
PIZZA AND 2-STRUCTURES

RICHARD EHRENBORG, SOPHIE MOREL AND MARGARET READDY

Abstract. LetH be a Coxeter hyperplane arrangement in n-dimensional Euclidean space. Assume
that the negative of the identity map belongs to the associated Coxeter group W . Furthermore
assume that the arrangement is not of type An

1 . Let K be a measurable subset of the Euclidean
space with finite volume which is stable by the Coxeter group W and let a be a point such that
K contains the convex hull of the orbit of the point a under the group W . In a previous article
the authors proved the generalized pizza theorem: that the alternating sum over the chambers T
of H of the volumes of the intersections T ∩ (K + a) is zero. In this paper we give a dissection
proof of this result. In fact, we lift the identity to an abstract dissection group to obtain a similar
identity that replaces the volume by any valuation that is invariant under affine isometries. This
includes the cases of all intrinsic volumes. Apart from basic geometry, the main ingredient is a
theorem of the authors where we relate the alternating sum of the values of certain valuations over
the chambers of a Coxeter arrangement to similar alternating sums for simpler subarrangements
called 2-structures introduced by Herb to study discrete series characters of real reduced groups.

1. Introduction

The 2-dimensional pizza theorem is the following result: Given a disc in the plane, choose a
point on this disc and cut the disc by 2k equally spaced lines passing through the point, where
k ≥ 2. The alternating sum of the areas of the resulting slices is then equal to zero. This was first
proved by Goldberg [Gol68]. Frederickson gave a dissection proof [Fre12] based on dissection proofs
of Carter-Wagon in the case k = 2 (see [CW94]) and of Allen Schwenk (unpublished) in the cases
k = 3, 4. Frederickson deduced dissection proofs of a similar sharing result for the pizza crust and
of the so-called calzone theorem, which is the analogue of the pizza theorem for a ball in R3 that
is cut by one horizontal plane and by 2k equally-spaced vertical planes all meeting at one point in
the ball.

To generalize the pizza problem, consider a finite central hyperplane arrangement H in Rn and
fix a base chamber of this arrangement. Each chamber T has a sign (−1)T determined by the parity
of the number of hyperplanes separating it from the base chamber. If K is a measurable subset
of Rn of finite volume, what can we say about the pizza quantity

∑
T (−1)T Vol(T ∩K), where the

sum runs over all the chambers T of H? The original pizza theorem is the case where n = 2, H
has the type of the dihedral arrangement I2(2k) and K is a disc containing the origin. The calzone
theorem is the case where n = 3, H has the type of the product arrangement I2(2k) × A1 and K
is a ball containing the origin.

The following generalization of the pizza and calzone theorems was proved in [EMR22b, Theo-
rem 1.2] by analytic means. We recently learned that Brailov had proved independently this result
in the case of a ball for the type Bn arrangement using similar methods [Bra22].

Theorem 1.1 (Ehrenborg–Morel–Readdy). Let H be a Coxeter arrangement with Coxeter group W
that contains the negative of the identity map, denoted by − id. Assume that H is not of type An

1 .
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Let K be a set of finite measure that is stable by the group W . Then for every point a ∈ Rn such
that K contains the convex hull of {w(a) : w ∈ W}, we have∑

T

(−1)T Vol(T ∩ (K + a)) = 0.

The proof of this result uses an expression for
∑

T (−1)T Vol(T ∩ (K + a)) as an alternating

sum of pizza quantities over subarrangements of H of the form {e⊥1 , . . . , e⊥n } with (e1, . . . , en) an
orthonormal basis of Rn, in other words, subarrangements of type An

1 .
In the paper [EMR22a], we study a different sum

∑
T (−1)T ν(T ), where ν is a valuation defined

on closed convex polyhedral cones of Rn that takes integer values. Under the same condition that
H is a Coxeter arrangement, we rewrite this quantity as an alternating sum of similar quantities
for certain subarrangements of H that are products of rank 1 and rank 2 arrangements [EMR22a,
Theorem 3.2.1], and then deduce an expression for it. These subarrangements, called 2-structures,
were introduced by Herb [Her00] to study characters of discrete series of real reductive groups. In
fact, the identity of [EMR22a, Theorem 3.2.1] is valid for any valuation and its proof uses only
basic properties of Coxeter systems and closed convex polyhedral cones.

In this paper we use the setting of 2-structures and [EMR22a, Corollary 3.2.4] (recalled in
Theorem 2.5) to obtain a dissection proof of the higher-dimensional pizza theorem of [EMR22b,
Theorem 1.2] that is independent of the results and methods of [EMR22b]:

Theorem 1.2 (Abstract pizza theorem; see Theorem 3.5.). With the notation and hypotheses of
Theorem 1.1, we have∑

T

(−1)T [T ∩ (K + a)] =
∑
T

(−1)T [T ∩ (K + a)] = 0,

where the brackets denote classes in the abstract dissection group of Definition 3.1.

As we take into account lower-dimensional sets when defining our abstract dissection group, this
result implies generalizations of the higher-dimensional pizza theorem to all the intrinsic volumes
when K is convex.

The idea of the proof of Theorem 1.2 is the following: by expanding the expression using 2-
structures, we can reduce to a sum where each term is a similar expression for an arrangement
that is a product of arrangements of types A1 and I2(2

k). We then adapt the dissection proof
of Frederickson to an arrangement of type I2(2m) × H′. We also explain how to keep track of
lower-dimensional regions of the dissection. If our product arrangement contains at least one
dihedral factor, then its contribution is zero, and we immediately get a dissection proof of the
result. However, if all the product arrangements that appear are of type An

1 , then their individual
contributions are not zero. We need one extra step in the proof to show that the contributions
cancel. This uses a slight refinement of the Bolyai-Gerwien Theorem explained in Section 4.

An interesting point to note is that the shape of the pizza plays absolutely no role in this
proof, as long as it has the same symmetries as the arrangement and contains the convex hull of
{w(a) : w ∈ W}. In particular, we no longer need to assume that it is measurable and of finite
volume.

The plan of the paper is as follows. Section 2 contains a review of 2-structures and of the results
from [EMR22a] that we will need. Section 3 contains the statement and proof of the abstract pizza
theorem (Theorem 3.5), and Section 4, as we already mentioned, contains a Bolyai-Gerwien type
result that is needed in the proof of the abstract pizza theorem.

Let us mention some interesting questions that remain open:
2



(1) The paper [EMR22b] proves the pizza theorem for more general arrangements (the condi-
tion is that the arrangement H is a Coxeter arrangement and that the number of hyper-
planes is greater than the dimension n and has the same parity as that dimension), but
only in the case of the ball; see [EMR22b, Theorem 1.1]. Is it possible to give a dissection
proof of this result?

(2) Mabry and Deiermann [MD09] show that the two-dimensional pizza theorem does not hold
for a dihedral arrangement having an odd number of lines. More precisely, they determine
the sign of the quantity

∑
T (−1)T Vol(T ∩ K), where K is a disc containing the origin,

and show that it vanishes if and only if the center of K lies on one of the lines. Their
methods are analytic. As far as we know, there exists no dissection proof of this result
either. The higher-dimensional case where H is a Coxeter arrangement and the number of
its hyperplanes does not have the same parity as n also remains wide open.

2. Review of 2-structures and of the basic identity

Let V be a finite-dimensional real vector space with an inner product (·, ·). For every α ∈ V , we
denote by Hα the hyperplane α⊥ and by sα the orthogonal reflection in the hyperplane Hα.

We say that a subset Φ of V is a normalized pseudo-root system if:

(a) Φ is a finite set of unit vectors;
(b) for all α, β ∈ Φ, we have sβ(α) ∈ Φ (in particular, taking α = β, we get that −α ∈ Φ).

