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The r-cubical Lattice and a Generalization of the cd-index
RicHARD EHRENBORG AND MARGARET READDY

In this paper we generalize the cd-index of the cubical lattice to an r-ed-index, which we
denote by W¥(r). The coefficients of ¥(r) enumerate augmented André r-signed permutations, a
generalization of Purtill’s work relating the cd-index of the cubical lattice and signed André
permutations. As an application we use the r-ed-index to determine that the extremal
configuration which maximizes the Md&bius function of arbitrary rank selections, where all the
r;’s are greater than one, is the odd alternating ranks, {1,3,5, .. .}.
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1. INTRODUCTION

The main purpose of this paper is to develop a generalization of the ed-index for the
r-cubical lattice C". This lattice is a natural generalization of the cubical lattice, that is,
the face lattice of a cube. The cubical lattice of order n may be described by taking the
nth power of the poset M, in Figure 1 and then adjoining a minimal element. The
r-cubical lattice is constructed in a similar manner, where we instead take a product of
posets M, of the form represented in Figure 1. Such a lattice was first studied by
Metropolis, Rota, Strehl and White in [12]. They were interested in Dilworth
decompositions of the r-cubical lattice.

The ab-index is a non-commutative polynomial which encodes the Mobius function
of rank selections from a poset P, i.e., its flag h-vector or beta invariant. Equivalently,
the ab-index encodes the flag f-vector of P. Fine observed that when P is an Eulerian
poset, the ab-index can be written uniquely in the variables c=a+b and d =ab + ba
(see [2]). This new polynomial is called the ed-index.

The importance of the ed-index is that it explicitly describes the generalized
Dehn—-Sommerville equations, also known as the Bayer—Billera relations [1]. Purtill
obtained recursion formulas for the ed-index of the boolean algebra B,, and the cubical
lattice C,. In order to do, he showed that the coefficients of each ed-index enumerate
André permutations and signed André permutations, respectively. André permuta-
tions were first studied by Foata and Schiitzenberger [8,9]. We show that these two
recurrences are easy to prove by using the standard R-labeling of B, and C, (see the
arguments before equations (1) and (3)).

As a corollary, Purtill concluded that the ed-index of B, and C, have positive
coefficients. Using a shelling argument, Stanley extended this result to showing that the
cd-index has non-negative coefficients when P is the face poset of a shellable regular
CW-sphere. This class of posets includes face lattices of convex polytopes.

Although the r-cubical lattice is not an Eulerian poset, we are still able to form its
ab-index. We give a recursion for its ab-index in terms of the non-commutative
variables ¢,=a+(s—1)+b, d,=ab+(s—1)-ba, ¢ and d. Since this recursion
coincides with Purtill’s ed-index recurrence for the cubical lattice, that is, when
r=(2,...,2), we call it the r-cd-index, ¥(C") = ¥(r).

In Section 6 we extend Purtill’s notion of signed André permutations to augmented
André r-signed permutations. We show that the coefficients of W¥(r) have a
combinatorial interpretation, that is, they enumerate augmented André r-signed
permutations.
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FIGURE 1. The Hasse diagrams of the poset M, with r =2 and r =5.

Finally, in Section 7 we maximize the beta invariant of the r-cubical lattice over
arbitrary rank selections. We do this by showing that the ab-index of C*, ¥(r), has the
strictly increasing alternating property. More precisely, we prove that the coefficient of
the ab-word vw is larger than the coefficient of the ab-word vw* when v ends in a
different letter than w begins with and where w* is obtained from w by uniformly
exchanging the a’s and b’s. Thus, we can view these inequalities as the edges of an
n-cube. Niven established these kind of inequalities when he determined that the
largest class of permutations in the symmetric group having a fixed descent set is the
alternating permutations [14]. Our inequalities imply that the coefficient of the
alternating ab-word baba - - - in W(r) is the largest. In other words, the set of ranks
{1,3,5,...} is the unique extremal configuration for the r-cubical lattice.

2. THE ab-INDEX

In this section we give a brief introduction to the ab-index and the ed-index. For all
terminology and notation related to the ecd-index, we will follow [23]. For poset
terminology, we refer the reader to [22].

Let P be a finite, graded poset of rank n + 1 with 0 and 1. Denote the rank function
of P by p. For Sc[n]={1,2,...,n}, we define the S-rank-selected subposet to be
P(S)=1{x e P:p(x) e S}U{0,1}. Let a(S)=ap(S) denote the number of maximal
chains in P(S) and let the beta invariant B(S)= Bp(S) be defined by B(S)=2,cs
(=)~ Ta(T).

To encode the beta invariant of the poset P, we begin by defining a monomial in the
non-commutative variables a and b by ug =u; - - - u,, where u;is aif i ¢ S and u; is b if
i eS. (Later when we work with permutations, it will be helpful to think of a as
“ascent” and b as “descent”.) As an example, if n =35 and S={1,4,5}, then
ug = baabb. Form a non-commutative polynomial, called the ab-index, by

w(Pr)= 2 Br(S)us.
N
The degree of both a and b is defined to be one so that ¥(P) is homogeneous of
degree n.

For an ab-word w we denote its length by |w|. Let 1 denote the unique word of
length 0. Also, the complement of the word w is the word formed by uniformly
exchanging the letters a and b. We denote the complement of w by w*.

