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Note to the Reader 

T his book is one of a series written by professional mathematicians 
in order to make some important mathematical ideas interesting 

and understandable to a large audience of high school students and 
laymen. Most of the volumes in the New Mathematical Library cover 
topics not usually included in the high school curriculum; they vary 
in difficulty, and, even within a single book, some parts require a 
greater degree of concentration than others. Thus, while the reader 
needs little technical knowledge to understand most of these books, 
he will have to make an intellectual effort. 

If the reader has so far encountered mathematics only in classroom 
work, he should keep in mind that a book on mathematics cannot be 
read quickly. iYor must he expect to understand all parts of the book 
on first reading. He should feel free to skip complicated parts and 
return to them later; often an argument will be clarified by a subse- 
quent remark. On the other hand, sections containing thoroughly 
familiar material may be read very quickly. 

The best wsy to learn mathematics is to do mathematics, and each 
book includes problems, some of which may require considerable 
thought. The reader is urged to acquire the habit of reading with 
paper and pencil in hand; in this way mathematics will become in- 
creasingly meaningful to him. 

For the authors and editors this is a new venture. They wish to 
acknowledge the generous help given them by the many high school 
teachers and students who assisted in the preparation of these mono- 
graphs. The editors are interested in reactions to the books in this 
series and hope that readers will write to: Editorial Committee of the 
NML series, in care of THE INSTITUTE OF MATHEMATICAL SCIENCES, 
NEW YORK UNIVERSITY, New York 3, N. Y. 

The Editors 
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Preface 

At first glance nothing seems simpler or 
writing a number, for example 9, in the form 

less significant than 

It turns out, however, that fractions of this form, called "continued 
fractions", provide much insight into many mathematical problems, 
particularly into the nature of numbers. 

' Continued fractions were studied by the great mathematicians of 
the seventeenth and eighteenth centuries and are a subject of active 
investigation today. 

Nearly all books on the theory of numbers include a chapter on 
continued fractions, but these accounts are condensed and rather 
difficult for the beginner. The plan in this book is to present an easy- 
going discussion of simple continued fractions that can be under- 
stood by anyone who has a minimum of mathematical training. 

Mathematicians often think of their subject as a creative ar t  
rather than as a science, and this attitude is reflected in the pages 
that follow. Chapter 1 shows how continued fractions might be dis- 
covered accidentally, and then, by means of examples, how rational 
fractions can be expanded into continued fractions. Gradually more 
general notation is introduced and preliminary theorems are stated 
and proved. In  Chapter 2 these results are applied to the solution of 
linear Diophantine equations. This chapter should be easy to read; i t  
is, if anything, more detailed than necessary. 
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Chapter 3 deals with the expansion of irrational numbers into 
infinite continued fractions, and includes an introductory discussion 
of the idea of limits. Here one sees how continued fractions can be 
used to give better and better rational approximations to irrational 
numbers. These and later results are closely connected with and 
supplement similar ideas developed in Niven's book, Numbers: 
Rational and Irrational. 

The periodic properties of continued fractions are discussed in 
Chapter 4. The reader will find this chapter more challenging than 
the others, but the end results are rewarding. The main part of the 
chapter develops a proof of Lagrange's theorem that the continued 
fraction expansion of every quadratic irrational is periodic after a 
certain stage; this fact is then used as the key to the solution of 
Pell's equation. 

Chapter 5 is designed to give the reader a look into the future, and 
to suggest further study of the subject. Here the famous theorem of 
Hurwitz is discussed, and other theorems closely related to i t  are 
mentioned. 

I t  goes without saying that one should not "read" a mathematics 
book. It is better to get out pencil and paper and rewrite the book. 
A student of mathematics should wrestle with every step of a proof; 
if he does not understand i t  in the first round, he should plan to 
return to it later and tackle i t  once again until i t  is mastered. In  
addition he should test his grasp of the subject by working the prob- 
lems a t  the end of the sections. These are mostly of an elementary 
nature, closely related to the text, and should not present any 
difficulties. Their answers appear a t  the end of the book. 

The first of the two appendices gives a proof that  x2 - 3y2 = - 1 
has no solution in integers, and Appendix I1 is a collection of mis- 
cellaneous expansions designed to show how the subject has devel- 
oped; many of these expansions are difficult to obtain. Finally, there 
is a short list of references. In the text "Crystal [2]", for example, 
refers to item 2 listed in the references. 