Elements of Φ are called pseudo-roots. The rank of Φ is the dimension of its span.
We call such objects pseudo-root systems to distinguish them from the (crystallographic) root sys-

tems that appear in representation theory. If Φ′ is a root system then the set Φ = {α/∥α∥ : α ∈ Φ′}
is a normalized pseudo-root system. Not every normalized pseudo-root system arises in this manner;
see for instance the pseudo-root systems of type H3 and H4.

We say that a normalized pseudo-root system Φ is irreducible if, whenever Φ = Φ1 ⊔Φ2 with Φ1

and Φ2 orthogonal, we have either Φ1 = ∅ or Φ2 = ∅. Every normalized pseudo-root system can
be written uniquely as a disjoint union of pairwise orthogonal irreducible normalized pseudo-root
systems. Irreducible normalized pseudo-root systems are classified: they are in one of the infinite
families An (n ≥ 1), Bn/Cn (n ≥ 2), 1 Dn (n ≥ 4), I2(m) (m ≥ 3) or one of the exceptional types
E6, E7, E8, F4, H3 or H4, with types I2(3) and A2 isomorphic, as well as types I2(4) and B2. (See
[GB85, Chapter 5] or Table 1 in [BB05, Appendix A].)

We say that a subset Φ+ ⊂ Φ is a positive system if there exists a total ordering < on the
R-vector space V such that Φ+ = {α ∈ Φ : α > 0} (see [Hum90, Section 1.3]). The Coxeter group
of Φ is the group of isometries W of V generated by the reflections sα for α ∈ Φ. This group
preserves Φ by definition of a normalized pseudo-root system, and it acts simply transitively on the
set of positive systems by [Hum90, Section 1.4]. In particular, the Coxeter group W is finite.

Let E be a finite set of unit vectors of V such that E∩ (−E) = ∅. The corresponding hyperplane
arrangement is the set of hyperplanesH = {He : e ∈ E}. A chamber ofH is a connected component
of V −

⋃
e∈E He; we denote by T (H) the set of chambers of H. Fix a chamber T0 to be the base

chamber. For a chamber T ∈ T (H) we denote by S(T, T0) the set of e ∈ E such that the two
chambers T and T0 are on different sides of the hyperplane He, and define the sign of T to be
(−1)T = (−1)|S(T,T0)|.

We say that H is a Coxeter arrangement if it is stable by the orthogonal reflections in each of its
hyperplanes. In that case, the set Φ = E ∪ (−E) is a normalized pseudo-root system. We call its
Coxeter group the Coxeter group of the arrangement. The map sending a positive system Φ+ ⊂ Φ
to the set {v ∈ V : ∀α ∈ Φ+ (v, α) > 0} is a bijection from the positive systems in Φ to the chambers
of H. See, for example, [Bou68, Chapitre V § 4 № 8 Proposition 9 p. 99] and the discussion following

1The pseudo-root systems of types Bn and Cn are identical after normalizing the lengths of the roots.
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it. Conversely, if Φ ⊂ V is a normalized pseudo-root system with Coxeter group W and Φ+ ⊂ Φ is
a positive system, then H = {Hα : α ∈ Φ+} is a Coxeter hyperplane arrangement, and in that case
we always take the base chamber T0 to be the chamber corresponding to Φ+.

We now define product arrangements. Let V1 and V2 be two finite-dimensional real vector spaces
equipped with inner products, and suppose that we are given hyperplane arrangements H1 and H2

on V1 and V2 respectively. We consider the product space V1×V2, where the factors are orthogonal.
The product arrangement H1 × H2 is then the arrangement on V1 × V2 with hyperplanes H × V2

for H ∈ H1 and V1 × H ′ for H ′ ∈ H2. If H1 is the empty arrangement, then we write V1 × H2

instead of the confusing ∅×H2. Similarly, if H2 is the empty arrangement, we write H1×V2. If the
arrangements H1 and H2 arise from normalized pseudo-root systems Φ1 ⊂ V1 and Φ2 ⊂ V2, then
their product H1×H2 arises from the normalized pseudo-root system Φ1×{0}∪{0}×Φ2 ⊂ V1×V2.
We also denote this pseudo-root system by Φ1 × Φ2.

The notion of 2-structures was introduced by Herb for root systems to study the characters of
discrete series representations; see, for example, the review article [Her00]. The definition we give
here is Definition B.2.1 of [EMR22a]. It has been slightly adapted to work for pseudo-root systems.

Definition 2.1. Let Φ be a normalized pseudo-root system with Coxeter group W . A 2-structure
for Φ is a subset φ of Φ satisfying the following properties:

(a) The subset φ is a disjoint union φ = φ1⊔φ2⊔· · ·⊔φr, where the φi are pairwise orthogonal
subsets of φ and each of them is an irreducible pseudo-root system of type A1, B2 or I2(2

k)
for k ≥ 3.

(b) Let φ+ = φ ∩ Φ+. If w ∈ W is such that w(φ+) = φ+ then det(w) = 1.

We denote by T (Φ) the set of 2-structures for Φ.

Proposition 2.2. Let Φ be a normalized pseudo-root system with Coxeter group W .

(i) The group W acts transitively on the set of 2-structures T (Φ).
(ii) The pseudo-root system Φ and its 2-structures have the same rank if and only if there exists

w ∈ W whose restriction to Span(Φ) is equal to − idSpan(Φ).

Proof. (i) See the start of Section 4 of [Her00] and Proposition B.2.4 of [EMR22a].
(ii) For Φ arising from a root system Φ′, these two conditions are equivalent to the fact

that Φ′ is spanned by strongly orthogonal roots; see, for example, the top of page 2559
of [Her01]. For general pseudo-root systems, see the classification of 2-structures in Sec-

tion B.4 of [EMR22a].

To each 2-structure φ ⊂ Φ, we can associate a sign ϵ(φ) = ϵ(φ,Φ+) (see the start of Section 5
and Lemma 5.1 of [Her01] and Definition B.2.8 of [EMR22a]).

We next introduce the abstract pizza quantity. Let H be a central hyperplane arrangement
on V . Let CH(V ) be the set of closed convex polyhedral cones in V that are intersections of closed
half-spaces bounded by hyperplanes H where H ∈ H, and let KH(V ) be the quotient of the free
abelian group

⊕
K∈CH(V ) Z[K] on CH(V ) by the relations [K] + [K ′] = [K ∪K ′] + [K ∩K ′] for all

K,K ′ ∈ CH(V ) such that K ∪ K ′ ∈ CH(V ). For K ∈ CH(V ), we still denote the image of K in
KH(V ) by [K].

Definition 2.3. Suppose that we have fixed a base chamber of H. The abstract pizza quantity
of H is

P (H) =
∑

T∈T (H)

(−1)T [T ] ∈ KH(V ).

4



Remark 2.4. By Lemma 3.2.3 of [EMR22a], we have

P (H) =
∑

T∈T (H)

(−1)T [T ].

We use this alternative definition of P (H) in our proofs.

The following result is Corollary 3.2.4 of [EMR22a]. It shows how to evaluate the pizza quantity
for a Coxeter arrangement in terms of the associated 2-structures.

Theorem 2.5. Let Φ ⊂ V be a normalized pseudo-root system. Choose a positive system Φ+ ⊂ Φ
and let H be the hyperplane arrangement (Hα)α∈Φ+ on V with base chamber corresponding to Φ+.
For every 2-structure φ ∈ T (Φ), we write φ+ = φ ∩ Φ+ and we denote by Hφ the hyperplane
arrangement (Hα)α∈φ+ with base chamber corresponding to φ+. Then we have

P (H) =
∑

φ∈T (Φ)

ϵ(φ)P (Hφ).

If φ ∈ T (Φ) then the closures of the chambers of Hφ are elements of CH(V ), so P (Hφ) makes
sense as an element of KH(V ).