Fine (refer to [2]) observed that if P is an Eulerian poset, then ¥(P) can be written
uniquely as a polynomial in the non-commutative variables ¢=a+b and d = ab + ba.
This polynomial is called the cd-index. See Stanley [23] for an elementary proof of the
existence of the ed-index for Eulerian posets. Since both ¢ and d are symmetric in a and
b, this implies the well-known property that for an Eulerian poset P of rank n + 1,
Br(S) = Br(S), where S denotes the complement of S in the set [r]. In terms of a
word w and its complement, this means that the coefficient of w is equal to the
coefficient of w* in W(P).

DerniTION 2.1. Let £ be a linear combination of ab-words of length n. That is,
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L= .1=nc(z) - z. We say that £ has the weakly increasing alternating property if the
following two conditions hold:

(1) If v and w is a pair of words so that the last letter of the word v is different from
the first letter of the word w and |v| + |w| = n, then c(vw) = c(vw*).

(2) If wis a word of length n that begins with b, then c(w) = c(w*).

If all of the above inequalities are strict, then we say that £ has the strictly increasing
alternating property.

It is easy to see that if £ has the strictly and J has the weakly increasing alternating
property, then their sum %+ has the strictly increasing alternating property.
Observe that & having the strictly increasing alternating property implies that the
largest coefficient in £ is the coefficient in front of the alternating word baba - - - .

We say that a linear combination of ab-words, £=2_. . _,c(z) z, is self-
complementary if, for all words w, c(w) = c(w*).

Lemma 2.2.  If a linear combination & of ab-words of length n can be expressed as a
cd-index with non-negative coefficients, then ¥ has the weakly increasing alternating
property and is self-complementary. Moreover, if £ can be expressed as a cd-index with
positive coeffiicients then the inequality c(vw) = c(vw*), where the last letter of the word
v is different from the first letter of the word w, is a strict inequality. Hence, the ab-words
with largest coefficient are the two alternating words aba -+ - and bab - - - .

LemMma 2.3.  Let £ be a linear combination of ab-words of length n and let 3 be a
linear combination of ab-words of length m. If both &£ and J have the weakly increasing
alternating property and J is self-complementary, then ¥ -3 also has the weakly
increasing alternating property.

Stanley [23] proved that the ecd-index of the face poset of a shellable regular
CW-sphere has non-negative coefficients. Thus by Lemma 2.2 we conclude that the
ab-index of such posets has the weakly increasing alternating property. Since convex
polytopes are shellable regular CW-spheres, we know that face lattices of convex
polytopes have the weakly increasing alternating property.

3. R-LABELINGS

An edge-labeling A of a locally finite poset P is a map which assigns to each edge in
the Hasse diagram of P an element from some poset A. For us, A will always be a
linearly ordered poset. In this case we say that A is a linear edge labeling (see [7] for a
further study of linear edge labelings). If x and y is an edge in the poset, that is, y
covers x in P, then we denote the label on this edge by A(x, y). A maximal chain
x=x9<x;<---<x,=y in an interval [x, y] in P is called rising if the labels are
weakly increasing with respect to the order of the poset A, that is, A(xg, x;)<j
Ay, X2) <p- - <A A(xg_1, xr). An edge-labeling is called an R-labeling if for every
interval [x, y] in P there is a unique rising maximal chain in [x, y].

Let P be a poset of rank n+1 with R-labeling A. For a maximal chain
c={0=xy<x,<---<x,.,=1} in P, the descent set of the chain ¢ is D(c)=
{i: A(x;_1, x)) > A(x;, x;41)}. Observe that D(c) is a subset of the set [n].

A result of Bjorner and Stanley [5, Theorem 2.7] says that if P is a graded poset of
rank n+1, S<([n], and P admits an R-labeling, then B(S) equals the number of
maximal chains in P having descent set S with respect to the given R-labeling A. Thus
we may compute the ab-index by considering an R-labeling of the poset.
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Lemma 3.1. Let P be a graded poset of rank n + 1. If A is an R-labeling of P, then
the ab-index of P is equal to

'II(P) = 2 uD(c))
C
where the sum is over all maximal chains c.

As an example, we give the standard R-labeling for the boolean algebra. Viewing B,
as the poset of all the subsets of [r] ordered by inclusion, label the edge A < B with the
unique element in B — A. Observe the maximal chains in B,, correspond to permuta-
tions of the set [n]. It is now easy to give a recursion for the ab-index of the boolean
algebra. Consider permutations on the set [n + 2], and let i + 1 be the position at which
the element 1 or n + 2 occurs first, reading from right to left. Note that there are i
elements from the set {2,...,n + 1} to the right of this position. If i =0 then these
permutations are enumerated by W(B,.,)-c. If 1<i=<n, they are enumerated by
() W(B,+1-) - d- W(B;). Thus

W(B, )= W(B,.1) ¢+ 2 (%) w1 -0 ws), (1)

where W(B,) = 1. This formula was established by Purtill in [18, Corollary 5.8] using
André permutations.
Hence, by equation (1), we may compute

¥(B,) =c, W(B)=c+2-cd+2-dc
Y(By)=c+d, WBs)=c¢"+3-d+5-cdc+3-dc*+4-d°.

By the recursion (1) it is easy to see that the coefficients of each ed-monomial in ¥(B,,)
are positive. Thus, by Lemma 2.2, we conclude the following.

THeOREM 3.2 (Sagan, Yeh and Ziegler [21]). For arbitrary rank selections S from
the boolean algebra B,,, the two unique extremal configurations for maximizing the beta
invariant B(S) are the following rank selections:

{1,3,5,..}N[n—1] and {2,4,6,...}N[n—1].

This theorem is implicit in the work of Niven [14] and de Bruijn [6], who studied
permutations with a given descent set.

