Then the following conditions are equivalent:

(a) The set K is sufficiently symmetric with respect to H.
(b) The pizza quantity P (H,K) is equal to zero and for every e ∈ E and for every b ∈ H⊥e , the

set (K + b) ∩He is sufficiently symmetric with respect to He.

Proof. Suppose that (a) holds. As H is nonempty, the empty even restriction sequence is not
maximal, and we conclude that P (H,K) = 0 by taking r = 0 in Definition 5.1. Now let e ∈ E
and b ∈ H⊥e . Let 1 ≤ r ≤ n − 1 and e2, . . . , er ∈ E such that (e, e2, . . . , er) ∈ Pr − P , and
let a ∈ He ∩ H⊥e,e2,...,er . We wish to show that P (He,e2,...,er , L) = 0 where L = (((K + b) ∩
He) + a) ∩ He,e2,...,er = (K + a + b) ∩ He,e2,...,er . This follows from the hypothesis on K because

b ∈ H⊥e ⊂ H⊥e,e2,...,er .
Suppose that (b) holds. Let 0 ≤ r ≤ n − 1, let (e1, . . . , er) ∈ Pr − P and let a ∈ H⊥e1,...,er . We

wish to show that P (He1,...,er , (K+a)∩He1,...,er) = 0. If r = 0 then He1,...,er = H, He1,...,er = V and

a ∈ V ⊥ = {0}, so the desired result follows from the hypothesis. Suppose that r ≥ 1. We write a =
λe1+b, with λ ∈ R and b ∈ e⊥1 ∩H⊥e1,...,er = He1∩H⊥e1,...,er . Let L = (K+λe1)∩He1 . By condition (b)
the set L is sufficiently symmetric with respect to He1 , so P (He1,...,er , (L + b) ∩He1,...,er) = 0. As
(K + a) ∩He1,...,er = (L+ b) ∩He1,...,er , we are done. �

For Coxeter arrangements there is a more natural condition on measurable sets, namely, that
of being stable by the action of the Coxeter group. We verify this also behaves well in the even
restricted arrangement setting.

Proposition 5.3. Let H be a Coxeter arrangement in the vector space V with Coxeter group W .
Let L be a measurable subset of V stable under the action of W . Let He be a hyperplane in H and
let b be a scalar multiple of the vector e. Then the measurable subset (L+ b) ∩He in the space He

is stable by the action of the Coxeter group of the even restricted arrangement He.

Remember that the arrangement He is also a Coxeter arrangement by Proposition 3.2.

Proof of Proposition 5.3. It is suffices to show that (L+b)∩He is stable under any reflection in V ′,
where V ′ is a hyperplane in He, that is, V ′ is a codimension 2 subspace of H with even intersection
multiplicity and is contained in He. Fix such a subspace V ′. By Proposition 3.2 there exists a
vector f ∈ E such that (e, f) = 0 and V ′ = He ∩Hf . Since the vectors e and f are orthogonal, the
vector b lies in the hyperplane Hf . Since L is stable under the reflection in Hf , so is the translate
L + b. Note that reflecting (L + b) ∩ He in V ′ (this takes place in He) is equivalent to reflecting
(L+ b) ∩He in Hf . Hence (L+ b) ∩He is stable under the action of the Coxeter group of He. �

Corollary 5.4. Suppose that H is a nonempty Coxeter arrangement and that K is a measurable
subset of V of finite volume that is stable under the action of the elements of the Coxeter group W
of H. Then K is sufficiently symmetric with respect to the arrangement H.

Proof. We prove the result by induction on n = dimV . If n = 1 then we have to show that
P (H,K) = 0. This follows from the hypothesis and from Corollary 2.3. This corollary applies
because we assume that the arrangement H is not empty. Suppose that n ≥ 2 and that we know
the result for n− 1. If e ∈ E and b ∈ H⊥e then the set (K + b)∩He is stable by the Coxeter group
of the arrangement He by Proposition 5.3, hence sufficiently symmetric with respect to He by the
induction hypothesis. The result now follows from Lemma 5.2. �
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6. Evaluating the pizza quantity

We now evaluate the pizza quantity for sufficiently symmetric measurable sets, and deduce that
it is zero for even Coxeter arrangements and sufficiently symmetric measurable sets of finite volume.

Theorem 6.1. Suppose that K is a measurable subset of V with finite volume, and that it is
sufficiently symmetric with respect to H. Then for every a ∈ V we have

P (H,K + a) =
∑

(e1,...,er)∈P/∼

2r(−1)er◦···◦e1(a, e1)(πe1(a), e2) · · · (πe1,...,er−1(a), er)

·
∫ 1

0

∫ t1

0
· · ·
∫ tr−1

0
VolHe1,...,er (Ke1,...,er(t1, . . . , tr))dtr · · · dt2dt1,

where, for every (e1, . . . , er) ∈ Er, we denote by πe1,...,er the orthogonal projection on He1,...,er and
by Ke1,...,er(t1, . . . , tr) the measurable subset

He1,...,er ∩ (K + t1(a− πe1(a)) + t2(πe1(a)− πe1,e2(a)) + · · ·+ tr(πe1,...,er−1(a)− πe1,...,er(a)))

of He1,...,er .

Proof. Iterate Theorem 3.4 in the following form: P (H,K + a) = P (H,K) + · · · . At each step use
the sufficiently symmetric condition to note that the P (H,K) terms vanish. �

Remark 6.2. We could use other projections instead of the orthogonal projections πe1,...,er . For
Coxeter arrangements, it is natural to use orthogonal projections, but for other arrangements a
different choice might be more appropriate. We keep the discussion to the orthogonal projections
because there is no canonical general choice and the statements are more straightforward.

Theorem 6.3. Suppose that H is an even hyperplane arrangement, and define the homogenous
degree n polynomial function fH : V −→ R by

fH(a) =
2n

n!

∑
(e1,...,en)∈Pn/∼

(−1)er◦···◦e1(a, e1)(πe1(a), e2) · · · (πe1,...,en−1(a), en).