3. A dissection proof of the higher-dimensional pizza theorem

Definition 3.1. Let C(V ) be a nonempty family of subsets of V that is stable by finite intersections
and affine isometries and such that, if C ∈ C(V ) and D is a closed affine half-space of V , then
C ∩ D ∈ C(V ). Furthermore, we assume that C(V ) is closed with respect to Cartesian products,
that is, if Ci ∈ C(Vi) for i = 0, 1 then C0×C1 ∈ C(V0×V1). For example, we could take C(V ) to be
the family of all convex subsets of V , or of all closed (or compact) convex subsets, or of all convex
polyhedra.

We denote byK(V ) the quotient of the free abelian group
⊕

C∈C(V ) Z[C] on C(V ) by the relations:

– [∅] = 0;
– [C ∪ C ′] + [C ∩ C ′] = [C] + [C ′] for all C,C ′ ∈ C(V ) such that C ∪ C ′ ∈ C(V );
– [g(C)] = [C], for every C ∈ C(V ) and every affine isometry g of V .

For C ∈ C(V ), we still denote the image of C in K(V ) by [C].

Definition 3.2. A valuation on C(V ) with values in an abelian group A is a function C(V ) −→ A
that can be extended to a morphism of groups K(V ) −→ A.

Remark 3.3. Define B(V ) to be the relative Boolean algebra generated by C(V ), that is, the
smallest collection of subsets of V that contains C(V ) and is closed under finite unions, finite
intersections and set differences. Groemer’s Integral Theorem states that a valuation on C(V ) can
be extended to a valuation on the Boolean algebra B(V ); see [Gro78] and also [KR97, Chapter 2].
Applying this to the valuation C 7−→ [C] with values in K(V ), we see that we can make sense
of [C] for any C ∈ B(V ). For instance, we have [C1 ∪C2] = [C1] + [C2]− [C1 ∩C2] and [C1 −C2] =
[C1]− [C1 ∩ C2]. Moreover, if C(V ) is the set of all convex polyhedra in V , then B(V ) contains all
polyhedra (convex or not), and also half-open polyhedra.

Next we have the following straightforward lemma, whose proof we omit, which states that the
class symbol is well-behaved with respect to Cartesian products.

Lemma 3.4. The two class identities [C0] = [D0] and [C1] = [D1] in K(V0) and K(V1), respectively,
imply that [C0 × C1] = [D0 ×D1] in K(V0)×K(V1).
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Let H be a central hyperplane arrangement on V with fixed base chamber. If K ∈ C(V ), we have
a morphism of groups eK : KH(V ) −→ K(V ) induced by the map CH(V ) −→ C(V ), C 7−→ C ∩K.

We denote by P (H,K) the image of P (H) by this morphism eK ; in other words, we have

P (H,K) =
∑

T∈T (H)

(−1)T [T ∩K].

By Remark 2.4, we also have

P (H,K) =
∑

T∈T (H)

(−1)T [T ∩K].

We state the main theorem of this paper. First for u, v ∈ V define the half-open line segment
(u, v] by {(1− λ)u+ λv : 0 < λ ≤ 1}. Our main result is the following:

Theorem 3.5 (The Abstract Pizza Theorem). Let H be a Coxeter hyperplane arrangement with
Coxeter group W in an n-dimensional space V such that − idV ∈ W . Let K ∈ C(V ) and a ∈ V .
Suppose that K is stable by the group W and contains the convex hull of the set {w(a) : w ∈ W}.

(i) If H is not of type An
1 , we have P (H,K + a) = 0 in K(V ).

(ii) If H has type An
1 , Φ is the normalized pseudo-root system corresponding to H and Φ+ =

{e1, . . . , en} where Φ+ ⊂ Φ is the positive system corresponding to the base chamber of H,
then the following identity holds:

P (H,K + a) =

[
n∏

i=1

(0, 2(a, ei)ei]

]
.(3.1)

Here we are using Remark 3.3 to make sense of the right-hand side of equation (3.1).
The conditions on K are satisfied if for example K is convex, contained in C(V ), stable by W

and 0 ∈ K + a. Indeed, the last condition implies that −a ∈ K; as − idV ∈ W by assumption, this
in turns implies that a ∈ K, hence that K contains the convex hull of the set {w(a) : w ∈ W}.

We will give the proof of Theorem 3.5 at the end of the section. This proof does not use
Theorem 1.2 of [EMR22b], so we obtain a new proof of that result.

Let V0, . . . , Vn denote the intrinsic volumes on V (see [Sch14, Section 4.2]).

Lemma 3.6. Let (v1, . . . , vk) be an orthogonal family of vectors in V . Then

Vi((0, v1]× . . .× (0, vk]) = 0

for 0 ≤ i ≤ k − 1.

Proof. By Lemma 14.2.1 of [SW08] or Proposition 4.2.3 of [KR97], it suffices to prove that, if a < b
are real numbers, the 0th intrinsic volume of the half-open segment (a, b] ⊂ R is 0. As the 0th

intrinsic volume is the Euler-Poincaré characteristic with compact support, this is clear.

Corollary 3.7. We keep the notation and hypotheses of Theorem 3.5. If H is not of type An
1 , we

have

(3.2)
∑

T∈T (H)

(−1)TVi(T ∩ (K + a)) = 0

for every 0 ≤ i ≤ n, where K is assumed to be convex if i ̸= n. If H has type An
1 and K is convex

then equation (3.2) holds for 0 ≤ i ≤ n− 1.

Proof. If H is not of type An
1 , then equation (3.2) actually holds for any valuation on C(V ) that is

invariant under the group of affine isometries; this includes the intrinsic volumes.
Suppose that H is of type An

1 . Then we know that equation (3.1) holds. The result then follows

from Lemma 3.6.
6



V0 = He1

V1

He1 + 2(a, e1)e1

He1 + (a, e1)e1

T

Figure 1. A schematic sketch of V0 × V1 for the proof of Lemma 3.9.

Remark 3.8. Theorem 3.5 immediately implies generalizations to our higher-dimensional case of
the “thin crust” and “thick crust” results of Confection 3 and Leftovers 1 of [MD09] for an even
number of cuts.

We obtain the “thin crust” result by evaluating the (n− 1)st intrinsic volume on P (H,K + a).
Note that this result holds for a pizza of any (convex) shape and even in the case where we only
make n cuts, where n is the dimension.

To generalize the “thick crust” result, consider two sets K ⊂ L stable by W and in C(V ). If
a ∈ V is such that K contains the convex hull of the set {w(a) : w ∈ W}, then

P (H, (L−K) + a) = P (H, L+ a)− P (H,K + a) = 0,

so in particular ∑
T∈T (H)

(−1)T Vol(T ∩ ((L−K) + a)) = 0.

The case where K and L are balls with the same center is the “thick crust” result.

We now state and prove some lemmas that will be used in the proof of Theorem 3.5.

Lemma 3.9. Let Hi be a hyperplane arrangement on Vi for i = 0, 1. Assume furthermore that
H1 = {He}e∈E1 has type Ar

1 and dim(V1) = r. Let E1 = {e1, . . . , er} be the index set of H1. Let H
and V be the Cartesian products H0 ×H1 and V0 × V1, respectively. Then for every K ∈ C(V ) that
is stable under the orthogonal reflections in the hyperplanes V0 ×He1 , . . . , V0 ×Her and for every
a ∈ V1, if L = K + a, we have the identity

P (H, L) = P (H0 × V1, L ∩ (V0 × (0, 2(a, e1)e1]× · · · × (0, 2(a, er)er])) ,

where H0 × V1 is the product of H0 and the empty hyperplane arrangement on V1.