4. THE r-cuBICAL LATTICE

For r a positive integer, let M, denote the poset formed from an r-element antichain
and a maximal element 1, where each element of the antichain is covered by the
maximal element 1. See Figure 1 for two examples.

For a sequence of positive integers r=(r,...,r,), define the (multi-indexed)
r-cubical lattice C* to be M, X+ ++ XM, U{0}. This is a graded poset of rank n + 1.
Indeed, this is a lattice, since it is a finite join-semilattice. When r=(r, ..., r), we will
denote the poset by C}, and simply call it the r-cubical lattice. When r=(2,...,2) the
r-cubical lattice is the cubical lattice C,, that is, the face lattice of the n-dimensional
cube.

Another way in which to view the r-cubical lattice is to consider finite sequences
A= (A1, A, ..., Amaxqr) Of subsets from the set [n] ={1,2,...,n}, such that A, N A, =
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when j # k, and i ¢ A; when j >r;. Define the order relation by A < B if A; 2 B, for all
i=1,2,..., and adjoin a minimal element 0.

The Whitney numbers of the second kind for C" are given by elementary symmetric
functions. That is, the number of elements of rank n + 1 — k in the r-cubical lattice is
the kth elementary symmetric function e,(r, ..., r,) in the variables r, 1, ..., r,, for
k=0,...,n.

The r-cubical lattice has a very nice R-labeling described as follows: for the cover
relation A < B, where A # 0, label the corresponding edge in the Hasse diagram by
(i, @), where i is the unique index such that A; # B;, and let a be the singleton element
in A, — B,. Also, for the relation 0 < B, let the label be the special element G. Hence,
the set of labels 7, are 7, ={G}U{(i, j): 1 <j<m, 1<i<r;}. Also, define the set T, to
be T,=T,—{G}.

So far we have not given a linear order on the set of labels 7,. We now do this.
Choose any linear order A which satisfies the following condition:

(i,)<uG=>i<r, and (i,))>\G>i=r,. )

This means that the labels above the element G in the ordering A are those of the form
(r;, j)- It is now straightforward to prove the following.

LemmA 4.1. Let A be a linear order on the set T, satisfying condition (2). Then the
above-described edge-labeling for the r-cubical lattice is an R-labeling.

ExampLE 4.2. A linear order on T, satisfying condition (2) is the following. Define
G<A(r, 1)<a(rs,2)<4- - - <4(, n). Order the labels of the form (i, j), where i <r;,
by (i1, j1) <a(is, j2) if j1 > ], or if j, =j, and i; <i,. Finally, we say (i, j)) <, G if i <r,.
Observe that the largest element in the linear order A is (r,, n) and the r, — 1 smallest
elements are (1,n)<,--- <,(r, —1,n). The linear order A satisfies condition (2),
and thus is an R-labeling of the r-cubical lattice.

5. AUGMENTED r-SIGNED PERMUTATIONS

DeriNiTION 5.1. Let N be a finite set of cardinality » and let r be a vector which is
indexed by the set N, that is, r = (7;);cn- An augmented r-signed permutation o on the
set N is a list of the form

(G’ (il’jl)) (iZ)jZ)J R (imjn));

where 1<i,, <r, and (ji, 2, ..., j») is a permutation of the elements in the set N. We
will write Opg= G and O, = (ik) ]k)

We view the elements iy, ..., i, as signs; hence the name r-signed permutation. Since
we list the special element G first, we say that the permutation is augmented. Thus if
we exclude the special element G, we may say that the permutation is non-augmented.
Usually, we will consider the set N=[n]={1,2,...,n}. For 0<i<j=<n, we let
[,j]=1{i,i+1,...,j}. We use the notation o]j;;; to denote the restricted permutation
Ol = (04 i1, . .., 0)).

Let A be a linear order on the set 7,. The descent set of an augmented r-signed
permutation, o = (G = gy, 04, ..., d,), with respect to A is the set D,(o) ={i: 0;_1>,4
o,}. The same definition also applies to non-augmented r-signed permutations.

The maximal chains in the r-cubical lattice correspond to augmented r-signed
permutations on the set [n]. Thus the number of augmented r-signed permutations
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having a certain descent set is equal to the number of maximal chains with this same
descent set.

LEmMA 5.2.  Let A be a linear order on the set T,. The number of non-augmented
r-signed permutations on the set [n] with descent set S < [n — 1] is equal to the number of
permutations in the symmetric group on n elements with descent set S times 1y -1, - * I,,.

Proor. Consider first the following linear order I" on T,: (iy, j1) <r(is, j») if and
only if j; <j, or, j, =j, and i; =i,. It is easy to see that the lemma holds for this linear
order I'.

We will prove the lemma for any other linear order by changing a linear order on the
set T, into another linear order by transposing adjacent entries, and showing the
number of non-augmented r-signed permutations having descent § will remain
constant. Thus it is enough to consider two linear orders A and A’ on the set 7', which
only differ in that two adjacent elements, x and y, are transposed. That is, we have
x<,yand y<j, x.