I wish to express my thanks to the School Mathematics Study 
Group for including this book in the New Mathematical Library 
series, and to the Editorial Panel for suggestions which have im- 
proved the book. Particular thanks are due to Dr. Anneli Lax, not 
only for technical advice, so freely given, but also for her critical 
reading of the text. I am also grateful to my wife who typed the 
original manuscript, and to Mrs. Ruth Murray, who prepared the 
final typescript. 

C. D. Olds 
Los Altos, California, 1961. 

C H A P T E R O N E  

Expansion of Rational Fractions 

1.1 Introduction 

Imagine that an algebra student attempts to solve the quadratic 
equation 

as follows: He first divides through by x and writes the equation in 
the form 

The unknown quantity x is still found on the right-hand side of this 
equation and hence can be replaced by its equal, namely 3 + l/x. 
This gives 

Repeating this replacement of x by 3 + l/x several more t)imes he 
obtains the expression 
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Since x continues to appear on the right-hand side of this "multiple- 
decked" fraction, he does not seem to be getting any closer to the 
solution of the equation (1.1). 

But let us look more closely a t  the right side of equation (1.2). 
We see that it contains a succession of fractions, 

obtained by stopping a t  
converted into fractions 
numbers 

consecutive stages. These numbers, when 
and then into decimals, give in turn the 

I t  then comes as a very pleasant surprise to discover that these 
numbers (or convergents as we shall call them later) give better and 
better approximations to the positive root of the given quadratic 
equation (1.1). The quadratic formula shows that this root is 
actually equal to 

,- 

which, when rounded to 3.303, is in agreement to three decimal 
places with the last result above. 

These preliminary calculations suggest some interesting questions. 
First, if we calculate more and more convergents (1.3), will we con- 
tinue to get better and better approximations to x = 4(3 + 1/13) ? 
Second, suppose we consider the process used to get (1.2) as  being 
continued indefinitely, so that we have in place of (1.2) the non- 
terminating expression 

where the three dots stand for the words "and so on" and indi- 
cate that the successive fractions are continued without end. 
Then will the expression on the right of (1.4) actually be equal to 
4(3 + 1/13) ? This reminds us of an infinite decimal. For example, 
what is meant when we say that the infinite decimal 0.333 . . . is 

R A T I O N A L  F R A C T I O N S  7 

equal to 5 ? These and many other questions will eventually be dis- 
cussed and answered. 

Multiple-decked fractions like (1.2) and (1.4) are called continued 
fractions. A study of these fractions and their many properties and 
applications forms one of the most intriguing chapters in mathe- 
matics. We must start with simpler things, however. The first of 
these is the introduction of basic definitions. 

1.2 Definitions and Notation 

An expression of the form 

is called a continued fraction. In general, the numbers all  a2, a3, . . . , 
bl, b2, b3, . . . may be any real or complex numbers, and the number 
of terms may be finite or infinite. 

In this monograph, however, we shall restrict our discussion to 
simple continued fractions. These have the form 

where the first term al  is usually a positive or negative integer (but 
could be zero), and where the terms az, a3, ah, - . . are positive 
integers. In  fact, until we come to Chapter 3, we shall further 
restrict the discussion to finite simple continued fractions. These have 
the form 
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with only a finite number of terms all.az, as, . . . , a,. Such a fraction 
is called a terminating continued fraction. From now on, unless the 
contrary is stated, the words continued fraction will imply that  we 
are dealing with a finite simple continued fraction. 

A much more convenient way of writing (1.7) is 

where the + signs after the first one are lowered to remind us of the 
"step-down" process in forming a continued fraction. It is also 
convenient to denote the continued fraction (1.8) by the symbol 
[a,, a2, . . . , a,], so that 

1 1  
(1.9) [all az, . . . , a,] = a l  + - - 1 

a z + a 3 + . . .  +a , '  
The terms all a2, . . . , a, are called the partial quotients of the 
continued fraction. 

1.3 Expansion of Rational Fractions 

A rational nuinber is a fraction of the form p/q where p and q are 
integers with q # 0. We shall prove in the next section that every 
rational fraction, or rational number, can be expressed as a finite 
simple continued fraction. 

For example, the continued fraction for $4 is 

How did we get this result? First we divided 67 by 29 to obtain the 
quotient 2 and the remainder 9, so that 

Note that on the right we have replaced $s by the reciprocal of _2$. 

Next we divided 29 by 9 to obtain 

Finally, we divided 9 by 2 to obtain 

at which stage the process terminates. Now substitute (1.12) into 
(1.11), and then substitute (1.11) into (1.10) to get 

We should notice that in equation (1.10) the number 2 . 29  is the 
largest multiple of 29 that is less than 67, and consequently the 
remainder (in this case the number 9) is necessarily a number 2 0  
but definitely < 29. t 

Next consider equation (1.11). Here 3 9 is the largest multiple of 
9 that is less than 29. The remainder, 2, is necessarily a number 2 0  
but <9. 