Proof. By a straightforward induction, we may assume that r = dimV1 = 1. Also, after changing
the sign of e1, we may assume that (a, e1) ≥ 0. See Figure 1 for a sketch of the situation. Let T be a
chamber of the arrangement H0. The classes of the two regions (T×R>0e1)∩L and (T×R<0e1)∩L
ofH occur with opposite signs in the pizza quantity P (H, L). Note that the region (T×R>2(a,e1)e1)∩
L is the orthogonal reflection of the region (T×R<0e1)∩L in the affine hyperplane He1+(a, e1)e1 =
He1 + a. Hence these regions have the same class in K(V ) which cancels in the pizza quantity

7



P (H, L), and the class of the region (T × (0, 2(a, e1)e1]) ∩ L = (T × V1) ∩ L ∩ (V0 × (0, 2(a, e1)e1])
remains. As the map T 7−→ T × V1 is a sign-preserving bijection from T (H0) to T (H0 × V1), this

completes the proof.

We now consider the case of a hyperplane arrangement that is the product of a 2-dimensional
dihedral arrangement and another arrangement. Suppose that V = V0 × V1, where the factors are
orthogonal, and that H = H0×H1, where Hi is a hyperplane arrangement in Vi. Suppose also that
dimV0 = 2 and that H0 is an arrangement of type I2(2m) with Coxeter group W0 where m ≥ 2.
We view W0 as a group of isometries of V by making w ∈ W0 act on V = V0 × V1 by w× idV1 . We
also choose a family C(V ) as in Definition 3.1.

Let a ∈ V0. We will describe a dissection of V0. The case where m = 4 is shown in Figure 2. We
call L0, . . . , L2m−1 the lines of H0 (numbered so that the angle between L0 and Li is an increasing
function of i) and we assume that the point a is in a chamber between Lm−1 and Lm. Choose a
closed half-space D bounded by L0 and containing a (this choice is unique if a ̸∈ L0). Then, for
0 ≤ i ≤ 2m − 1, we denote by Ti the unique chamber of H contained in D and with boundary
contained in Li ∪ Li+1. We assume that (−1)T0 = 1 for concreteness. The point a is in the closure
of the chamber Tm−1.

We write T+ = {T ∈ T (H0) : (−1)T = 1} and T− = {T ∈ T (H0) : (−1)T = −1}. Let Wa be
the group of affine isometries generated by the orthogonal reflections in the lines L+a, for L ∈ H0.
We take R0(a) to be the convex hull of the points w(0) for w ∈ Wa. This is the shaded polygon
on Figure 2, where the darker slices are the intersections with the closures of chambers in T+. We
have the inclusion R0(a) ⊂

⋃2m−2
i=0 T i. Finally we set

R0,±(a) = R0(a) ∩
⋃

T∈T±

T.

Lemma 3.10. The following three identities hold in K(V0 × V1):

(i) Let K ∈ C(V ) such that K is stable by W0 and let L = K + a. Then∑
T∈T

(−1)T [L ∩ ((T −R0(a))× V1)] = 0.

(ii) Let K ∈ C(V ) such that K is stable by W0 and let L = K + a then

P (H, L) = P (V0 ×H1, L ∩ (R0,+(a)× V1))− P (V0 ×H1, L ∩ (R0,−(a)× V1)).

(iii) If K1 ⊂ V1 is such that R0(a)×K1 ∈ C(V ), then

[R0,+(a)×K1] = [R0,−(a)×K1].

Proof. We begin by proving (i). For 0 ≤ i ≤ 2m− 1, we denote by Ri,± the unique chamber of H
not contained in D and with boundary contained in Li ∪ Li+1, that is, the image of Ti by the
symmetry with center 0; we write Ri,+ if this chamber has sign +1, or equivalently if i is even,
and Ri,− if this chamber has sign −1, or equivalently if i is odd. For every 0 ≤ j ≤ m − 1, we

denote by R2j,− and R2j+1,+ the orthogonal reflection in the line L⊥
2j+1 + a of R2j,+ and R2j+1,−,

respectively. Note that R2j,− ⊂ T2j+1 and R2j+1,+ ⊂ T2j . For 0 ≤ j ≤ m − 1 again, we denote
by Sj,+ the interior of T2j − (R0(a) ∪R2j+1,+) and by Sj,− the interior of T2j+1 − (R0(a) ∪R2j,−).
Then T2j−R0(a) is the disjoint union of R2j+1,+, Sj,+ and an open ray D2j starting at an extremal

point of R0(a) (the image of 0 by the orthogonal reflection in the line L⊥
2j+1+a) and parallel to L2j .

Similarly T2j+1 − R0(a) is the disjoint union of R2j,−, Sj,− and an open ray D2j+1 starting at the
same extremal point of R0(a) and parallel to L2j+2. See Figure 2 for the case m = 4, where the
rays D2j and D2j+1 are dashed.
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Figure 2. A picture of the regions in the proof of Lemma 3.10(i) for the case of I2(8).

The union
⋃

T∈T+
T is equal to the disjoint union of the set R0,+(a), the regions Ri,+ for 0 ≤

i ≤ 2m − 1, the regions Sj,+ for 0 ≤ j ≤ m − 1 and the rays D2j for 0 ≤ j ≤ m − 1. On the
other hand, the union

⋃
T∈T−

T is equal to the disjoint union of the set R0,−(a), the regions Ri,−
for 0 ≤ i ≤ 2m − 1, the regions Sj,− for 0 ≤ j ≤ m − 1 and the rays D2j+1 for 0 ≤ j ≤ m − 1.
Consider the following four observations:

– For 0 ≤ i ≤ 2m− 1 the region Ri,− is the image of Ri,+ by the orthogonal reflection in the

affine line L⊥
2⌊i/2⌋+1 + a.

– For 0 ≤ j ≤ m − 1 the region Sj,− is the image of Sj,+ by the rotation with center a and
angle π/m.

– For 0 ≤ j ≤ m− 2 the ray D2j+3 is the image of the ray D2j by the rotation with center a
and angle 2π/m.

– The ray D2m−2 is the image of D1 by the orthogonal reflection in the affine line Lm + a.

Each of them is of the form: the set X is the image of the set Y under an affine isometry g belonging
to the group Wa. Since the set L = K + a is invariant under g, we obtain that the set L∩ (X ×V1)
is the image of L∩ (Y × V1), and hence that [L∩ (X × V1)] = [L∩ (Y × V1)]. Statement (i) follows
by summing over all pairs of sets X and Y .

Next we prove (ii). There is a bijection T (H0) × T (H1)
∼−→ T (H) where (T, T ′) 7−→ T × T ′

and (−1)T×T ′
= (−1)T (−1)T

′
for all T ∈ T (H0) and T ′ ∈ T (H1). Hence

P (H, L) =
∑

T ′∈T (H1)

∑
T∈T (H0)

(−1)T (−1)T
′
[L ∩ (T × T ′)].(3.3)
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Fix T ′ ∈ T (H1) for a moment. The fact that K is stable by W0 implies that K ∩ (V0 × T ′) is also
stable by W0. Hence applying statement (i) to the set (K ∩ (V0 × T ′)) + a = L ∩ (V0 × T ′) yields∑

T∈T (H0)

(−1)T [L ∩ ((T −R0(a))× T ′)] = 0.(3.4)

Multiplying equation (3.4) with the sign (−1)T
′
, summing over all T ′ ∈ T (H1), and subtracting

the result from equation (3.3) yields

P (H, L) =
∑

T ′∈T (H1)

∑
T∈T (H0)

(−1)T (−1)T
′
[L ∩ ((T ∩R0(a))× T ′)]

=
∑

T ′∈T (H1)

(−1)T
′
[L ∩ (R0,+(a)× T ′)]−

∑
T ′∈T (H1)

(−1)T
′
[L ∩ (R0,−(a)× T ′)]

= P (V0 ×H1, L ∩ (R0,+(a)× V1))− P (V0 ×H1, L ∩ (R0,−(a)× V1)).