Let P and P’ be the set of non-augmented r-signed permutations having descent S in
the linear order A, respectively A'. Let o be a non-augmented r-signed permutation
in the set P — P'. Since o € P, but o ¢ P’, we know that changing the underlying
order from A to A’ affects the descent set of o. Hence o has the form
o=(0y,...,04,2,2, 0it3,...,0,), Wwhere {z;,2}=1{x,y}. Consider o¢'=
(o1, ..., 04 22, 21, Ois3,- .., 0p). It is easy to see that ¢’ lies in the set P’ —P.
Moreover, the mapping o+ o’ is bijective. Hence |P — P'|=|P’ — P|, which implies
that |P| =|P’|. Thus the proof is complete. O

We denote the ab-index of the r-cubical lattice by ¥(C") = ¥(r) = ¥(r, ..., r,). For
a vector r=(r,...,r,) and a positive integer s, we write (r,s) for the vector
(ri,..., 7., s). Leté,=a+(s—1)-b,and d, =ab + (s — 1) - ba. For N a finite subset of
P={1,2,...}, define the vector ry by (7,,,, ..., 1,,,), where N ={m,, ..., m,}. Another
useful notation is II(N) =11, cn 7

ProprosiTioON 5.3. The ab-index of the (x,s)-cubical lattice satisfies the following
recurrence:

'I’(r,s) = 'I/(r) "¢+ 2 H(I) : q’(l‘]) : (_ls : ‘I’(B\II))
I1+J=[n]
I1#

where x=(r, 15, ..., r,) and ¥(C?) =1.

ExampLE 5.4. With the above recurrence we may compute the following:
w(C9) =1,
v(Cr)=¢,
W(Cr) =58, +p-d,
W(Cre) =¢,c,6 +p-d,6, +p-cd +q-Cd +pq-dec

Proor oF ProposiTiON 5.3. Fix the linear order A on the set 7,,.; of labels to be the
one described in Example 4.2. Consider an augmented (r,s)-signed permutation
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oc=(G=o0y,0...,0,.1) on the set [n+1]. Let k be the index such that o, =
(i, n + 1), that is, the position of the element n + 1. Let J be the set of elements from
[n] that appears before the element n + 1 in the permutation, and let / be the set of
elements from [n] that appears after. We can decompose the permutation ¢ into an
augmented r;-signed permutation on the set J and a non-augmented r;-signed
permutation on the set /. Namely, the augmented r;-signed permutation is described by
Oljo,x—1) and the non-augmented r,-signed permutation is o1, +1)-

There are two cases, namely / = J and I # (J. Consider the first case. If i, the sign of
the element n + 1, is equal to s, then the permutation will end with an ascent. If i <s,
then the permutation will end with a descent. Thus these permutations are enumerated
by ¥(r)-(a+(s—1)-b)=¥(r)-c,.

Now consider the second case, I #. If i=s, then there is an ascent—descent
between the permutation ol ,_q), and the permutation oy, Similarly, if i <s
then there is a descent—ascent between the two parts. Hence we have the term

Y(r,): (ab+ (s —1) - ba) - II(I) - ¥(B,) =1(I) - ¥(x;) - d, - ¥(B,).

By summing over all decompositions I +J = [n], the proposition follows. O
When we set r=(2,...,2) in Proposition 5.3, we obtain
W(C,.)=W(C,) ¢+, (”) 20 W(C,_,)-d- W(B,), 3)
i=1 \1!

where W(C,)=1. This identity was first established by Purtill [18, Corollary 5.12].
However, the proof given here is a direct argument.

ExampLE 5.5. Specializing Example 5.4 to the cubical lattice, we obtain the
following:

Y(Co) =1,

Y(C)=c,
Y(C)=c+2-d,
P(C)=c+4-cd+6-dc.

By the recursion (3) it is easy to see that the coefficients of each ed-monomial in
WY(C,) are positive. Thus by Lemma 2.2 we conclude the following:

THEOREM 5.6 (Readdy [20]). For arbitrary rank selections s from the cubical lattice
C,, the two unique extremal configurations which maximize the beta-invariant B(S) are
the following rank selections:

{1,3,5,...}N[n] and {2,4,6,...}N[n].

6. ANDRE PERMUTATIONS

Purtill showed a relation between the ed-index of the cubical lattice and André
signed permutations [18]. In this section we define augmented André r-signed
permutations and obtain a relation between these permutations and the r-ed-index of
the r-cubical lattice. We study two sets of r-signed permutations, &/" and N'{. The set
A" corresponds to the r-cubical lattice and the set N, to the boolean algebra. We also
enumerate the number of augmented André r-signed permutations. When we set
r=(2,...,2), the results of this section specialize to Purtill’s work.
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Define the two sets 7 and 7' by T'={(i,j):jeP, 1<i<r} and T=T'U{G}.
Observe that the entries of r-signed permutations are elements of 7. Throughout what
follows in this section we fix A, a linear order on the set 7. (Note that in the proof of
Proposition 6.5 we will use another linear order on the set 7'.) Define G<,(r, 1)
<a(r,2)<,---. Order the labels of the form (i, j), where i <r;, by (i1, j1)<4(i2, J2)
if j; >j,, or if j; = j, and i; <i,. Finally, say that (i, j)<, G if and only if i <r, This is
an extension of the linear order used in Example 4.2.

DEermniTION 6.1. Let r be a vector which is indexed by a finite set N, with
IN|=n >0, that is, r = (r;);c. 5~ We may assume that N = P. We say that an augmented
r-signed permutation o = (G =gy, 0y, ..., 0,) on the set N is an augmented André
r-signed permutation if the following two conditions are satisfied.

(1) For all 1<i<j=<n, if o,.;=maxy{o,_, 0y, 0;,_4, 0} and o;=miny{o; 4, 0;

o;_1, 0;}, then there exists a k, with i <k <j, such that o;_; <, gy.

(2) For x=maxN, (r,,x)=o0, for some 1sm=<n and oy, is an augmented
André r;-signed permutation on the set J, where J={y € N:(z,y) = o, for some
Il<sk=m-1}.

The permutation (G) is defined to be an augmented André r-signed permutation on
the set N =(J.