Then for any measurable subset K of V of finite volume that is sufficiently symmetric with respect
to H, and for every a ∈ V such that

−(t1(a− πe1(a)) + t2(πe1(a)− πe1,e2(a)) + · · ·+ tr(πe1,...,er−1(a)− πe1,...,er(a))) ∈ K

for 0 ≤ tr ≤ tr−1 ≤ · · · ≤ t1 ≤ 1, we have

P (H,K + a) = fH(a).

Remark 6.4. The conditions of Theorem 6.3 on K and a hold in the following cases:

(1) The set K is convex (of finite volume), sufficiently symmetric with respect to H and 0 ∈
K + a.

(2) The arrangement H is Coxeter with Coxeter group W , and the set K is stable by W and
contains the convex hull of the finite set {w(−a) : w ∈W} (as W contains − idV because H
is even, it is equivalent to say that K contains the convex hull of the set {w(a) : w ∈W}).

(3) The arrangement H is Coxeter, the set K is convex (of finite volume) and stable by its
Coxeter group, and 0 ∈ K + a.

Proof of Theorem 6.3. As H is even, we have P/ ∼= Pn/ ∼. Moreover, by the conditions on K
and a, for every (e1, . . . , er) ∈ Pr and every (t1, . . . , tr) ∈ Rr such that 0 ≤ tr ≤ tr−1 ≤ · · · ≤
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t1 ≤ 1, the subset Ke1,...,er(t1, . . . , tr) of He1,...,en contains 0. Thus, if r = n, we obtain that
Ke1,...,en(t1, . . . , tn) = He1,...,en = {0}, and hence

VolHe1,...,en (Ke1,...,en(t1, . . . , tn)) = 1.

The corollary then follows from Theorem 6.1 and from the fact that∫ 1

0

∫ t1

0
· · ·
∫ tn−1

0
dtn · · · dt2dt1 = Vol({(t1, t2, . . . , tn) : 0 ≤ tn ≤ · · · ≤ t2 ≤ t1 ≤ 1}) =

1

n!
. �

Corollary 6.5. Suppose that H is a Coxeter arrangement, and let 0 ≤ r ≤ n be the integer such
that P = Pr. Let K be a measurable subset of V of finite volume that is sufficiently symmetric with
respect to H (for example, K could be stable by the Coxeter group of H). Then for every a ∈ V we
have

P (H,K + a) = 2r
∑

(e1,...,er)∈E(0)
r

(−1)er◦···◦e1(a, e1)(a, e2) · · · (a, er)

∫ 1

0

∫ t1

0
· · ·
∫ tr−1

0
VolHe1,...,er (He1,...,er ∩ (K ∩ t1(a, e1) + t2(a, e2) + · · ·+ tr(a, er)))dtr · · · dt2dt1.

Remark 6.6. If K is the ball B(0, R) and ‖a‖ ≤ R then for every (e1, . . . , er) ∈ P and (t1, . . . , tr) ∈
Rr such that 0 ≤ tr ≤ · · · ≤ t1 ≤ 1, the set Ke1,...,er(t1, . . . , tr) of Theorem 6.1 is a ball of radius√
R(t1, . . . , tr), where

R(t1, . . . , tr) = R2− t21‖a−πe1(a)‖2− t22‖πe1(a)−πe1,e2(a)‖2−· · ·− t2r‖πe1,...,er−1(a)−πe1,...,er(a)‖2.
So we can conclude the following corollary.

Corollary 6.7. Suppose that the ball B(0, R) is sufficiently symmetric with respect to H. Then for
every R ≥ 0 and every a ∈ V such that ‖a‖ ≤ R, we have

P (H,B(a,R)) =
2rπr/2

Γ(r/2 + 1)

·
∑

(e1,...,er)∈P/∼

(−1)er◦···◦e1(a, e1)(πe1(a), e2) · · · (πe1,...,er−1(a), er)

·
∫ 1

0

∫ t1

0
· · ·
∫ tr−1

0
R(t1, . . . , tr)

(n−r)/2dtr · · · dt2dt1,

where R(t1, . . . , tr) is given in Remark 6.6. In particular, if H is a Coxeter arrangement, let
0 ≤ r ≤ n be the integer such that P = Pr. Then the ball B(0, R) is sufficiently symmetric with
respect to H, and for every R ≥ 0 and every a ∈ V such that ‖a‖ ≤ R, we have

P (H,B(a,R)) =
2rπr/2

Γ(r/2 + 1)

∑
(e1,...,er)∈E(0)

r

(−1)er◦···◦e1(a, e1)(a, e2) · · · (a, er)

·
∫ 1

0

∫ t1

0
· · ·
∫ tr−1

0
(R2 − t21(a, e1)2 − t22(a, e2)2 − · · · − t2r(a, er)2)(n−r)/2dtr · · · dt2dt1.

Proposition 6.8. Suppose that H = (He)e∈E is an even Coxeter arrangement. Let n = dim(V ).
Then the polynomial fH of Theorem 6.3 is given by

fH(a) =

{
2n ·

∏
e∈E(a, e) if H is of type An1 ,

0 otherwise.
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More generally, if H is an even arrangement that has a Coxeter subarrangement H′ whose Coxeter
group preserves H, then

(i) if H′ has at least n+ 1 hyperplanes then fH = 0;
(ii) if H′ has n hyperplanes then fH is a scalar multiple of the function a 7−→

∏
e∈E′(a, e), where

E′ is the subset of E corresponding to H′.

Proof. All even Coxeter arrangements in V have at least n+ 1 hyperplanes, except for the arrange-
ment of type An1 , which has n hyperplanes. So it suffices to prove statements (i) and (ii), and to
calculate the leading coefficient of fH for H of type An1 .