Finally we consider (iii). By Lemma 3.4, it suffices to show that, if we take C(V0) to be the set
of convex polygons in V0, then [R0,+(a)] = [R0,−(a)] in K(V0). This follows from Corollary 4.2 and
from the fact that the intrinsic volumes of R0,+(a) and R0,−(a) are equal (which is an easy calcu-
lation), but we also give a direct proof. We consider the following dissection of the polygon R0(a);
see Figure 3 for the case m = 4. For 0 ≤ i ≤ 2m − 1 let Pi be the image of 0 by the orthogonal
reflection in the line L⊥

i + a; note that Pi is a boundary point of R0(a), and that it is on Li. We
describe the pieces of the dissection of R0(a):

– For 1 ≤ i ≤ m− 2 consider the pair of isosceles triangles Bi,+ and Bi,− that have one side
equal to the segment [0, P2i], angles equal to π/2m at the vertices 0 and Pi, and such that
Bi,± is in a chamber with sign ±1; in other words, the triangle Bi,− is in the chamber T2i−1,
and Bi,+ is in the chamber T2i.

– Let B0,+ be the isosceles triangle contained in T0 with one side equal to the segment [0, P0]
and angles equal to π/2m at the vertices 0 and P0.

– Consider the isosceles triangle contained in T2m−3 with one side equal to the segment
[0, P2m−2] and angles equal to π/2m at the vertices 0 and P2m−2; this splits into an isosceles
triangle B0,− congruent to B0,+ and an isosceles trapezoid Bm−1,− having one edge equal
to [0, P2m−2].

– Let Bm−1,+ be the image of Bm−1,− by the orthogonal reflection in the line L2m−2; then
Bm−1,+ is contained in the chamber T2m−2.

To finish the dissection of R0(a), we note that, for 0 ≤ i ≤ 2m− 3, we still have a quadrilateral
piece Qi left over in Ti ∩ R0(a). Then for 1 ≤ i ≤ 2m − 3 the quadrilateral Qi is the image
of Qi−1 by the rotation with center a and angle π/m. Indeed, this is true for the intersections of
these quadrilaterals with the boundary of R0(a) (which consist of two edges with endpoints Pi−1

and Pi+1), and it is easy to calculate the angles at the vertices of this intersection and to see that
they correspond: If 1 ≤ i ≤ 2m − 2 and i is even, respectively odd, the angle of Qi−1 at Pi is
(i− 1)π/2m, respectively iπ/2m. If 0 ≤ i ≤ 2m− 3 and i is even, respectively odd, the angle of Qi

at Pi is (2m− 2− i)π/2m, respectively (2m− 1− i)π/2m.
This is Frederickson’s dissection; see pages 28–31 of [Fre12]. That paper is only interested in

giving a dissection proof that the alternating sum of the areas is equal to zero. Hence it can safely
ignore line segments of area zero, whereas we are proving an identity in K(V0) and have to be
careful with all regions, including lower dimensional ones.

The set R0,+(a) is the disjoint union of the following subsets:
10



Figure 3. The dissection of the polygon R0(a) in the case of I2(8). The darker
shaded regions are the intersections with the chambers which have a positive sign.

– For 0 ≤ i ≤ m− 2 let B′
i,+ be the intersection of the triangle Bi,+ with the interior of the

chamber containing Bi,+. In other words, B′
i,+ is the union of the interior of Bi,+ and the

relative interior of one of its two equal sides.
– Let B′

m−1,+ be the intersection of the trapezoid Bm−1,+ and T2m−2. That is, B′
m−1,+ is

the union of the interior of Bm−1,+ and the intersection of its boundary with the boundary
of R0(a), minus the two extremal points of this intersection.

– For 0 ≤ j ≤ m − 2 let Q′
2j be the intersection of the quadrilateral Q2j and T2j . That

is, Q′
2j is the union of the interior of Q2j+1 and the intersection of its boundary with the

boundary of R0(a), minus the two extremal points of this intersection.

As for the set R0,−(a), it is the disjoint union of the following subsets:

– Let B′
0,− be the union of the interior of the triangle B0,− and the relative interior of the

side that it shares with Q2m−3.
– For 1 ≤ i ≤ m− 2 let B′

i,− be the intersection of the triangle Bi,− with the interior of the

chamber containing B′
i,−. That is, B

′
i,− is the union of the interior of Bi,− and the relative

interior of one of its two equal sides.
– Let B′

m−1,− be the intersection of the trapezoid Bm−1,− and T2m−3.

– For 0 ≤ j ≤ m−2 let Q′
2j+1 be the intersection of the quadrilateral Q2j+1 and T2j+1. That

is, Q′
2j+1 is the union of the interior of Q2j+1 and the intersection of its boundary with the

boundary of R0(a), minus the two extremal points of this intersection.

We obtain that [R0,+(a)] = [R0,−(a)] since the regions B′
i,+ and B′

i,− are isometric for every 0 ≤
i ≤ m− 1, as are the regions Q2j and Q2j+1 for 0 ≤ j ≤ m− 2.
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Lemma 3.11. Suppose that we have V = V
(1)
1 × · · ·×V

(r)
1 ×V

(1)
2 × · · ·×V

(s)
2 , where the factors of

the product are pairwise orthogonal, and that H is a product H(1)
1 × · · · × H(r)

1 ×H(1)
2 × · · · × H(s)

2 ,

where each H(j)
i is a hyperplane arrangement on V

(j)
i . Suppose further that:

(a) If 1 ≤ j ≤ r then V
(j)
1 is 1-dimensional, and we have a unit vector e(j) in V

(j)
1 yielding the

hyperplane arrangement H(j)
1 = {0}.

(b) If 1 ≤ j ≤ s then V
(j)
2 is 2-dimensional, and the arrangement H(j)

2 is of type I2(2m
(j)) for

some m(j) ≥ 2.

Let a ∈ V and K ∈ C(V ). Suppose that K is stable by the Coxeter group W and contains the
convex hull of the set {w(a) : w ∈ W}. Then the following two statements hold:

(i) If s ≥ 1 we have P (H,K + a) = 0 in K(V ).
(ii) If s = 0 we have in K(V ) the identity

P (H,K + a) =
[
(0, 2(a, e(1))e(1)]× · · · × (0, 2(a, e(r))e(r)]

]
.

Proof. Let L = K + a. Since − idV ∈ W we have −a ∈ K and so 0 ∈ L+ a; also, the sets {w(a) :
w ∈ W} and {w(−a) : w ∈ W} are equal. Let Wa be the group of affine isometries of V generated
by the orthogonal reflections in the hyperplanes a+H, for H ∈ H. The conditions on K imply that
L is stable by Wa and contains the convex hull of the set {u(0) : u ∈ Wa} = {w(−a) + a : w ∈ W}.

Write a = (a
(1)
1 , . . . , a

(r)
1 , a

(1)
2 , . . . , a

(s)
2 ), with a

(j)
i ∈ V

(j)
i . For 1 ≤ i ≤ r let S(i) denote the

half-open line-segment (0, 2(a, e(i))e(i)]. For 1 ≤ j ≤ s we consider subsets R
(j)
+1 = R0,+

(
a
(j)
2

)
and

R
(j)
−1 = R0,−

(
a
(j)
2

)
of V

(j)
2 as in Lemma 3.10. By Lemmas 3.9 and 3.10(ii), we have that

P (H, L) =
∑

(ϵ1,...,ϵs)∈{±1}s
ϵ1 · · · ϵs

[
L ∩

(
S(1) × · · · × S(r) ×R(1)

ϵ1 × · · · ×R(s)
ϵs

)]
.

Consider the polyhedron

P = [0, 2(a, e(1))e(1)]× · · · × [0, 2(a, e(r))e(r)]×R0

(
a
(1)
2

)
× · · · ×R0

(
a
(s)
2

)
.