Let 0 =(G =0y, 04, ...,0,) be an augmented r-signed permutation on a set N of
cardinality n. We say that o has a double descent if there is an index i, where
1<i=<n—1, such that o has a descent at the ith and (i + 1)st positions. In other
words, i and i + 1 are contained in the descent set D (o) of o. Observe that condition
(1) of Definition 6.1 implies that the permutation o has no double descents.

A non-augmented r-signed permutation satisfying condition (1) in Definition 6.1 is
called a non-augmented André r-signed permutation. (Note that for the non-augmented
case we need to reformulate the beginning of condition (1) as, ‘For all 2<i<j=<
n....) We denote the set of all augmented André r-signed permutations by &/* and the
set of all non-augmented André r-signed permutations by A". Furthermore, we denote
the set of all non-augmented André r-signed permutations which begin with its smallest
element (with respect to the linear order A) by N That is,

No={(o1,0,,...,0,) e N oy =ming{oy, 0y, ..., 0,}}.

We will mainly work with the sets /" and NG,

The following two lemmas describe how André r-signed permutations behave under
restriction. For ease in notation, we define N(o,i,j)={y € N:(z, y) = g, for some
i<ks<j}.

LemMma 6.2. Let 0 =(G, oy,...,d,) be an augmented André r-signed permutation
on an index set N of cardinality n. Let 0<j<n, and let J be the set N(o, 1, j). Then the
restriction 0"[0, s is an augmented André x;-signed permutation on the index set J.
Furthermore, let 1 <i<j<n and let K be the set N(o, i, j). Then the restriction o-|[,-,,-] isa
non-augmented André ry-signed permutation on the index set K.

Similarly, let o = (04, . . ., 0,) be a non-augmented André y-signed permutation on an
index set N of cardinality n. Let 1 <i<j=<n and let K be the set N(o,1i,j). Then the
restriction o'|[,-,,-] is a non-augmented André ry-signed permutation on the index set K.
The proof of Lemma 6.2 follows from the definitions.

CoroLLarRYy 6.3. If o=(G,04,...,0,) is an augmented André r-signed
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permutation, then G <, . In other words, every augmented André r-signed permuta-
tion begins with an ascent.

Lemma 6.4. Let 0 =(G, oy,...,0,) be an augmented André r-signed permutation
on an index set N of cardinality n. Assume that x = max N, and o,, = (1, x). Let I be the
set N(o,m + 1, n). Then the restriction cr|[m+1,n] =(0m+1,-- -, 0p) IS a non-augmented
André r;-signed permutation on the index set I. Moreover, a'|[m+1,n] belongs to the set
NG

Similarly, let 0 = (04, . . ., 0,) be a non-augmented André x-signed permutation on an
index set N of cardinality n. Assume that o,, = maxs{o,..., o,}. Let I be the set
N(o,m +1,n). Then the restriction cr|[m+1,n] =(0pmt1s---,0,) IS a non-augmented

André r;-signed permutation on the index set I. Moreover, a'|[m+1,n] belongs to the set
N

For o a non-augmented André r-signed permutation of an n-set, the variation of o is
given by U(o) = us, where S is the descent set of o taken with respect to A and ug is
the ab-word defined in Section 2. The reduced variation of o € N7, which we denote by
V(o), is formed by replacing each ab in U(o) with d and then replacing each
remaining a by a ¢. Observe that this is always possible since an element in N does not
begin with a descent and cannot have any double descents.

We recursively define the reduced variation V(o) for an augmented André r-signed
permutation o on the set N by recursion. Assume that N has cardinality n. If
0, = (r,, X) = (s, x), where x = max N, then

V(O-|[O,mf1]) . (_15 . V(O-|[m+1,n]) lf m << n,
V(0-|[0,n*1]) ’ES lfm =n,

V(o) -|
with V(G) = 1. This definition makes sense since U|[m+1,n] belongs to the set NG

ProposITION 6.5.  Forr=(ry, ..., r,), the following equality holds:

2 V(o)=1I(N) - ¥(B,).

oelNy
We denote the sum by V(N7).

Proor. This proof is similar to the proof of Lemma 5.2. First, one may easily show
that V(A7) does not depend on the linear order of the set of labels 7,. That is, if we
transpose two adjacent entries in a linear order, the sum of the reduced variation of
non-augmented André r-signed permutations which belong to N'§ will remain the same.
Thus we may consider the following linear order I"on T),: (i1, j;) <r (i, j») if and only
if j; <j, or, j, =j, and i; <i,.

We find a recursion formula for V(A7) by looking at where the largest element
occurs in each non-augmented André r-signed permutation. Let the index set be [n + 1]
and denote r, ,, by s.

CLaM 6.6. There exists a bijection between the two sets

& and X [sju U NyX[s]X NG,
I+J=[n]
1el,I#J

where all the unions are disjoint and X denotes the Cartesian product.
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The proof of the claim is very similar to the proof of Proposition 6.7. Observe that
1 e J, since the element oy = ming(o, 05, . .., 0,41) is of the form (i, 1).
Summing the reduced variation over A'G® we find that

VINEY=V (N s-c+ O V(NG -s-d- V(N
150
By equation (1) one sees that the quantity II(N) - W(B,) satisfies the same recursion

and initial conditions as V(N7). O

PropPosITION 6.7.  There exists a bijection between the two sets

K-/ and AU oYX NG,
I1+J=[n]
1=

where all the unions are disjoint and X denotes the Cartesian product.