Suppose that fH 6= 0. Let X be the hypersurface {fH = 0}. Then X is a hypersurface of degree n,
and it contains all the hyperplanes ofH′, so the arrangementH′ has at most n hyperplanes. Suppose
that H′ has exactly n hyperplanes. Then X =

⋃
e∈E′ He′ , thus the polynomial fH is of the form

a 7−→ c ·
∏
e∈E(a, e) where c is a constant. Now suppose that H = H′ is of type An1 . To calculate c,

we use Theorem 6.3. Let K = [−1, 1]n and a = (a1, . . . , an) = (1, . . . , 1). Then the cube K + a is
entirely in the first orthant and hence c = P (H,K + a) = Vol(K) = 2n. �

Theorem 6.9. Suppose that H is an even Coxeter arrangement in Rn and that K is a measurable
subset of V of finite volume and stable by the Coxeter group of H. Let a = (a1, . . . , an) ∈ Rn such
that K contains the convex hull of the set {w(a) : w ∈ W}. Then the pizza quantity P (H,K + a)
is given by

P (H,K + a) =

{
2n · a1 · · · an if H is of type An1 ,

0 otherwise.

Here if H has type An1 we assume that it is given by the hyperplanes {xi = 0 : 1 ≤ i ≤ n} and that
the base chamber is T0 = (R>0)n.

Proof. The set K satisfies the conditions of Theorem 6.3, so the result follows from Proposition 6.8.
�

Example 6.10. Suppose that |E| = n and that H is essential. This implies that H is even and
that for every 0 ≤ r ≤ n the set Pr is the set of (e1, . . . , er) ∈ Er such that ei 6= ej for i 6= j. 1

Write E = {e1, . . . , en}. Then for any a ∈ V we have

fH(a) =
2n

n!

∑
σ∈Sn

(−1)eσ(n)◦···◦eσ(1)

· (a, eσ(1))(πeσ(1)(a), eσ(2))(πeσ(1),eσ(2)(a), eσ(3)) · · · (πeσ(1),...,eσ(n−1)
(a), eσ(n)).

For arrangements that are not Coxeter, we do not know a general way to find sufficiently sym-
metric sets, or even to decide whether the ball B(0, 1) is sufficiently symmetric. We end this section
with two low-dimensional examples.

Example 6.11. Suppose that V = R2 and H is a line arrangement. Then H is even if and
only if it is nonempty and has an even number of lines, say 2m where m is a positive integer.
Suppose that this is the case, and that one of the lines in H is the horizontal axis {x2 = 0}.
Let θ1, . . . , θ2m−1 be the angles between the other lines and the horizontal axis, ordered so that
0 = θ0 < θ1 < θ2 < · · · < θ2m−1 < θ2m = π. If ` ∈ H and a ∈ `⊥ then ` ∩ (B(0, 1) + a) is
always a segment centered at the origin (or empty). Thus the disc B(0, 1) is sufficienty symmetric
with respect to H if and only if P (H,B(0, 1)) = 0. This is equivalent to the condition that∑m

i=1(θ2i−θ2i−1) =
∑m

i=1(θ2i−1−θ2i−2), that is,
∑2m

j=1(−1)j ·θj = π/2. If this condition is satisfied

then the pizza quantity P (H,B(a,R)) is given by P (H,B(a,R)) = fH,T0(a) if 0 ∈ B(a,R), that is,
when ‖a‖ ≤ R, and in particular it is independent of the radius R of the ball.

1More generally, these two statements hold for any simple hyperplane arrangement.
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Example 6.12. In V = R3 consider the arrangement H given by the following seven hyperplanes:

H1 = {x1 = 0}, H2 = {x1 = α · x2}, H4 = {x2 = 0}, H5 = {x3 = β · x2}, H7 = {x3 = 0},
H3 = {x1 = −α · x2}, H6 = {x3 = −β · x2},

where α and β are positive real numbers. We also fix a base chamber T0 of H. We claim that this
arrangement H is even, and that the unit ball B(0, 1) is sufficiently symmetric with respect to H.

First, for every chamber T of H, the set −T is also a chamber and (−1)−T = −(−1)T because H
has an odd number of hyperplanes. For any centrally symmetric measurable set of finite volume K,
and in particular for the ball, we have P (H,K) = 0. We can then apply Lemma 5.2 to check the
second statement once we know that H is even. Note also that for every H ∈ H and for every
a ∈ H⊥, the intersection H ∩ (B(0, 1) + a) is a disk centered at the origin in H.

For every 1 ≤ i ≤ 7, let Hi be the even restricted arrangement induced by H on Hi. We need to
check that for every i the arrangement Hi is even and a disk centered at the origin is sufficiently
symmetric with respect to Hi.

– The three arrangements H1, H2 and H3 are all isometric to a four line arrangement, as in
Example 6.11. However, the adjacent angles for H1 are given by η1 = η4 = arctan(β) and
η2 = η3 = π/2− arctan(β), where θi = η1 + · · ·+ ηi, whereas, the angles for H2 and H3 are

η1 = η4 = arctan(β/
√
α2 + 1) and η2 = η3 = π/2− arctan(β/

√
α2 + 1).

– The cases of the arrangements H5, H6 and H7 are symmetric to H3, H2 and H1.
– The arrangement H4 has two lines and has type A2

1.

We conclude that the pizza quantity P (H,B(a,R)) is given by P (H,B(a,R)) = fH,T0(a), and
hence it is independent of the radius R of the ball. Furthermore, Proposition 6.8 (ii) implies that
fH,T0(a) = c · a1a2a3 where c is a constant. Note that we could also get this result directly from
Theorem 7.6.

7. The case of the ball and convex bodies bounded by quadratic surfaces

We now revisit the case when the measurable set K is an n-dimensional ball. We show in
particular that the pizza quantity vanishes for the arrangements E6 and An where n ≡ 0, 1 mod 4.
Recall that V is an n-dimensional vector space endowed with an inner product (·, ·) and that
H = (He)e∈E is an arrangement with base chamber T0.

Definition 7.1. We say that the hyperplane arrangement H satisfies the parity condition if |H|
and dim(V ) have the same parity.

Lemma 7.2. (i) Suppose that H is not the empty arrangement. Then the following three
statements are equivalent:
(a) The arrangement H satisfies the parity condition.
(b) There exists e ∈ E such that the even restricted arrangement He satisfies the parity

condition.
(c) For every e ∈ E, the even restricted arrangement He satisfies the parity condition.