In  (1.12) the number 4 2 is the largest multiple of 2 that is less 
than 9 and the remainder is 1, a number 2 0 but < 2. 

Finally, we cannot go beyond equation (1.12), for if we write 

then 2 1 is the largest multiple of 1 that divides 2 and we simply 
end up with 

the calculation terminates. 

t If a number a is less than a number b we write a < b. If a is less than or 
qua1 to b we write a 5 b. Likewise, if a is greater than b, or if a is greater 

,k '  than or equal to b, we write, respectively, a > b, a 2 b.  For a detailed dis- 
mion of inequalities, see E. Beckenbach and R. Bellman [I]. 
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The process for finding the continued fraction expansion for 
can be arranged as follows: 
- 

29)67(2 = al  Divide 67 by 29. 
58 2 .29 = 58; subtract 58 from 67. 
9)29(3 = an Divide 29 by 9. 

27 3 9 = 27; subtract 27 from 29. - 
2)9(4 = a3 Divide 9 by 2. 

8 - 4 . 2  = 8; subtract 8 from 9. 
1)2(2 = a4 Divide 2 by 1. 

2 - 2 1 = 2; subtract 2 from 2. 
0 Process terminates. 

Thue 

We observe, in this example, that in the successive divisions the 
remainders 9, 2, 1 are exactly determined non-negative numbers 
each smaller than the corresponding divisor. Thus the remainder 9 
is less than the divisor 29, the remainder 2 is less than the divisor 9, 
and so on. The remainder in each division becomes the divisor in 
the next division, so that the successive remainders become smaller 
and smaller non-negative integers. Thus the remainder zero must 
be reached eventually, and the process must end. 

Each remainder obtained in this process is a unique non-negative 
number. For example, can you divide 67 by 29, obtain the largest 
quotient 2, and end up with a remainder other than 9? This means 
that, for the given fraction %;, our process yields exactly one 
sequence of remainders. 

As a second example, let us find the continued fraction expansion 
for s. We obtain 

67)29(0 = al  
0 

29)67(2 = az 
58 

R A T I O N A L  F R A C T I O N S  

Hence 
29 
- = [O, 2,3,4,21 = [al, an, a3, a4, ad. 
67 

Notice that in this example al = 0. To check our results, all we 
have to do is simplify the continued fraction 

A comparison of the expansion = [2,3,4,2] with the expan- 
sion of the reciprocal 8 = 10, 2, 3,4, 21 suggests the result that, if 
p is greater than q and 

then 

q 
- = [0, all a2, . . . , a,]. 
P 

The reader is asked to state a similar result for p < q. 

The following examples will help to answer some questions which 
may have occurred to the attentive student. 

First, is the expansion 

the only expansion of 4jg as a simple finite continued fraction? If we 
go back and study the method by which the expansion was obtained, 
the answer would seem to be "yes". And this would be true except 
that a slight change can always be made in the last term, or last 
partial quotient, a4. Since ad = 2, we can write 

1 1  
- - 1 

a4 2 1 
1 +i  

Hence it is also true that 



12 C O N T I N U E D  F R A C T I O N S  

Clearly the expansion [2, 3 ,4 ,  1, 11 can be changed back to its 
original form [2, 3, 4, 21. We shall see in the more general discussion 
which follows that  this is the only way we can get a "different" 
expansion. 

Next, let us consider how to obtain the expansion of a negative 
rational number -p/q. This requires only a slight variation of the 
process already explained. For example, to find the continued 
fraction expansion of -%, proceed as follows: 

44) -37(-1 (Search for a negative quotient 
- 44 which, when multiplied by 44 

7)44 (6 and subtracted from -37, 
42 leaves the smallest positive 

2)7 (3 remainder.) 

6 
1)2(2 . 

2 - 
0 

Thus 

Notice that a l  is negative, but at, as, a4, a6 are positive. 

The third question is this: If we multiply the numerator and 
denominator of $5 by some number, say 3, and then expand the 
resulting fraction, %$+, will the continued fraction for -!$Q+ be the 
same as that for g;? We shall see that the expansions are identical, 
for 
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This illustrates an interesting property of continued fractions. If 
we calculated 

we would get back to $5, not to 2 s .  We always obtain a rational 
fraction p/q in its lowest terms, i.e., a fraction for which p and q 
have no factors greater than 1 in  common. Can you discover a t  this 
stage a reason for this? Later an explanation will be given. 