Proor. Let the index set be [n + 1] and denote 7,,, by s. We break the augmented
André (r, s)-signed permutations at the point at which the largest element (r,,,, n + 1)
occurs. By doing so, we have the following map:

FroAd™” > ofU | A XN
I+7=[n]
I+
To see that F is bijective, it is enough to prove that F has an inverse. Given
oc'=(G,04,...,0,-1)ed” and ¢"= (0,41, -, 0pn11) €N, let o= (0, (1,41, n +
1), o). It is easy to see that o satisfies condition (2) in Definition 6.1. To show that o
also satisfies condition (1), it is enough to consider the following two cases. First, when
i<m and m <j, let k =m in condition (1). The remaining case is when i —1 =m and
m +1<j. However, this case will not occur, since ¢” belongs to N§. Hence o is an
augmented André permutation, and lies in the set &/*°. Thus we conclude that F is a

bijection. O
THEOREM 6.8. Forr=(ry,...,r,), the following equality holds:
W(r) = % V(o).

We denote this sum by V(") and call it the non-commutative augmented André
r-signed polynomial.

Proor. It is enough to show that the non-commutative augmented André r-signed
polynomial satisfies the same recurrence as the one given for ¥(r) in Proposition 5.3.
The recursion formula will follow by the bijection given in Proposition 6.7. Summing
the reduced variation over &/™ we find that

V() =V(sl)-E+ 2, V() -d,- V(N 0

b
We will end this section by enumerating augmented André r-signed permutations.
That is, we set r=(r,...,r), where r has length n. By Proposition 6.5 we know that
V(NG =r"- W(B,). Hence, by the fact that the exponential generating function of the
number of alternating permutations is given by sec(x) + tan(x), we may derive that the
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exponential generating function for the number of non-augmented André r-signed
permutations is sec(rx) +tan(rx). By Theorem 6.8 we obtain a recursion for the
number of augmented André r-signed permutations. Solving this recursion we obtain

the following:

THEOREM 6.9. The exponential generating function of the number of augmented
André r-signed permutations is

x" 1
= N
go & ) \/1 — sin(rx)

By applying the Hardy-Littlewood—Karamata Tauberian Theorem (see [3]) to this
generating function we have the following:

LeEmMaA 6.10. When n— «, the number of augmented André r-signed permutations

has the asymptotics
1 8\ 2r\"
~ A8 L em— (2L
& @) <n2> " (n) -

7. ARBITRARY RANK SELECTIONS

In this section we consider the problem of maximizing the beta invariant of the
r-cubical lattice over arbitrary rank selections. We will do so by showing that ¥(C™)
has the strictly increasing alternating property.

We will assume that ry, 7,, . . . are all positive integers greater than or equal to 2. For
N a finite subset of P={1,2,...}, IN|=n, we define the vector ry by (r,,,, ..., "),
where N ={m,, ..., m,}. For an ab-word w of length n, we define 8(w, N) to be the
coefficient of w in the ab-index ¥W(C™). Thus B(w, N) is a symmetric function in the
variables r,, , ..., 1, . Also, we let Bz(w) be the coefficient of w in the ab-index of the
boolean algebra, ¥(B,,,+). Thus we have the two identities:

P(CM=2Bw,N)-w  and  W(B,.)=2 Bs(w) w,

where w ranges over all ab-words of length n. Observe that since the coefficients
B(w, N) enumerate augmented r-signed permutations, we know that they are non-
negative. We also have the following recursion for them:

Lemma 7.1. Let E be a linear map from symmetric functions in the variables
r, ..., r, to symmetric functions in the variables ry, . .., 1, such that

E(e(ry,...,r))=elr, ..., i)
Then B(w, [n]) may be computed by the following relations:
B(L, D) =1,
B(aw, [n +1]) = E(B(w, [n])),
Bbw, [n +1]) = Bs(W) - €pi1(r1, - - -, Fv1) = E(BW, [1])),

where w has length n.

This lemma implies that B(w, N) may be written as a linear combination of the
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elementary symmetric functions in the variables 1, , ..., r,, . Thus B(w, N), viewed as
a function of r,,, will be a polynomial of degree one.

An alternative way to compute B(w, [n]) is by a determinant. MacMahon gave a
determinantal identity for the number of permutations in the symmetric group having a
fixed descent set [13, Article 157]. An equivalent determinant was given by Niven [14].
By generalizing this determinant, we obtain a closed form formula for 8(w, [n]). Here

ey is the kth elementary symmetric function e, (ry, . . ., r,).

LemMmaA 7.2.  Let n be a positive integer and let k,, ..., k, be a sequence of integers
such that 1<k, <k,<---<k,<n. Let S be the set {n+1—k,,...,n+1—-k}=[n].
Then

B(us, [n]) = det

[ 1 23 Ck, |
For an ab-word w = wyw, - - - w, of length n, define, for 0 <i <n, w®=w, -+ w, and
w@ =y .- -w,. Also, we will need the following two notions:

Sap(w) ={i:w =w® ab w20}

Spa(w) ={i:w =w®@ paw =720}

where 7 is the length of w. Observe that S,,(w), S,.(w)<={0,1,...,n -2}
Since the ed-index of the boolean algebra has positive coefficients (this may be
verified by equation (1)), we deduce the following strict inequality:

ww*) > B (vw when v = @,
BB BB

This fact will be useful to us later. Similarly, for the cubical lattice, that is when
r=(2,...,2), we also know that the ed-index has positive coefficients. Thus the same
strict inequality holds. Since the cubical lattice is Eulerian, we know that B(w, [n])
attains a maximum exactly when w is alternating, that is, when w =baba--- or
%,_J

w=abab .- - "
| —

n

Lemma 7.3.  Let 1<k <n. Let w be an ab-word of length k — 1, and v be an ab-word
of length n — k. Then