(ii) The following statements are equivalent:
(a) The arrangement H satisfies the parity condition.
(b) There exists (e1, . . . , er) ∈ P such that dim(He1,...,er) is even.
(c) For every (e1, . . . , er) ∈ P , we have that dim(He1,...,er) is even.

(iii) If H is an even arrangement then it satisfies the parity condition.
(iv) Suppose that H is a Coxeter arrangement. We write V = V0 ⊕ V1, where V0 =

⋂
H∈HH

and V1 = V ⊥0 , and we denote by H1 the restriction of H to V1, that is, the arrangement
{H ∩ V1 : H ∈ H}. Note that H1 is an essential Coxeter arrangement and that H is the
Cartesian product of H1 and of the empty arrangement on V0. We can also decompose H1
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as a product of simple Coxeter arrangements. Let r be the number of arrangements in this
decomposition that are of type An with n ≡ 2, 3 mod 4, Dn for n ≥ 5 odd or I2(2k + 1) for
k ≥ 2. Then H satisfies the parity condition if and only if r + dim(V0) is even.

In particular, if H is an essential Coxeter arrangement then it satisfies the parity condi-
tion if and only it has an even number of simple factors of types An with n ≡ 2, 3 mod 4,
Dn for n ≥ 5 odd or I2(2k + 1) for k ≥ 2.

Proof. We begin by proving (i). As E is nonempty, condition (c) clearly implies condition (b).
Let e ∈ E. We denote by ∼ the equivalence relation on E − {e} defined by e′ ∼ e′′ if and only if
He ∩He′ = He ∩He′′ . Let E1, respectively E2, be the set of e′ ∈ E −{e} such that the intersection
multiplicity of He∩He′ is odd, respectively even. Then E1 and E2 are unions of equivalence classes
of the relation ∼. Since the element e is not in the set E − {e}, the intersection multiplicity of
He ∩ He′ has the opposite parity of the cardinality of the equivalence class e′ belongs to. As all
the equivalence classes contained in E1 have even cardinality, the set E1 also has even cardinality.
Moreover, we have a surjective map from E2 to He sending e′ ∈ E2 to He ∩He′ , and the fibers of
this map are the equivalence classes contained in E2, all of which have odd cardinality. Thus we
obtain |E2| ≡ |He| mod 2. We deduce that |H| = |E| = 1 + |E1| + |E2| ≡ 1 + |He| mod 2. This
shows that H satisfies the parity condition if and only if He does. As e was arbitrary, this argument
proves that (a) implies (c) and that (b) implies (a).

Next we prove (ii) by induction on |H|. Note that (c) always implies (b), so we just need to
prove that (a) implies (c) and that (b) implies (a). If H is empty then P = ∅, and the three
conditions (a), (b) and (c) are equivalent to the fact that dim(V ) is even. Suppose that |H| ≥ 1.
If H satisfies the parity condition, let (e1, . . . , er) ∈ P . We have r ≥ 1 because H is not empty,
so He1 satisfies the parity condition by (ii). As (e2, . . . , er) is a maximal even restriction sequence
for He1 , the induction hypothesis implies that dim(He1,...,er) is even. Conversely, suppose that there
exists (e1, . . . , er) ∈ P such that dim(He1,...,er) is even. By the induction hypothesis He1 satisfies
the parity condition so H satisfies the parity condition by (ii).

If H is even then P = Pn, so He1,...,en = {0} for every (e1, . . . , en) ∈ P . Hence (iii) follows
from (ii).

Finally, we prove (iv). Simple Coxeter arrangements satisfy the parity condition if and only if
they are of types An with n ≡ 0, 1 mod 4, Bn, Dn with n ≥ 4 even, E6, E7, E8, F4, or I2(2k) with
k ≥ 2. Thus |H|+ dim(V ) ≡ r + dim(V0) mod 2, which implies the result. �

Remark 7.3. By Lemma 7.2 the evenness condition implies the parity condition, but it is much
stronger condition. (In dimensions at most 2, the two conditions are equivalent). For example, the
Coxeter arrangements of type A2 × A3, E6 and An for n ≡ 0, 1 mod 4 satisfy the parity condition
but not the evenness condition.

If H satisfies the parity condition then (n − r)/2 is an integer for every (e1, . . . , er) ∈ P , so if
the ball B(0, R) is sufficiently symmetric with respect to H, Corollary 6.7 implies that the pizza
quantity P (H,B(a,R)) is polynomial in a and R as long as ‖a‖ ≤ R.

In this section we will see that we do not need the condition that the ball is sufficiently symmetric
for this result. We will actually consider slightly more general “balls” that are convex bodies
bounded by quadratic hypersurfaces. Let q be a positive definite quadratic form on V , so that
(q(x+ y)− q(x)− q(y))/2 is an inner product on V . For a ∈ V and R ≥ 0, we write

Bq(a,R) = {x ∈ V : q(x− a) ≤ R2}.
If q is the quadratic form defined by q(x) = (x, x) then Bq(a,R) is the usual ball B(a,R) with
center a and radius R. Note also that Bq(a,R) = a+ Bq(0, R) and Bq(0, R) = R · Bq(0, 1).

Theorem 7.4. Let C be a closed convex polyhedral cone, that is, an intersection of closed half-
spaces in V . Then there exists a polynomial function gC,q on R× V such that:
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(a) The polynomial gC,q is homogeneous of degree n = dim(V ).
(b) For every (R, a) ∈ R × V , we have gC,q(R, a) = gC,q(−R, a), that is, gC,q contains only

terms of even degree in the first variable R.
(c) For every (R, a) ∈ R× V such that q(a) ≤ R2, we have

Vol(C ∩ Bq(a,R)) + (−1)dim(V ) Vol((−C) ∩ Bq(a,R)) = gC,q(R, a).

Proof. We prove the result by induction on the dimension of V . If dim(V ) = 0, then V = C = {0}
and Vol(C∩ Bq(a,R))+(−1)dim(V ) Vol((−C)∩ Bq(a,R)) = 2 if q(a) ≤ R2, so we can take gC,q = 2.