Problem Set 1 

1. Convert each of the following into finite simple continued fractions. 

354 
(c) 3.54 = - 

100 

2. Find p / q  if 

23 (e) .23 = - 
100 

(g) 3.14159 

3. Find p  / q  if p / q  = [O, 2, 1, 4, 21. 

4. Find p / q  if p / q  = [3, 7, 15, 11. Convert p / q  to a decimal and com- 
pare with the value of T.  

6. Find the simple continued fraction expansions of (a) ++, (b) $+; 
compare these with the expansions in Problem 1 (a), (b). 

6. Show that, if p  > q  and p / q  = [al, az, . . . , a,], then 
q l p  = [O, a,, az, . . . , a,]; and conversely, if q / p  = [O, al, az, . . . , ad 
then p / q  = [a1, az, . . . , a J. 

Thus 

1.4 Expansion of Rational Fractions (General Discussion) 

! .  
So far we have introduced the terminology peculiar to the study 

I. of continued fractions and have worked with particular examples. 
9 But to make real progress in our study we must discuss more general 

results. Working with symbols instead of with actual numbers frees 
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If r2 # 0, we write (1.16) in the form the mind and allows us to think abstractly. Thus, while our first 
theorem merely expresses in general terms what we did in the 
worked examples, once this has been accomplished a host of other 
ideas quickly follows. 

THEOREM 1.1. Any finite simple continued fraction represents a 
rational number. Conversely, any rational number p/q can be repre- 
sented as a finite simple continued fraction; with the exceptions lo be 
noted below, the representation, or expansion, is unique. 

and repeat the division process using rl/r2. 
We observe that the calculations stop when we come to a re- 

mainder r, = 0. Is it possible never to arrive at  an r, which is zero, 
so that the division process continues indefinitely? This is clearly 
impossible, for the remainders TI, r2, r3, . . . form a decreasing 
sequence of non-negative integers q > r l  > r2 > r3 > . . . and 
unless we come eventually to a remainder r ,  which is equal to zero, 
we shall be in the ridiculous position of having discovered an 
infinite number of distinct positive integers all less than a finite 
positive integer q. 

Hence, by successive divisions we obtain a sequence of equations: 

PROOF. The first sentence in this theorem is quite clear from what 
we have explained in our worked examples, for if any expansion 
terminates we can always "back track" and build the expansion into 
a rational fraction. 

To prove the converse, let p/q, q > 0, be any rational fraction. 
We divide p by q to obtain 

where a1 is the unique integer so chosen as to make the remainder 
rl greater than or equal to 0 and less than q. As we saw in the 
worked examples, al can be negative, zero, or positive. If rl = 0, 
the process terminates and the continued fraction expansion for 
p/q i s  [all. 

If r l  # 0, we write 

and repeat the division process, dividing q by rl  to obtain 

terminating, after a certain finite number of divisions, with the 
equation in which the remainder r, is equal to zero. 

It is now easy to represent p/q as a finite simple continued 
fraction. From the first two equations in (1.18) we have 

Notice now that q/rl is a positive fraction, so a2 is the unique 
largest positive integer that makes the remainder r2 a number 
bet,ween 0 and rl. If r2 = 0, the process stops and we substitute 
q/rl = a2 from (1.16) into (1.15) to obtain 

as the continued fraction expansion for p/q. 
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Using the third equation in (1.18) we replace rl/rz by 

and so on, until finally we obtain the expansion 

The uniqueness of the expansion (1.19) follows from the manner in 
which the ai's are calculated. This statement must be accompanied, 
however, by the remark that once the expansion has been obtained 
we can always modify the last term a, so that the number of terms 
in the expansion is either even or odd, as  we choose. To see this, 
notice that  if an is greater than 1 we can write 

so that  (1.19) can be replaced by 

On the other hand, if a, = 1, then 

so that  (1 .l9) becomes 

Hence we have the following theorem: 

THEOREM 1.2. Any rational number p/q can be expressed as a 
jinite simple continued fraction in which the last term can be modijied 
so as to make the number .of terms in the expansion either even or odd. 

It is interesting to notice that the equations (1.18) are precisely 
the equations used in a procedure known as Euclid's algorithm for 
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finding the greatest common divisor of the integers p and q. t [This 
procedure occurs in the seventh book of Euclid's Elements (about 
300 B.c.) ; however i t  is known to be of earlier origin.] 