Bs(w) - 2[ ]H(I) B, J)=Bwaw,[n])+ Bwbw, [n]).
J=n—k

Proor. The right-hand side of the equality enumerates augmented r-signed
permutations having descent set corresponding to the ab-words vaw or vbw. Thus
we are counting augmented r-signed permutations with either an ascent or a descent at
position n — k + 1. Hence we can enumerate such permutations by first choosing an
augmented r-signed permutation on the entries J < [n] with descent set corresponding
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to v, where J has cardinality n —k. Then we can independently choose a non-
augmented permutation on the entries [n] —J = I with descent set corresponding to w.
By Lemma 5.2 this may be done in Bg(w) - II;c;r; = Bg(w) - II(I) possible ways. O

There is a similar statement for the boolean algebra. As in Lemma 7.3, let w be an
ab-word of length k£ — 1 and let v be an ab-word of length n — k. Then

n+1
< k ) “Br(w) - Br(v) = Ba(vaw) + Be(vbw).
This statement was already known to MacMahon in his study of Simon Newcomb’s
problem. He called it ‘The Multiplication Theorem’ [13, Article 159].

LemMmA 7.4.  Let w be an ab-word of length k + 1 that begins with b. For any function
f on ab-words of length k, the following identity holds:

1 ifw=p

FW @) = F(w®) - {_1 if W) = a}

N 2 f(w(j) a W((k—j—l))) +f(w(f) b W((k—j—l)))
J €Sha(w)

_ 2 f(w(_f) a W((k*ifl))) + f(w(.f) b W((k*ffl)))_
J € San(w)

THEOREM 7.5. Let v=(r,...,r,), where r,...,r,=2, and at least one entry is
greater than or equal to 3. Then the ab-index of the x-cubical lattice C* has the strictly
increasing alternating property.

CoRrOLLARY 7.6. Let vx=(ry,...,r,), where r,...,r,=2, and at least one entry is
greater than or equal to 3. For arbitrary rank selections S < [n] of the r-cubical lattice C*,
B(S) attains a unique maximum when we take S to be S ={1, 3,5, ...} N [n].

When r=(2,...,2) the lattice C" is the cubical lattice C,. As was observed in
Theorem 5.6, this lattice has two extremal configurations, namely {1, 3,5, ...} N [n] and
{2,4,6,...}N[n]. When at least one of the r;’s equals 1, Theorem 7.5 does not hold.

Proor oF THEOREM 7.5. By symmetry in the r’s, we may assume that r, =3. The
proof is by induction on n. When n =1, all we need to check is that B(b,{1})>
B(a,{1}), which is indeed true since r, —1>1.

Let us now assume that the theorem holds for all values less than or equal to n, and
that we would like to prove it for n + 1. Say that r,,;, =s. We now consider the
(ri, ..., r, s)-cubical lattice, where s =2. Let 5 denote the coefficient of the linear
term in s in the expression ¥(r,s). Then we may write

W(r,s)=P,2)+(s—2) %

The theorem will follow once we are able to show that W(r,2) has the strictly
increasing alternating property and J has the weakly increasing alternating property.
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We begin by showing that ¥(r,2) has the strictly increasing alternating property.
Recall the recursion formula for ¥(r,s) in Proposition 5.3. Observe that ¢, =a+b=c
and d, = ab + ba =d. We have

Yr,2)=Wk) -c+ > 1) P(r,) -d- ¥(B,). (4)
1+J=[n]
1#

By Lemma 2.3 we know that each term in equation (4) has the weakly increasing
alternating property. Hence this sum has the weakly increasing alternating property.
We claim it also has the strictly increasing property. Let v and w be words such that
[v| + |w| =n. Assume that v =1 and w® =b, or v = w®_ Consider the coefficients
of vw and vw* in the two terms

d-¥(B, and (a+(rn—1b)-d-¥Y(B, ).

These terms correspond to J = and J = {r;} in ¥(r,2). In the first term we know that
strict inequality will hold except when |[v| =0 and |v| = 2. In the second term we know
that strict inequality will hold except when |[v|=1 and |v|=3. Since this covers all
possibilities for the length of v, we know that ¥(r,2) has the strictly increasing
alternating property.

Recall that 3 = [s]W(rx,s), where [s] denotes the coefficient of the linear term in the
variable s. By the recursion formula in Proposition 5.3, we have

H=wr)-b+ > T(I)- P(r,)-ba- W(B,).
I+J=[n]
1#=

We would like to prove that J has the weakly increasing alternating property. This
follows from two claims.

Cramm 7.7. Let v and w be ab-words of lengths n — k and k + 1 respectively. Assume
that v ends with the letter a or v is empty, and that w begins with the letter b. Then the
following inequality holds:

[s1B(ww, [n +1]) = [s]B(w*, [n +1]).
Cram 7.8. Let v and w be ab-words of lengths n — k and k + 1 respectively. Assume

that v ends with the letter b and that w begins with the letter b. Then the following
inequality holds:

[s]B(uw*, [n +1]) = [s]B(vw, [ +1]).
Proor oF CLam 7.7. We will write y = vw and z = vw*. It is easy to see that
Sba(y) = Spa(v) U (Spa(w) + [v]),
Sba(2) = Spa(v) U (Sap(w) + [v]),

where the © + |v|” indicates translation of the given set of integers by |v| units. Hence we
may derive the following expression for the linear term of s in B(y, [n + 1]), where x is
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the characteristic function.