Then P is the convex hull of the set {u(0) : u ∈ Wa} by definition of the polygons R0

(
a
(j)
2

)
, hence it

is contained in L and so is its subset S(1)×· · ·×S(r)×R
(1)
ϵ1 ×· · ·×R

(s)
ϵs for every (ϵ1, . . . , ϵs) ∈ {±1}s.

So we obtain

P (H, L) =
∑

(ϵ1,...,ϵs)∈{±1}s
ϵ1 · · · ϵs

[
S(1) × · · · × S(r) ×R(1)

ϵ1 × · · · ×R(s)
ϵs

]
.

If s = 0 this implies statement (ii). Suppose that s ≥ 1. By point (iii) of Lemma 3.10, we know
that [

S(1) × · · · × S(r) ×R(1)
ϵ1 × · · · ×R(s)

ϵs

]
=

[
S(1) × · · · × S(r) ×R

(1)
+1 × · · · ×R

(s)
+1

]
for every (ϵ1, . . . , ϵs) ∈ {±1}s. As

∑
(ϵ1,...,ϵs)∈{±1}s ϵ1 · · · ϵs = 0, this finishes the proof of (i).

Proof of Theorem 3.5. Statement (ii) is exactly Lemma 3.11(ii). We now prove statement (i), so
we assume that H is not of type An

1 . By Theorem 2.5, we have

P (H,K + a) =
∑

φ∈T (Φ)

ϵ(φ)P (Hφ,K + a).

By definition, any 2-structure for Φ is of type Ar
1 ×

∏
k≥2 I2(2

k)sk with
∑

k≥2 sk finite and, as W

acts transitively on the set of 2-structures (Proposition 2.2(i)), the integers r and sk, for k ≥ 2,
do not depend on the 2-structure but only on Φ. Also, by Proposition 2.2(ii), we have dimV =
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r +
∑

k≥2 2sk, so we are in the situation of Lemma 3.11. Suppose that
∑

k≥2 sk ≥ 1. Then by

Lemma 3.11(i) we have P (Hφ,K+a) = 0 for every φ ∈ T (Φ) and hence P (H,K+a) = 0. Assume
now that

∑
k≥2 sk = 0, that is, sk = 0 for every k. Statement (ii) of the same lemma implies that

P (H,K + a) =
∑

φ∈T (Φ)

ϵ(φ)

[ ∏
e∈φ∩Φ+

(0, 2(a, e)e]

]
.(3.5)

This is an alternating sum of classes of half-open rectangular parallelotopes in V . So we can apply
Theorem 4.1 to prove that P (H,K + a) = 0 in K(V ). We know that Vi(P (H,K + a)) = 0 if
0 ≤ i ≤ n − 1 by Lemma 3.6, so it remains to prove that Vn(P (H,K + a)) = 0, that is, that the
alternating sum of the volumes of the parallelotopes

∏
e∈φ∩Φ+(0, 2(a, e)e] is equal to zero. This

follows from Theorem 1.2 of the paper [EMR22b]. However, we now give a direct proof (that does
not use analysis) using the method of that corollary. Let f : V −→ R be the function defined by

f(a) =
∑

φ∈T (Φ)

ϵ(φ)
∏

e∈φ∩Φ+

2(a, e).

Note that f is a polynomial homogeneous of degree n on V . Furthermore equation (3.5) implies
that

Vol(P (H,K + a)) = f(a)

for every convex subset K of V of finite volume that is stable by W and every a ∈ V such that
0 ∈ K + a. The polynomial f satisfies f(w(a)) = det(w)f(a) for every w ∈ W and every a ∈ V
(this is easy to see; see, for example, Corollary 2.3 of [EMR22b]), so it vanishes on every hyperplane
of H. But if f ̸= 0, then the vanishing set of f must be of degree at most n, which contradicts the
fact that, as H is not of type An

1 , we have |H| > n. Hence we must have f = 0, and this gives the

desired result.

Remark 3.12. In the paper [Hir+99], J., M. D., J. K., A. D. and P. M. Hirschhorn proved that if
a circular pizza is cut into 4m slices by 2m cuts at equal angles to each other and if m people share
the pizza by each taking every mth slice then they receive equal shares. If m = 4, Frederickson
gives a dissection-based proof of this fact on page 32 of [Fre12], and Proposition 9.1 of [EMR22b]
generalizes the result to pizzas of more general shapes. We cannot lift this result to the group K(V ),
because it does not hold in that group. For example, if we consider the pizza of Figure 3, then it
is not true in general that the sums of the perimeters of the pizza pieces in all the shares will be
equal.

However, we can lift the generalization of the Hirschhorns’s result to the quotient K0(V ) of the
group K(V ) by the subgroup generated by all the elements [C] with C ∈ C(V ) contained in a line
of V . More precisely, consider a Coxeter arrangement of type I2(2m) in R2 with m even and let W
be the Coxeter group of this arrangement. Let T0, . . . , T4m−1 be the chambers of H, indexed so
that that Ti and Ti+1 share a wall. Let K ∈ C(V ) and a ∈ V . Suppose that K is stable by W and
contains the convex hull of the set {w(a) : w ∈ W}. Then the quantity

3∑
i=0

[Tr+mi ∩ (K + a)] ∈ K0(V )

is independent of 0 ≤ r ≤ m − 1. (This implies the Hirschhorns’s result even in the case where k
is odd: Just apply the previous statement with m = 2k, and share the pizza between k people by
giving the pth person the eight slices contained in the chambers T2p+mi and T2p+1+mi, for 0 ≤ i ≤ 3.)
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Let us prove this result. Let 0 ≤ r ≤ m− 2. We want to show that

3∑
i=0

[Tr+im ∩ (K + a)] =
3∑

i=0

[Tr+1+im ∩ (K + a)]

in K0(V ). Suppose that we know that

(3.6)

3∑
i=0

[Tr+im ∩R+(a) ∩ (K + a)] =

3∑
i=0

[Tr+1+im ∩R−(a) ∩ (K + a)]

in K0(V ), where R+(a) and R−(a) are given by

R±(a) = (V −R0(a)) ∩
⋃

T∈T (H)

(−1)T=±1

T.

Then it remains to see that
3∑

i=0

[Tr+im ∩R0(a) ∩ (K + a)] =
3∑

i=0

[Tr+1+im ∩R0(a) ∩ (K + a)]

in that same quotient. But now all the regions appearing in the sums are polygons, so the equality
of the sums of their classes in K0(V ) is equivalent to the equality of the sums of their areas,
by the Bolyai-Gerwien Theorem; see [Bol78, Section 5]. This last equality follows either from
Proposition 9.1 of [EMR22b], or from the Hirschhorns’s result. (The Hirschhorns only consider the
case of a circular pizza, but, by equation (3.6), their result for a circular pizza implies the result
for the polygonal pizza R0(a).)

We first suppose that r is even. To prove equation (3.6), we suppose that T0, . . . , T2m−1 denote
the same chambers as in the proof of Lemma 3.10, and we use the notation of that proof. In
particular, for 0 ≤ i ≤ 2m − 1, the chamber T2m+i is equal to the region Ri,ϵ, where ϵ is the
sign (−1)i. We have Tr ∩ R+(a) = Sr/2,+ ∪ Rr+1,+, Tr+m ∩ R+(a) = S(r+m)/2,+ ∪ Rr+m+1,+,
Tr+2m ∩ R+(a) = Tr+2m = Rr,+ and Tr+3m ∩ R+(a) = Tr+3m = Rr+m,+. On the other hand, we
have Tr+1 ∩ R−(a) = Sr/2,− ∪ Rr,−, Tr+1+m ∩ R−(a) = S(r+m)/2,− ∪ Rr+m,−, Tr+1+2m ∩ R−(a) =
Tr+1+2m = Rr+1,− and Tr+1+3m ∩R−(a) = Tr+1+3m = Rr+m+1,−. This implies equation (3.6).