To find the greatest common divisor of p and q by means of 
Euclid's algorithm, we write the equations (1.18) in the form: 

The first equation, p = alq + rl, is obtained from the first equa- 
tion in (1.18) by multiplying both sides by the denominator q; 
similarly for the other equations. 

We shall prove that the last nonvanishing remainder is the 
g.c.d. of p and q. In order to do this, we first state the two condi- 
tions that the g.c.d. of two integers must satisfy. The number d is 
the g.c.d. of two integers p and q if 

(a) d divides both integers p and q, and 
(b) any common divisor c of p and q divides d. 

For example, let p = 3 . 5  . 11 and let q = 32 5 13. Then the 
g.c.d. of p and q is d = 3 . 5, since (a) d = 3 . 5 divides both p 
and q; and (b) the common divisors 3 and 5 of p and q divide d. 

We need only one more observation: If a, b, and c are integers 
such that 

a = b + c ,  

then any integer d which divides both a and b must'divide c. 
For if d divides a, then a = dal where al  is an integer, and if d 
divides b, then b = dbl, b l  an integer. Since a - b = c, we see 
that 

a - b = dal - dbl = d(a1 - bl) = c, 

so that d divides c. Likewise, any integer d which divides both b 
and c will also divide a. 

t The greatest common divisor (g.c.d.) of any two integers p and q is the 
largest integer which divides both p and q. In  the theory of numbers the 
g.c.d. of the integers p and q is denoted by the symbol (p, q); thus, (p, q) = d 
means that d is the largest integral factor common to both p and q. 



We now return to the equations (1.22). The last equation there, 

shows that r,-~ divides, or is a factor of, r,-~. The equation 
directly above it, namely 

shows that rn-l divides T,-~, since i t  divides rn-1 and r,-~. In  
the same way, from the equation 

we see that divides rn-+ since i t  divides both r n - ~  and rn-3. 
Working up from the bottom in this fashion, we find that rnWl 
divides r3 and r2, and hence divides rl. Dividing r2 and rl, i t  
divides q; and finally, dividing both rl and q, i t  divides p. 
Hence, rn-l divides both p and q, and condition (a) is satisfied. 

Next we must show that if c is any common divisor of both p 
and q, then c divides rn-l. This time we start with the first 
equation in (1.22) and work our way down. If c divides both p 
and q, the first equation in (1.22) shows that c divides rl. But if 
c divides both q and rl, the second equation in (1.22) shows that 
c divides r2. Continuing in this manner, we arrive a t  the next to 
the last equation, 

in which c divides rnP3 and rn -~ ,  and hence divides rn-1. Thus 
condition (b) is satisfied, and we conclude that r,-1 is the g.c.d. of 
p and q. 

As an  example, let us use Euclid's algorithm to determine the 
g.c.d. of p = 6381 and q = 5163. We find that 

6381 = 1 . 5163 + 1218 

5163 = 4.1218 + 291 

1218 = 4 .291 + 54 

291 = 5 . 5 4  + 21 
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hence 3 is the g.c.d. of 6381 and 5163. Actually, 6381 = 32 .709, 
I where 709 is a prime number, and 5163 = 3 . 1721 where 1721 is 

also a prime number. (A prime number is a number with precisely 
two positive integral divisors: 1 and the number itself.) Thus 3 is the 
only factor common to these two numbers, and hence is the g.c.d. 

Problem Set 2 

1. Expand the following rational fractions into finite simple continued 
fractions with an even number of terms and also with an odd number of 
terms: 

2. Use Buclid's algorithm to find the greatest common divisor (g.c.d.) of 
the following pairs of numbers: 

(a) 1380,1449 (b) 1517,2015 (c) 2299,3800 (d) 3528,7455 

1.5 Convergents and Their Properties 

Continued fractions are of great service in solving many interest- 
ing problems, but before we can put them to effective use we must 
study some of their properties in greater detail. 

In Section 1.4 we saw that any rational fraction p/q could be 
expanded into a finite simple continued fraction 

where a l  is a positive or negative integer, or zero, and where 
a,, aa, . . , a, are positive integers. From now on we will call the 
numbers all  a2, . . . , a, the partial quotients or quotients of the 
continued fraction. From' these we can form the fractions 

, ,  obtained, in succession, by cutting off the expansion process after 
the first, second, third, . . steps. These fractions are called the 
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first, second, third, . . . convergents, respectively, of the continued 
fraction (1.23). The nth convergent, 

i t  equal to the continued fraction itself. 
I t  is important to develop a systematic way of computing these 

convergents. We write 

where p l  = all ql = 1. Next we write 

where p2 = alaz + 1 and qz = az;  then 

and so on. 
Now let us take a closer look a t  the convergent Cr. We notice that 

so that 

Again, from c4 we observe, by factoring, that 

so that 
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From (1.24) and (1.25) we might guess that if 