[s1B(y, [n + 1) =By, [n]) - X () =Db)
+ D> TU) - BV, T) - Be(y =)

I+J=[n]
V1€ Sha(y)

= Bw®, [n]) - x(w @ =b)
+ E In{) - ﬂ(v(lfl)’ J)- 'BB(U((Illfkfz))W)

I+J=[n]
1€ Spa(v)

+ 2 @) BwTO ) - Be(w ).
I1+J=[n]
e Spa(w)+n—k

Apply Lemma 7.3 to each term in the last sum.
[s18(y, [n +11) = Bw™®, [n]) - x(w ™" =)
+ 2 I\ - ,B(U(V‘), J)- BB(U((uhk—z))w)

I1+J=[n]
|| € Spa(v)

+ E Bw? aw =D [n]) + Buw b w*7=D) [#]).
J € Spa(w)

Similarly, the linear term of s in B(z, [n +1]) is given by
[s18(z, [n + 11) = Bw®”, [n]) - x(w @ = a)
+ ST - B, T) - By(u Ik Dy
]

I+J=[n
M| € Spa(v)

+ 2 B(Uw(i)* a w((k*jfl))*, [n]) 4 B(UW(]')* b W((k*ifl))*’ [n]) (5)
jeSap(w)

We apply the induction hypothesis to the first term of equation (5). For its second term
we use the fact that the ab-index of the boolean algebra has the increasing alternating
property. Since 0 ¢ S,,(w), we may also apply the induction hypothesis to the third
term. Hence we have

[s18(z, [n + 1) < Bw®, [n]) - x(w " = a)
+ > ) - B, T) - Bru Tk

I+J=[n]
1€ Spal(v)

+ 2 B(vw(-’) b w(&=i=) [n]) + B(vw(i) aw(k=/=) [n]).
J €San(w)
Thus the desired inequality [s]B8(y, [n +1]) =[s]B(z, [n +1]) will follow if we can
prove that

0= Bw®, [n]) - X(w > =b)

+ 2 B(vw(j) a W((k*jfl))) [n]) + B(vw(’)b W((kf/'*l))) [n])
Jj € Spa(w)

~BEw®, [n]) - x(w =)

— 2 B(vw(/‘)bw((k*ﬁl))) [n]) + 'B(vw(i)aw((kfjfl)), [1]).
J € San(w)

However, the right-hand side of this inequality is equal to B(vw®?, [n]) by applying
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Lemma 7.4 with f(u) = B(vu, [n]). Since B(vw™, [n]) is non-negative, the proof of
this claim is complete. |

The proof of the second claim is quite similar to the proof of Claim 7.7, and hence
omitted. Thus the proof of the theorem is complete. O

As at the end of Section 6, it is interesting to determine the generating function and
an asymptotic expression for the number of augmented r-signed permutations having
ab-word bab---. (Recall that this is the case when r=(r,...,r).) Let h,=
B(bab - - - [n]). This calculation has been done in [7], so we simply quote the two
results. The exponential generating function and the asymptotics are given by

x"  sin((r — 1)x) + cos(x) 4 ( 7T> <2r>"
i ho~=. 2 (=)
go & n! cos(rx) and " Ny, n) "

8. CoNCLUDING REMARKS

There are many related problems to study. For instance, are there other posets which
have an r-cd-index? More generally, are there other extensions of the ed-index? An
example of a poset P having an r-cd-index is as follows. Let 7, be the poset on the set
(U [r], where the i indicates Cartesian power. The cover relation in 7, is given by
(ar,...,a,_,a)<(ay,...,a,_,). The poset P defined by

P={(x,y):xeB, yeT, p(x)=p(y)}uil},

has an r-cd-index. In fact, the poset P will have the same ab-index as C;.

Pak and Postnikov [16] have found a multivariable generalization of André
polynomials using a branching rule on k-ary (rather than binary) trees. Work of Pak
[15] contains a different multivariable generalization which reduces to a recurrence for
the André polynomial of the subspace lattice. His recurrence can be thought of as a
g-analogue of the cd-index of the boolean algebra. It would be interesting to see if one
could develop a ed-theory for g-analogues of posets. Billera and Liu [4] (also see [11])
have developed a general algebraic setting to view the ed-index. Is there a g-analogue
of their theory?

What other classes of posets will have their ab-index satisfying the strictly increasing
alternating property? A poset that seems to fulfill a similar condition is the partition
lattice II,,. Our data suggests that the ab-word with the largest coefficient in ¥(Il,) is
the word bab---b. Is there a ‘meta-theorem’ which explains why alternating rank

s
selections maximize the beta invariant?

Stanley proved that the ed-index of the face lattice of a convex polytope has
non-negative coefficients [23, Corollary 2.2]. (For a more general statement, see [23,
Theorem 2.2].) From this he observed that the beta invariant will reach its maximum
value, for arbitrary rank selections, by taking alternating rank selections. However,
uniqueness of this result (i.e., that the two alternating rank selections are the only
extremal configurations) does not follow from his observation. By Lemma 2.2 it would
be enough to show that the ed-index of the face lattice of a convex polytope has
positive coefficients. Stanley has conjectured that among all Gorenstein* lattices of
rank n, the boolean algebra B, minimizes all the coefficients of the ed-index [24,
Conjecture 2.7]. This conjecture implies that the ed-index of the face lattice of a convex
polytope has positive coefficients.

The exponential generating function V/1/(1 —rx) enumerates r-multipermutations,
see [17]. Notice that both this generating function and the one for the number of
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augmented André r-signed permutations are of the form Vf(rx), where f(x) is an
exponential generating function. Is there a theory which explains generating functions
of this form?
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