We now consider the case where r is odd. We again suppose that T0, . . . , T2m−1 denote the same
chambers as in the proof of Lemma 3.10 and the notation of that lemma, but we use a different
dissection, that is illustrated in Figure 4 in the case m = 4. For 0 ≤ i ≤ 2m − 2, we consider the
same region Ri,± as in the proof of Lemma 3.10, but we denote by R′

2m−1,− the chamber T2m−1. For

every 1 ≤ j ≤ m− 1, we denote by R′
2j−1,+ (respectively, R′

2j,−) the orthogonal reflection of R2j,+

(respectively, R2j+1,−) in the line L⊥
2j + a; note that R′

2j−1,+ ⊂ T2j and R′
2j,− ⊂ T2j−1. We also

denote by R′
0,− (respectively, R′

2m−1,+) the orthogonal reflection of R0,+ (respectively, R′
2m−1,−) in

the line L⊥
m+ a. For 1 ≤ j ≤ m− 1 again, we denote by S′

j,− the interior of T2j−1− (R0(a)∪R′
2j,−)

and by S′
j,+ the interior of T2j − (R0(a) ∪ R′

2j−1,+). Finally, we denote by S′
0,− the interior of

T4m−1 − (R0(a) ∪R′
0,−) and S′

0,+ the interior of T0 − (R0(a) ∪R′
2m−1,+).

For 0 ≤ i ≤ 2m − 2, the chamber T2m+i is then equal to the region Ri,ϵ, where ϵ is the sign
(−1)i; also, the chamber T2m−1 is equal to R′

2m−1,−. We have Tr ∩ R−(a) = S(r+1)/2,− ∪ Rr+1,−,

Tr+m ∩ R−(a) = S(r+m+1)/2,− ∪ Rr+m+1,−, Tr+2m ∩ R−(a) = Tr+2m = Rr,− and Tr+3m ∩ R−(a) =
Tr+3m = Rr+m,−. On the other hand, we have Tr+1∩R+(a) = S(r+1)/2,+∪Rr,+, Tr+1+m∩R+(a) =
S(r+1+m)/2,+ ∪Rr+m,+, Tr+1+2m ∩R+(a) = Tr+1+2m = Rr+1,+ and Tr+1+3m ∩R+(a) = Tr+1+3m =
Rr+m+1,+. This implies equation (3.6).

As in Frederickson’s article, there should also be a dissection-based proof of the equality of areas
that we use to finish the proof, but we were not courageous enough to look for it.
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Figure 4. The dissection that we use for odd r in the case of I2(8).

4. The Bolyai-Gerwien Theorem

The classical Bolyai-Gerwien Theorem states that two polygons are scissors congruent if and only
if they have the same area. There is also a well-known generalization in higher dimensions that
applies to parallelotopes; it follows from the characterization of translational scissors congruences in
arbitrary dimensions, and was proved independently by Jessen-Thorup and Sah; see the beginning
of Section 7 of [JT78] or Theorem 1.1 in Chapter 4 of [Sah79]. In this section, we state a slight
refinement of this generalization, Theorem 4.1, that keeps track of lower-dimensional faces; in other
words, we do not want to ignore the boundaries.

As in the previous sections, let V be an n-dimensional real vector space with an inner product
(·, ·). If (v1, . . . , vr) is a linearly independent list of elements of V , we define the parallelotope

P (v1, . . . , vr) =

{
r∑

i=1

aivi : 0 ≤ ai ≤ 1

}
.

We denote by P(V ) the set of all convex polytopes in V (including lower-dimensional ones) and
by Z(V ) the subfamily of polytopes that are translates of parallelotopes of the form P (v1, . . . , vr).
The set P(V ) satisfies the conditions of Definition 3.1, so we can define an abelian group KP(V )
as in that definition. We denote by KZ(V ) the subgroup of KP(V ) generated by the classes [P ] for
P ∈ Z(V ). Remark 3.3 implies that, if Pext(V ) is the relative Boolean algebra generated by P(V ),
then we can define the class [P ] in KP(V ) of any element P in Pext(V ). We denote by Zext(V ) the
set of elements P of Pext(V ) such that [P ] ∈ KP(V ) is in the subgroup KZ(V ). For example, the
set Zext(V ) contains Z(V ), and it also contains all half-open parallelotopes.

Recall V0, . . . , Vn denotes the intrinsic volumes on V ; see [Sch14, Section 4.2]. These are valu-
ations on the set of all compact convex subsets of V , and in particular on P(V ), so they induce
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morphisms of groups from KP(V ) to R, which we still denote by V0, . . . , Vn. Note that V0 is the
Euler-Poincaré characteristic with compact support, so the image of KP(V ) is Z.

The main result of this section is the following isomorphism.

Theorem 4.1. The morphism (V0, V1, . . . , Vn) : KZ(V ) −→ Z × Rn is an isomorphism. In par-
ticular, if P, P ′ ∈ Zext(V ) are such that Vi(P ) = Vi(P

′) for every 0 ≤ i ≤ n, then [P ] = [P ′] in
KZ(V ).

We will give the proof of the theorem at the end of this section.

Corollary 4.2. Suppose that dim(V ) = 2. Then the triple (V0, V1, V2) induces an isomorphism
from KP(V ) to Z × R2. In particular, if P, P ′ are two elements of Pext(V ), then their classes in
KP(V ) are equal if and only if Vi(P ) = Vi(P

′) for all 0 ≤ i ≤ 2.

Proof. By Theorem 4.1 it suffices to prove that KP(V ) = KZ(V ). As points and segments are
parallelotopes, it suffices to prove that every polygon P is scissors congruent to a parallelogram,

which follows from the Bolyai-Gerwien Theorem (see [Bol78, Section 5]).

Remark 4.3. (1) If we take the quotient KP,0(V ) of KP(V ) by the subgroup generated by the
classes of lower-dimensional polytopes, then two polytopes have the same class in KP,0(V )
if and only if they are scissors congruent, and the Bolyai-Gerwien Theorem (see [Bol78,
Section 5]), says that, if dim(V ) = 2, the area V2 induces an isomorphism from KP,0(V )
to R.

(2) If dim(V ) ≥ 3, then KZ(V ) ̸= KP(V ). Otherwise, every element of P(V ) of positive
volume would be scissors congruent to an element of Z(V ), hence to a cube, and this is
not true by the negative solution to Hilbert’s third problem (see for example [Bol78]).

Let Z ′(V ) be the set of translates of parallelotopes of the form P (v1, . . . , vr), for (v1, . . . , vr) a
linearly independent family of elements of V such that r ≤ n− 1, and let K ′

Z(V ) be the subgroup
of KZ(V ) generated by the classes of elements of Z ′(V ). We also write Z ′

ext(V ) for the set of
P ∈ Zext(V ) such that [P ] ∈ K ′

Z(V ).
If P, P ′ ∈ Z(V ), we write P ∼ P ′ if there exist P1, . . . , Pr, Q1, . . . , Qs ∈ Pext(V ), a1, . . . , ar,

b1, . . . , bs ∈ V and R,R′ ∈ Z ′
ext(V ) such that

P ⊔Q1⊔· · ·⊔Qs = R⊔P1⊔· · ·⊔Pr and P ′⊔(Q1+b1)⊔· · ·⊔(Qs+bs) = R′⊔(P1+a1)⊔· · ·⊔(Pr+ar).

It is not hard to see that this is an equivalence relation, and that equivalent parallelotopes have
the same volume.

Lemma 4.4. Let W,W ′ be subspaces of V such that V = W × W ′. We do not assume that W
and W ′ are orthogonal. Let P, P ′ ∈ Z(W ) and S, S′ ∈ Z(W ′) such that P ∼ P ′ and S ∼ S′. Then
the relation P × S ∼ P ′ × S′ holds.