Suppose that dim(V ) ≥ 1 and that we know the result for lower-dimensional inner product
spaces. Let (R, a) ∈ R×V such that q(a) ≤ R2. Let H be the set of hyperplanes containing a facet
of C. For every H ∈ H, we denote by eH the unit normal vector of H that points to the half-space
containing C, and we set E = {eH : H ∈ H}. By Theorem 3.4(i) we have

Vol(C ∩ Bq(a,R)) + (−1)dim(V ) Vol((−C) ∩ Bq(a,R))

− (Vol(C ∩ Bq(0, R)) + (−1)dim(V ) Vol((−C) ∩ Bq(0, R)))

= 2 ·
∑
e∈H

(a, e) ·
∫ 1

0

(
Vol(C ∩He ∩ Bq(sa,R)) + (−1)dim(He) Vol((−C) ∩He ∩ Bq(sa,R))

)
ds.

Indeed, the facets of C and −C are exactly the relative interiors of the intersections C ∩ He,
respectively (−C) ∩He, for e ∈ E. Moreover, for every e ∈ E, as the vector e points towards C,

hence away from −C, we have (−1)C̊(−1)U◦e = 1 if U is the relative interior of C ∩ He and

(−1)C̊(−1)U◦e = −1 if U is the relative interior of (−C) ∩He.
Let e ∈ E. We denote by πq,e the orthogonal projection on He with respect to the inner product

(q(x+ y)− q(x)− q(y))/2 corresponding to the quadratic form q. Then for all a ∈ V and x ∈ He,
we have

q(x− a) = q(x− πq,e(a)) + q(a− πq,e(a)).

In particular, the convex body Bq(sa,R) ∩He is given by

Bq(sa,R) ∩He = Bqe
(
sπq,e(a),

√
R2 − s2q(a− πq,e(a))

)
,

where qe is the restriction of q to He. Hence the induction hypothesis applied to He yields that

Vol(C ∩He ∩ Bq(sa,R)) + (−1)dim(He) Vol((−C) ∩He ∩ Bq(sa,R))

= gC∩He,qe

(√
R2 − s2 · q(a− πq,e(a)), sπq,e(a)

)
.

By conditions (a) and (b), there exist homogeneous polynomial functions gC∩He,i of degree n−1−2i

on He such that, for every (t, x) ∈ R ×He, we have gC∩He(t, x) =
∑b(n−1)/2c

i=0 t2i · gC∩He,i(x). We
obtain ∫ 1

0

(
Vol(C ∩He ∩ Bq(sa,R)) + (−1)dim(He) Vol((−C) ∩He ∩ Bq(sa,R))

)
ds

=

bn−1
2
c∑

i=0

gC∩He,i(πq,e(a)) ·
∫ 1

0

(
R2 − s2 · q(a− πq,e(a))

)i · sn−1−2i ds.

18



We define a function g
(0)
C : R× V −→ R by

g
(0)
C (t, x) = 2 ·

∑
e∈E

(x, e) ·
bn−1

2
c∑

i=0

gHe,i(πq,e(x)) ·
∫ 1

0

(
t2 − s2 · q(x− πq,e(x))

)i · sn−1−2i ds,

for (t, x) ∈ R× V . As the functions x 7−→ (x, e) and x 7−→ πq,e(x) are linear in x and the function

x 7−→ q(x) is quadratic in x, the function g
(0)
C is a homogeneous polynomial of degree dim(V ) that

satisfies condition (b), and we have

Vol(C ∩ Bq(a,R)) + (−1)dim(V ) Vol((−C) ∩ Bq(a,R))

= Vol(C ∩ Bq(0, R)) + (−1)dim(V ) Vol((−C) ∩ Bq(0, R)) + g
(0)
C (R, a).

Suppose that n = dim(V ) is even. As Vol(Z ∩ Bq(0, R)) = Rn · Vol(Z ∩ Bq(0, 1)) for Z = C or
Z = −C, the function gC,q defined by

gC,q(t, x) = tn · (Vol(C ∩ Bq(0, 1)) + Vol((−C) ∩ Bq(0, 1))) + g
(0)
C (t, x)

satisfies the desired properties. Suppose that dim(V ) is odd. Then, as Bq(0, R) is centrally sym-
metric, we have Vol(C ∩ Bq(0, R)) − Vol((−C) ∩ Bq(0, R)) = 0 for every R ≥ 0, so the function

gC,q = g
(0)
C satisfies the desired properties. �

Corollary 7.5. Suppose that H satisfies the parity condition. Then there exists a polynomial
function gH,q on R× V such that:

(a) The polynomial gH,q is homogeneous of degree n = dim(V ).
(b) For every (R, a) ∈ R × V , we have gH,q(R, a) = gH,q(−R, a), that is, gH,q contains only

terms of even degree in the first variable R.
(c) For every (R, a) ∈ R× V such that q(a) ≤ R2, we have P (H,Bq(a,R)) = gH,q(R, a).

Proof. As H satisfies the parity condition, we have (−1)−T = (−1)dim(V )(−1)T for every chamber T
of H, hence P (H,Bq(a,R)) is an alternating sum of quantities as in Theorem 7.4. More precisely,
choose a subset T ′ of T (H) such that, for every chamber T of H, exactly one of T or −T is in T ′.
Then, for all a ∈ V and R ∈ R≥0, we have

P (H,Bq(a,R)) =
∑
T∈T ′

(−1)T
(

Vol(T ∩ Bq(a,R)) + (−1)dim(V ) Vol((−T ) ∩ Bq(a,R))
)
.

So it suffices to take

gH,q =
∑
T∈T ′

(−1)T gT ,q. �

Theorem 7.6. Let q be a positive definite quadratic form on V . Suppose that H satisfies the
parity condition and that it contains a Coxeter arrangement H′ whose Coxeter group preserves H
and the convex body Bq(0, 1). (For example, these conditions are satisfied if H = H′ is a Coxeter
arrangement and q is given by q(x) = (x, x).) Let (R, a) ∈ R× V such that q(a) ≤ R2, equivalently
0 ∈ Bq(a,R).