1 then 

(1.26) 

and that in general, for i = 3,4 ,  5, . . . , n, 

where 

(1.27) 

That  the equations (1.26) are correct can be confirmed by a direct 
calculation. This, of course, would not give us proof that the equa- 
tions (1.27) are true for i = 3, 4, 5, . . . , n, but i t  is a genuine 
example of inductive thinking. We guess the formulas from the first 
few calculations; then, although convinced of their correctness, we 
must still supply a formal proof. Thus we state and then prove by 
induction the following theorem: 

THEOREM 1.3. The numerators p, and the denominators q, of the 
1 i th convergent c, of the continued fraction [al, az, . . . . a,] satisfy the 

equations 

with the initial values 

pi = all pz = anal + 1, 
(1.29) 

ql = 1, 42 = a2. 

PROOF. We have seen already that  cl = pl/ql = a l / l  and that 
C2 = p2/qz = (azal + l)/ap. If we substitute i = 3 in 
(1.28) we get 

equations 



22 C O N T I N U E D  FRACTIONS 

again in agreement with the direct calculation of c,. Let us assume 
that Theorem 1.3 is true, or has been verified by direct calculation, 
for the integers 3,4,5,  . . up to some integer k; that is, that 

for j = 3 ,4 ,5 ,  . . . , k - 1, k. On the basis of this assumption, we 
wish to prove that Theorem 1.3 necessarily holds for the next 
integer k + 1. To do this we use equations (1.30) to help us supply a 
proof that 

The next few steps will require concentration. Notice first that 
ck+, differs from ck only in having (ak + l/ak+l) in place of ak. 
To see this, simply compare 

1 1  1 1  

with 

This suggests that we should be able to calculate ck+l from the 
formula for ck obtained from (1.30) with j replaced by k, that 
is, from 

This we could certainly do if we were sure that the numbers 
pk-2, qk-2, pk-1, qkPl did not change their values when we tamper 
with ak. 

To see that they do not, let us look a t  the manner in which they 
are calculated. In equation (1.30), first replace j by k - 2, and 
then by k - 1. We obtain in succession: 

and 
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We notice that the numbers pk-~, qk-l depend only upon the 
number ak-1 and the numbers pk-2, qk-2, pk-3, qk-3, all of which in 
turn depend upon preceding a's, p's, and q's. Thus the numbers 
pk-2, qk-2, pk-I, qk-1 depend only upon the first k - 1 quotients 
all a,, . . . , ak-1 and hence are independent of ak. This means 
that they will not change when ak is replaced by (a, + l/ak+l). 

We are now ready to calculate ~ k + ~ .  In (1.32) replace ak by 
(ak + l/ak+l) to obtain, as we have explained, 

Now, multiplying numerator and denominator by ak+l, we obtain 

and rearranging the terms, we get 

At this point we use the assumption that formulas (1.30) hold for 
j = k ,  i.e., that 

akpk-1 + pk-2 = pk, 

Hence the terms in parentheses in the numerator and denominator 
of our last expression for ck+l can be replaced, respectiveIy, by pk 
and qk. Thus, we obtain 

We have proved, then, that if the expression for the convergent cj, 
given by (1.30), holds for the values j = 3,4, 5, . . , k, then it also 
holds for the next convergent ck+l = pk+l/qk+l. But we actually 
know by a direct calculation that (1.30) holds for j = k = 3. 
Hence it is true for the next integer k + 1 = 4, and likewise for 
k = 5, 6, 7, - . . , n. This proves Theorem 1.3. 

In studying this proof, notice that nowhere have we used the fact 
that the quotients ai are integers. Although each ai is an integer, 
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the number ak + l/ak need not be one. Nevertheless its substitu- 
tion for ak in the proof causes no breakdown of the argument. 

It would be convenient if the equations (1.28) could also reproduce 
the first two convergents given by (1.29). If we put i = 1, 2 in 
(1.28) we get the undefined terms pol p+ qo, q-l. However, if we 
assign the values 

to these undefined terms, then equations (1.28) will hold for 
i = 1 , 2 , 3 ,  . . . , n - 1, n, and the first two values, i = 1, 2, will 
reproduce equations (1.29). Setting i equal to 1 in (1.28), and using 
(1.33), we get 

for i = 2 we get 

Hence, the assigned values (1.33) enable us to dispense with equa- 
tions (1.29) and to use instead equations (1.28), with i = l, 

2, . . . , n. But notice that  p-l/q-l and po/qo are not convergents. 