Proof. As ∼ is transitive and as W and W ′ play symmetric roles, it suffices to treat the case
where S = S′. We choose P1, . . . , Pr, Q1, . . . , Qs ∈ Pext(W ), a1, . . . , ar, b1, . . . , bs ∈ W and R,R′ ∈
Z ′
ext(W ) such that

P ⊔Q1⊔· · ·⊔Qs = R⊔P1⊔· · ·⊔Pr and P ′⊔(Q1+b1)⊔· · ·⊔(Qs+bs) = R′⊔(P1+a1)⊔· · ·⊔(Pr+ar).

Then

(P × S) ⊔ (Q1 × S) ⊔ · · · ⊔ (Qs × S) = (R× S) ⊔ (P1 × S) ⊔ · · · ⊔ (Pr × S)

and

(P ′×S)⊔ ((Q1×S)+ b1)⊔ · · · ⊔ ((Qs×S)+ bs) = (R′×S)⊔ ((P1×S)+ a1)⊔ · · · ⊔ ((Pr ×S)+ ar).

As R× S and R′ × S are in Z ′
ext(V ), this implies that P × S ∼ P ′ × S.
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Figure 5. Proof of Lemma 4.5.

Figure 6. Proof of Lemma 4.5.

For two real numbers a, b ∈ R recall that the half open interval is given by (a, b] = {t ∈ R : a <
t ≤ b} and the closed interval by [a, b] = {t ∈ R : a ≤ t ≤ b}.

Lemma 4.5. Let (v1, . . . , vn) and (w1, . . . , wn) be bases of V , and let P = P (v1, . . . , vn) and
P ′ = P (w1, . . . , wn). Then Vn(P ) = Vn(P

′) if and only if there exists an isometry g of V such that
P ∼ g(P ′).

In particular, if V = Rn, then, for every P ∈ Z(V ), the classes of P and of (0, 1]n−1× (0, Vn(P )]
in KZ(V ) are equal modulo K ′

Z(V ).

Proof. We already know that Vn(P ) = Vn(P
′) if P ∼ g(P ′) with g an isometry of V . We prove the

converse by induction on n. It suffices to show that, for every basis (v1, . . . , vn) of V , there exists an
orthonormal basis (e1, . . . , en) of V and a ∈ R≥0 such that P (v1, . . . , vn) ∼ P (e1, . . . , en−1, a · en);
we then must have a = Vn(P (v1, . . . , vn)). There is nothing to prove if n = 0, and the claim is clear
if n = 1. Suppose that n = 2. The classical proofs that two parallelograms that have the same
basis and the same height are scissors congruent and that rectangles that have parallel sides and
the same area are scissors congruent use only translations to move the pieces of the decompositions
(see for example [EucBC, Proposition 35] and Figure 30 on page 52 of [Bol78]; we reproduce the
relevant decompositions in Figures 5 and 6). As the boundaries of the polygons that we ignore
when we are talking about scissors congruence are in Z ′

ext(V ) when dim(V ) = 2, this gives the
claim.

Suppose that n ≥ 3. Let (v1, . . . , vn) be a basis of V , and let P = P (v1, . . . , vn). By the claim
for n = 2 and Lemma 4.4, there exists an orthonormal basis (e1, e2) of Span(v1, v2) and a ∈ R≥0

such that P ∼ P (e1, a · e2, v3, . . . , vn). Applying the n = 2 case in Span(e1, v3) and Lemma 4.4, we
can find v′3 ∈ Span(e1, v3) orthogonal to e1 such that P ∼ P (e1, a · e2, v′3, v4, . . . , vn). Now applying
the n = 2 case in Span(e2, v

′
3), noting that this space is orthogonal to e1, and using Lemma 4.4,

we can find a unit vector e3 ∈ Span(e2, v
′
3) that is orthogonal to e1 and e2 and b ∈ R≥0 such that

P ∼ P (e1, e2, b · e3, v4, . . . , vn). Continuing in this way, we finally obtain the claim.
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We prove the last sentence of the lemma. If P is a translate of P (v1, . . . , vk) with k ≤ n − 1,
then the classes of P and of (0, 1]n−1× (0, Vn(P )] are both in K ′

Z(V ). Suppose that P is a translate
of P (v1, . . . , vn), with (v1, . . . , vn) a basis of V . By the first assertion, there exists an isometry g
of V such that g · P ∼ [0, 1]n−1 × [0, Vn(P )], so the classes of P and of [0, 1]n−1 × [0, Vn(P )] in
KZ(V ) are equal modulo K ′

Z(V ). As the difference between the classes of [0, 1]n−1× [0, Vn(P )] and

of (0, 1]n−1 × (0, Vn(P )] is in K ′
Z(V ), the result follows.

Lemma 4.6. (i) Let H be a hyperplane of V . The inclusion Z(H) ⊂ Z(V ) induces a mor-
phism KZ(H) −→ KZ(V ) whose image is K ′

Z(V ). 2

(ii) The subgroup K ′
Z(V ) is the kernel of the morphism Vn : KZ(V ) −→ R.

Proof. (i) The existence of the morphism KZ(H) −→ KZ(V ) is clear, as well as the fact that
its image is contained inK ′

Z(V ). Conversely, any translate of a P (v1, . . . , vk) with k ≤ n−1
can be moved by an affine isometry to lie in H, so its class is in the image of KZ(H).

(ii) We may assume that V = Rn. Any polytope in Z ′(V ) has volume zero, so K ′
Z(V ) is

included in the kernel of Vn. We prove the reverse inclusion. Let x be an element of
KerVn, and write x =

∑r
i=1 αi[Pi], with αi ∈ {±1} and Pi ∈ Z(V ). We want to show that

x ∈ K ′
Z(V ). By Lemma 4.5, for every 1 ≤ i ≤ r, the class of Pi is equal to the class of

(0, 1]n−1 × (0, Vn(Pi)] modulo K ′
Z(V ). So x is equal modulo K ′

Z(V ) to the sum

r∑
i=1

αi[(0, 1]
n−1 × (0, Vn(Pi)]] = [(0, 1)n−1 × (0, V+]]− [(0, 1]n−1 × (0, V−]],

where V± =
∑

1≤i≤r, αi=±1Vol(Pi). As V+ − V− = Vn(x) = 0 by assumption, we conclude

that x ∈ K ′
Z(V ).

Proof of Theorem 4.1. Let V∗ = (V0, V1, . . . , Vn) : KZ(V ) −→ Z×Rn. Then the morphism V∗ sends
the class of a point to (1, 0, . . . , 0), so its image contains the factor Z. Denote by (e1, . . . , en) the
canonical basis of Rn. If i ∈ {1, . . . , n} and a ∈ R≥0, then by Lemma 3.6 V∗ sends the class of the
half-open rectangular parallelotope (0, 1]i−1 × (0, a] × {0}n−i to (0, a · ei) ∈ Z × Rn, so the image
of V∗ contains R · ei. This shows that V∗ is surjective.

We now prove the injectivity of V∗ by induction on dim(V ). If dim(V ) = 0, the result is
clear. Suppose that dim(V ) > 0 and that we know the result for spaces of smaller dimension.
Let x ∈ KZ(V ) such that Vi(x) = 0 for 0 ≤ i ≤ n. In particular, we have Vn(x) = 0, so
x ∈ K ′

Z(V ) by Lemma 4.6(ii). Let H be a hyperplane of V . Then x is in the image of the morphism
KZ(H) −→ KZ(V ) by Lemma 4.6(ii); choose a preimage y ∈ KZ(H) of x. If 0 ≤ i ≤ n − 1, then
we have Vi(y) = Vi(x) because intrinsic volumes do not depend on the dimension of the ambient
space (see the top of page 214 of [Sch14]), so Vi(y) = 0. It follows from the induction hypothesis

that y = 0, and we conclude that x = 0.
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