(i) If |H′| > dim(V ), so in particular H′ is not of type A
dim(V )
1 , then the pizza quantity

P (H,Bq(a,R)) vanishes.

(ii) If |H′| = dim(V ) (for example if H′ is of type A
dim(V )
1 , or the product of a type A2 arrange-

ment on R2 and the empty arrangement on R), then there exists a constant c independent
of the center a and the radius R such that P (H,Bq(a,R)) = c ·

∏
e∈E′(a, e), where E′ is

the subset of E corresponding to the hyperplanes of H′. In particular, the pizza quantity
P (H,Bq(a,R)) is independent of the radius R.

19



Proof. The proof is very similar to that of Proposition 6.8. Let W be the Coxeter group of H′. Fix
R > 0, and define a function h : V −→ R by h(x) = gH,q(R, x). Then h is polynomial of degree
at most dim(V ), and we have P (H,Bq(a,R)) = h(a) for every a ∈ V such that q(a) ≤ R2. By
Corollary 2.3 this implies that h(w(x)) = (−1)w ·h(x) for every w ∈W and x ∈ V , and in particular
that h(x) = 0 if x is on one of the hyperplanes of H′. If h is nonzero then the hypersurface {h = 0}
is of degree at most dim(V ) and contains

⋃
H∈H′ H. But this is impossible in the situation of (i), so

we conclude that h = 0 in that situation. In the situation of (ii), this is possible and implies that h
is of the form x 7−→ c(R) ·

∏
e∈E′(x, e), for some c(R) ∈ R not depending on x. By definition of h we

obtain that gH,q(R, a) = c(R) ·
∏
e∈E′(a, e) for every (R, a) ∈ R× V such that q(a) ≤ R2. As gH,q

and the function x 7−→
∏
e∈E′(x, e) are both polynomials homogeneous of degree dim(V ) = |H′|,

this implies that the function R 7−→ c(R) is constant, completing the proof. �

Remark 7.7. If H is the product of the empty arrangement in R and a type I2(2k+1) arrangement
in R2 with k ≥ 2, then the corollary recovers the case of Entrée 2 on page 433 of [13] where N ≥ 5
is odd.

If the arrangement H does not satisfy the parity condition, then it is not true in general that
the pizza quantity P (H,B(a,R)) is polynomial in a and R. See for example the calculations on
page 429 of the paper [13]. We can, however, control its behavior as R tends to infinity in the case
where H is a Coxeter arrangement.

Proposition 7.8. Suppose that H is a Coxeter arrangement with Coxeter group W in an n-
dimensional vector space V . Let K be a measurable subset of V with finite volume that is stable
by W and contains a neighborhood of 0. Suppose that there exists an integer k ≥ 0 and a function
h : V −→ R of type Ck at 0 such that P (H,K + a) = h(a) for a in a neighborhood of 0.

Fix the center a ∈ V . Then 0 ∈ a + rK for r > 0 large enough and the function P (H, a + rK)
satisfies

P (H, a+ rK) = o
(
rn−min(k,|H|−1)

)
as r −→ +∞. In particular, if k ≥ n and |H| ≥ n+ 1 then we have lim

r→+∞
P (H, a+ rK) = 0.

Proof. By the multivariate version of Taylor’s theorem, there exist polynomial functions h(i) : V −→
R for 0 ≤ i ≤ k such that h(i) is homogeneous of degree i and

h(a) =
k∑
i=0

1

i!
· h(i)(a) + o

(
‖a‖k

)
.

We also have explicit formulas for the h(i) involving partial differentials of h. In particular the fact
that h(w(b)) = (−1)w · h(b) for w ∈ W and b in a neighborhood of 0 implies that h(i)(w(a)) =

(−1)w · h(i)(a) for every i, every w ∈ W and every a ∈ V . Let 0 ≤ i ≤ k, and suppose that

i ≤ |H| − 1. As in the proof of Proposition 6.8, if h(i) 6= 0, then the hypersurface {h(i) = 0} is of

degree i and contains
⋃
H∈HH. This is not possible hence h(i) = 0. If k ≥ |H|, we deduce that

h(a) = h(|H|)(a) + o(‖a‖|H|) = o(‖a‖|H|−1). If k ≤ |H| − 1, we deduce that h(a) = o(‖a‖k). So we

conclude that h(a) = o(‖a‖min(k,|H|−1)).
We now fix a ∈ V . If r > 0 then a+rK = r ·(a/r+K), so 0 ∈ a+rK as soon as −a/r ∈ K. This

holds for large enough r by the assumption on K. Also, we have P (H, a+rK) = rn·P (H, a/r+K) =

rn · h(a/r) for large enough r, so P (H, a+ rK) = o(rn−min(k,|H|−1)). If |H| ≥ n+ 1 and k ≥ n, this
implies in particular that P (H, a+ rK) = o(1). �

Remark 7.9. As in Theorem 7.6, we just need in Proposition 7.8 the fact thatH contains a Coxeter
subarrangement H′ whose Coxeter groups stabilizes both the arrangement H and the set K.
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Corollary 7.10. Suppose that H is a Coxeter arrangement in an n-dimensional inner product
space V that has at least n+ 1 hyperplanes. Let q be a positive definite quadratic form on V , and
fix a point a ∈ V . Then the function R 7−→ P (H,Bq(a,R)) is o(Rn−|H|+1) as R −→ +∞, and in
particular, lim

R→+∞
P (H,Bq(a,R)) = 0.

Proof. We apply Proposition 7.8 with K = Bq(0, 1). In that case, the function a 7−→ P (H, a+K)
is C∞ (and even real analytic) in a. �

8. Surface volume

We now change our discussion from measuring the volume of the regions K ∩T to measuring the
surface volume in the case when the convex body is a ball. For an n-dimensional convex set X, let
Voln−1(∂X) denote the (n− 1)-dimensional surface volume of the set X.