The calculation of successive convergents can now be system- 
atized. An example will make this clear. The continued fraction ex- , 

pansion for is 

We form the following table: 

Pi O t l  

Pi 1 0  2 t 9  
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Explanation of table: The entries in the first row of the table are 
the values of i :  i = - 1, 0, 1, 2, . . . . Under each value of i the 
corresponding values of ail pi, qi, ci have been listed. Thus, under 
i = 4 we find a4  = 2, p4 = 49, q4 = 20, c4 = G. 

We form our table in this way: We write the values a; in the sec- 
ond row, under the values of i to which they correspond. The special 
values p-I = 0, PO = 1, q-1 = 1, qo = 0 are entered a t  the left, 
under i = - 1, i = 0, respectively. Then we calculate the pi's. 
First, from equations (1 .28), using i = 1, we get 

d (Follow the first system of arrows O t l  .) 

We record pl = 2 under i = 1 in the third row. For i = 2, we 
obtain 

2 

which is recorded under i = 2 in the same row. For i = 3, 
4 

and so on. To calculate the q,'s we follow the same scheme, enter- 
ing the values we obtain in the row labeled qi. Thus, for example, 

so 20 is recorded in the fourth row, under i = 4. 

Problem Set 3 

Note: Starred problems are more difficult and could be omitted the 
first time over. 

1. Expand the following rational numbers into simple continued fractions 
and calculate the successive convergents ci for each number. 

(a) (b) (c) (d) +&$ 

2. Express each of the following continued fractions in an equivalent 
2 5 22 49 120 form but with an odd number of partial quotients. 
1 2 9 20 49 

(a) [2, 1, 1, 4, 1, 11 (c) [O, 4, 2, 61 
pi = adpi-, + pi-2, i - I  + i -  i = 1, 2~ . . . (b) [4, 2, 1, 7, 7, 11 (dl [4, 2, 6, 11 
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For each continued fraction in Problem 2, let n be the number of 
partial quotients and calculate p , ~ , - ~  - ~,,-~q,;  then calculate the 
corresponding quantity after these fractions have been expressed 
with an odd number of partial quotients. In 2 (a), for example, take 
pn/qn = p6/q6, the last convergent. 

Calculate the convergents of the continued fraction [I, 2,3,4,5,  61 and 
show that p6 = 5p5 + 5p4 + 4p3 + 3p2 + 2pl + 2. (See Problem 8 
below .) 

For [3, 1, 4, 1, 51, calculate ps and p4. Then convert p6/p4 into a 
simple continued fraction and compare it with the original fraction. Do 
the same with q5/q4. (See Problem 7.) 

Calculate the successive convergents to the following approximations 
to the numbers in parentheses. 

(a) 3.14159 (T) (c) 0.4771 (log10 3) 
(b) 2.718 (e) (d) 0.3010 (loglo 2) 

Prove that 

p,- - [an, an-t, an-z, . . . , all, 
pa-1 

and that 

Hints: We know that pn = a,pn-l + pn-2; hence 

pn-z 

We also know that pnPl = an-lpn-z + pn-3; hence 

and so on. 

1.6 DifIerences of Convergents 

Those who worked the preceding exercises will already have 
guessed t h a t  the  convergents t o  a finite simple continued fraction are 
always in their lowest terms. This is a corollary to  the following 
fundamental theorem. 

THEOREM 1.4. If pi = aipi-1 + pi-2 and qi = aiqi-i + qi-z are 
defined as  in Theorem 1.3, then 

PROOF: Direct calculations show t h a t  the  theorem is true for 
i = 0, 1, 2. When i = 0, 

poq-1 - p4qo = 1 . 1 - 0 0 = 1 = (-1)O. 

when i = 1, 

P I ~ O  - poql = a l  . 0 - 1 - 1 = (- 1)'; 

when i = 2, 

Pn91 - p~qz = (anal + 1) 1 - alaz = 1 = ( - 1 ) 2 .  

We shall prove tha t  if the  theorem holds for i = k, then it also 
holds for the  next integer, i = k + 1. From Theorem 1.3 [see 
equations (1.28)] we know tha t  for i = k + 1, 

pk+l '= ak+lpk + pk-1, qk+l = aic+lqk + qk-1; 

hence we can write 

pk+lqk - pkqk+l = (ak+lpk + pk-l)qk - ~k(~k+lqk f qk-1) 

(1.34) = ak+lpkqk + pk-lqk - ak+lpkqk - pkqk-1 
8 

= (- 1) (pkqk-1 - pk-1qk). 