Theorem 8.1. Assume that H is an n-dimensional hyperplane arrangement such that the pizza
quantity P (H,B(a,R)) does not depend on the radius R ≥ ‖a‖. Then the alternating sum of the
surface volumes of the regions B(a,R)∩T where T ranges over all chambers of the arrangement H
is zero, that is, ∑

T∈T

(−1)T ·Voln−1(∂(B(a,R) ∩ T )) = 0.(8.1)

Proof. Since the ball B(a,R) grows uniformly in each direction as R increases, taking the derivative
of the pizza quantity with respect to R yields∑

T∈T

(−1)T ·Voln−1(S(a,R) ∩ T ) = 0,

where S(a,R) denotes the (n−1)-dimensional sphere having center a and radius R, that is, S(a,R) =
{x ∈ V : ‖x − a‖ = R}. The result follows by observing that each subchamber contributes its
(n− 1)-dimensional volume to two terms in (8.1) with opposite signs. �

Combining Theorem 7.6 with Theorem 8.1 yields the following result.

Theorem 8.2. Suppose that H satisfies the parity condition and that it contains a Coxeter arrange-
ment H′ whose Coxeter group preserves H and such that |H′| ≥ dim(V ). Let R ≥ ‖a‖. Then the
alternating sum of the surface volumes of the regions B(a,R)∩T where T ranges over all chambers
of the arrangement H is zero, that is,∑

T∈T

(−1)T ·Voln−1(∂(B(a,R) ∩ T )) = 0.

Remark 8.3. If H is the product of the trivial arrangement on R and of a type A2 or I2(2k + 1)
with k ≥ 2 arrangement on R2 then Theorem 8.2 is Confection 2 on page 433 of [13]. If H is a
type I2(2k) for k ≥ 2 arrangement on R2 then Theorem 8.2 is the “N even” part of Confection 3
on page 434 of [13].

Remark 8.4. We can also apply Theorem 8.1 to all the even hyperplanes arrangements for which
a ball centered at the origin is sufficiently symmetric. See for example the arrangement of Exam-
ple 6.11. Also, Theorem 8.2 applies to the arrangement of Example 6.12.
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9. Concluding remarks

The n-dimensional volume and the (n − 1)-dimensional surface volume are both examples of
intrinsic volumes; see [12, 14]. In the paper [6], we have generalized Theorem 1.2 to all intrinsic
volumes, and more generally, to all valuations on convex subsets of Rn that are invariant by affine
isometries. The methods we develop are different from the ones used here. However, it is still an
open question whether Theorems 1.1 and 8.1 can be generalized to all intrinsic volumes. Naturally,
the result is true for the 0th intrinsic volume, that is, the Euler characteristic.

Another generalization of the Pizza Theorem is to consider the problem of sharing pizza among
more than two people. We can use Theorem 7.4 to produce such pizza-sharing results for the ball.
The general idea is that if we consider a sum of terms as in that theorem that has enough symmetries,
we will be able to show that it vanishes by the method of Proposition 6.8 and Theorem 7.6. We
state one such result in dimension 2, where we can eliminate the assumption that the pizza is a
disc.

Proposition 9.1. Let H be a Coxeter arrangement of type I2(k) in the plane V , and let p < k be
a positive integer dividing k. Let K be a measurable subset of V with finite volume that is stable by
the Coxeter group W of H. If k is odd, or if k = 2p with p odd, we also suppose that K is stable by
the Coxeter group of the Coxeter arrangement of type I2(2k) containing H. Let T0, T1, . . . , T2k−1

be the chambers of H. For a ∈ V such that K contains the convex hull of the set {w(a) : w ∈W}2,
the following sum is independent of 0 ≤ r ≤ p− 1:

2k/p−1∑
i=0

Vol(Tr+pi ∩ (K + a)) = Vol(K)/p.

In short, p people can share a pizza and have 2k/p slices each.

Proof of Proposition 9.1. If T is a chamber of the arrangement H and K is a measurable subset
with finite volume, we deduce from point (i) of Theorem 3.4 that

Vol(T ∩ (K + a)) + Vol((−T ) ∩ (K + a))− (Vol(T ∩K) + Vol(−T ∩K))

= (a, e)

∫ 1

0
P (He, (K + ta) ∩He) dt+ (a, e′)

∫ 1

0
P (He′ , (K + ta) ∩He′) dt,(9.1)

where e, e′ ∈ E are such that the boundaries of T and −T are contained in He ∪He′ . If K satisfies
the conditions of the proposition, then for every e ∈ E the intersection (K + a − πe(a)) ∩ He is
centrally symmetric in He and contains the interval [−πe(a), πe(a)]. (To see that (K+a−πe(a))∩He

is centrally symmetric, we use the fact that K is stable under the orthogonal reflection in the line
perpendicular to He. If k is even, this line is part of the arrangement H, but if k is odd, it is
only part of the larger arrangement of type I2(2k). This is why we assume that K is stable under
the Coxeter group of that larger arrangement.) This implies that there exists a linear function
ge : He −→ R such that P (He, (K + a) ∩He) = ge(πe(a)) for all K and a satisfying the conditions
on the proposition. So we deduce that the right-hand side of (9.1) is a polynomial homogeneous
of degree 2 in a that does not depend on K, as long as K contains the convex hull of the set
{w(a) : w ∈W}.

Recall that the chambers are labelled T0, T1, . . . , T2k−1, where the index is modulo 2k. Note that
−Ti = Ti+k. Let `i be the line that borders the chambers Ti and Ti+1; hence `i also borders Ti+k
and Ti+k+1. We take the index i of the lines to be an integer modulo k. For every i ∈ Z/kZ and
every j ∈ Z/2kZ, the orthogonal reflection in the line `i sends Tj to T2i+1−j .

2This condition holds for example if K is convex and 0 ∈ K + a.
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For 0 ≤ r ≤ p− 1 define

Sr(K + a) =

2k/p−1∑
i=0

Vol(Tr+pi ∩ (K + a)).

By equation (9.1), for every r, there exists a homogeneous polynomial fr : V −→ R of degree 2 such
that Sr(K+a)−Sr(K) = fr(a) for all K and a satisfying the conditions in the proposition. Fix 0 ≤
r ≤ p−2. For every 0 ≤ j ≤ k/p−1 the orthogonal reflection in the line `r+jp sends

⋃2k/p−1
i=0 Tr+pi to⋃2k/p−1

i=0 Tr+1+pi, so Sr(K+a) = Sr+1(K+a) if a ∈ `r+jp. We deduce that the polynomial fr−fr+1

vanishes on
⋃k/p−1
j=0 `r+jp. If k/p ≥ 3 then this union contains at least three lines. As the polynomial

fr−fr+1 is homogeneous of degree 2, it has to be zero, so Sr(K+a)−Sr(K) = Sr+1(K+a)−Sr+1(K)
for all K and a satisfying the condition of the proposition. As Sr(K) = Sr+1(K) because K is
stable by W , we finally obtain that Sr(K + a) = Sr+1(K + a).

We finally consider the case where k/p = 2, that is, k = 2p. If p is even then the orthogonal

reflection in the line `r+p/2 also send
⋃2k/p−1
i=0 Tr+pi to

⋃2k/p−1
i=0 Tr+1+pi, so the polynomial fr− fr+1

vanishes on the line `r+p/2, and we can again deduce that fr − fr+1 = 0 and that Sr(K + a) =
Sr+1(K+a). If p is odd then the orthogonal reflection in the line ` bisecting `r+(p−1)/2 and `r+(p+1)/2

sends
⋃2k/p−1
i=0 Tr+pi to

⋃2k/p−1
i=0 Tr+1+pi. The line ` is part of the arrangement I2(2k) containing H,

since we assumed that K is stable by the Coxeter group of this arrangement, we obtain that the
polynomial fr − fr+1 vanishes on `, and then we deduce as before that Sr(K + a) = Sr+1(K + a).

�

If K is a disc centered at 0 and k = 2p then Proposition 9.1 recovers the following result:

Corollary 9.2 (J., M. D., J. K., A. D. and P. M. Hirschhorn [10]). Cut a disc with 2p lines through
a point in the disc such the lines are equally spaced. Then p people can have 4 slices each so that
they each have the same amount of pizza.

It is natural to ask if there are systematic generalizations of this kind of result for higher-
dimensional hyperplane arrangements that give ways to share a pizza equally between more than
two people. We present two such results in the following two remarks.

Remark 9.3. Using an arrangement H of type F4 in R4 we can divide a pizza evenly among 4
people. Let W denote the Coxeter group generated by H. Let a ∈ R4 and let K be a measurable set
of finite volume that contains the convex hull of {w(a) : w ∈W}. Finally, let L be the translation
K + a.

We first note that we can write the arrangement H as a disjoint union H1 t H2, where H1

and H2 are both of type D4. This partition of H corresponds to the long and short roots in the
crystallographic root system F4. Now we can assign three signs ~s(T ) = (s, s1, s2) to a chamber
T ∈ T (H). First let s be (−1)T where the sign is computed with respect to the arrangement H.

For i = 1, 2 let T (i) be the unique chamber in T (Hi) that contains T . Let si be the sign (−1)T
(i)

with respect to Hi. Observe that s = s1 ·s2 holds since the three separation sets satisfy SH(T0, T ) =

SH1(T
(1)
0 , T (1)) t SH2(T

(2)
0 , T (2)). Hence there are only four possible sign patterns for ~s(T ), which

are the elements of P = {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)}. We use the set P to label
the four people sharing the pizza. For p ∈ P let Vp be the amount of pizza that person p receives,
that is,

Vp =
∑

T∈T (H)
~s(T )=p

Vol(T ∩ L).
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Since the hyperplane H satisfies Theorem 6.9, we obtain

V(1,1,1) + V(1,−1,−1) = V(−1,1,−1) + V(−1,−1,1) = Vol(L)/2.

Similarly, since H1 and H2 also satisfy Theorem 6.9, the following two equalities hold:

V(1,1,1) + V(−1,1,−1) = V(1,−1,−1) + V(−1,−1,1) = Vol(L)/2,

V(1,1,1) + V(−1,−1,1) = V(1,−1,−1) + V(−1,1,−1) = Vol(L)/2.

Solving this linear equation system yields

V(1,1,1) = V(1,−1,−1) = V(−1,1,−1) = V(−1,−1,1) = Vol(L)/4.

Remark 9.4. Let n ≥ 2 be even and let H be an arrangement of type Bn in Rn. Using the same
idea as the previous remark, we can divide the boundary (crust) of an n-dimensional ball B(a,R),
where ‖a‖ ≤ R, evenly among four people. Note that the arrangement H can be written as the
disjoint union of two Coxeter arrangements of types Dn and An1 for n ≥ 4 and a disjoint union of
two arrangements of type A2

1 when n = 2. Again, we can assign three signs to each chamber, and
we obtain one of the four sign patterns in the set P . Let Sp denote the sum

Sp =
∑

T∈T (H)
~s(T )=p

Voln−1(T ∩ S(a,R)).

By using Theorem 8.1 and reasoning similar to that of Remark 9.3, we obtain

S(1,1,1) = S(1,−1,−1) = S(−1,1,−1) = S(−1,−1,1) = Voln−1(S(a,R))/4.

Finally, let us end with a conjecture about the type A arrangement. The An arrangement lies
inside the n-dimensional space {(x1, x2, . . . , xn+1) : x1 + x2 + · · · + xn+1 = 0} and consists of the(
n+1

2

)
hyperplanes xi = xj where 1 ≤ i < j ≤ n+ 1.

Conjecture 9.5. Let H be a hyperplane arrangement of type An with n ≡ 2, 3 mod 4, and let
a ∈ V such that ‖a‖ ≤ R. Then the pizza quantity P (H,B(a,R)) is zero if and only if the point a
lies on one of the hyperplanes of H. Furthermore, when the point a belongs to the interior of a
chamber T of the arrangement, the sign of the pizza quantity P (H,B(a,R)) is (−1)T , that is, the
sign of the chamber T .

This conjecture is true in dimension 2; see Theorem 1 in [13] in the case of 3 lines. What can be
said about the other irreducible Coxeter arrangements, that is, type Dn where n is odd?
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