We assume tha t  the theorem holds for i = k, tha t  is, t h a t  

pkqk-1 - pk-lqk = 
*8. Generalize Problem 4. If p~/pl, p2/92, . . . , pn/qn are the convergents 

of [I, 2, 3, 4, . . . , nl, show that , Substituting this result into the last line in (1.34), we see tha t  

. . . + 3pz + 2 ~ 1  + (pi + 1). 
But this is the  statement of the theorem for i = 1c + 1, so we have 

Hint: In the relation pi = ipi-1 + pi-,, let i be equal to 1 1  2,3, . . n proved tha t  the theorem holds for i = k + 1 if i t  holds for i = k. and add the resulting expressions. Note that an = n. 
8 ,@ I 
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We know the theorem holds for i = 0;  hence i t  holds for i = 0+ 1 = 1, 
and therefore for i = 1 + 1 = 2, and so on for all values of 
i = 0 , 1 , 2 ,  . . a ,  n. 

COROLLARY 1.5. Every convergent ci = pi/qi, i 2 1, of a simple 
continued fraction is in  its lowest terms, that is, pi and qi have no com- 
mon divisors other than + 1 or - 1. 

PROOF. Since 
piqi-1 - pi-1q; = (- 

i t  follows that any number which divides both pi and qi must be a 
divisor of ( - l)i. But the only divisors of ( - l ) i  are + 1 and - 1 ; 
hence the numbers + 1 and - 1 are the only commondivisors of 
pi and qi. I n  our discussion of Euclid's algorithm, we used the sym- 
bol d = (a,b) to indicate that d was the g.c.d. of a and b ;  we 
can now state that (pi,qi) = 1, since 1 is the largest number that 
divides both pi and qi. 

Problem Set 4 

1. Check Theorem 1.4 using the continued fraction [3, 1, 2,2, 1, 51 by 
calculating in turn pop-I - p-lqo, P I ~ O  - poq~, pzql - p1q2, etc. 
Also verify that each convergent pl/ql, pz/qz, . . . , pdq, is 
rational fraction in its lowest terms. 

2. Give another proof of Theorem 1.4 using the following hints. Notice that 

pipi-I - pi-~qi = (aipi-i + pi-2)qi-1 - pi-~(aiqi-I + qi-2) 

= (- 1) (pi-lqi-2 - pi-2~1-1). 

The expression pi-lqi-2 - pi-lqi-1 is the same as piqi-1 - pi-~qi but 
with i replaced by i - 1 .  Hence this reduction, or "stepdown" from 
i to i - 1, can be repeated, yielding 

After i reductions of the same sort, performed in succession, we obtain 
the final result, 

1.7 Some Historical Comments 

We end this chapter with a few brief remarks concerning the 
history of the theory of continued fractions. The earliest traces of 
the idea of a continued fraction are somewhat confused, for many 
ancient arithmetical results are suggestive of these fractions, but 
there was no systematic development of the subject. 
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We have already seen that Euclid's method for finding the g.c.d. 
of two numbers is essentially that of converting a fraction into a 
continued fraction. This is perhaps the earliest (c. 300 B.c.) im- 
portant step in the development of the concept of a continued 

1 fraction. 
A reference to continued fractions is found in the works of the 

Indian mathematician Aryabhata, who died around 550 A.D. His 
work contains one of the earliest attempts a t  the general solution of a 

I linear indeterminate equation (see next chapter) by the use of 
continued fractions. Further traces of the general concept of a con- 
tinued fraction are found occasionally in Arab and Greek writings. 

Most authorities agree that the modern theory of continued frac- 
tions began with the writings of Rafael Bombelli (born c. 1530), a 
native of Bologna. His treatise on algebra (1572) contains a chapter 
on square roots. In our modern symbolism he showed, for example, 
that 

This indicates that he knew, essentially, that 

The next writer to consider these fractions was Pietro Antonio 
Cataldi (1548-1626), also a native of Bologna. In a treatise on the 

) theory of roots (1613), he expressed v'T8 in the form 

This he modified, for convenience in printing, into the form 

) which is substantially the modern form 

1 

A third early writer who deserves mention is Daniel Schwenter 
i (1585-1636), who was a t  various times professor of Hebrew, 
1 Oriental languages, and mathematics a t  the University of Altdorf, 

Germany. In  his book Geometrica Practica he found approximations 
to by finding the g.c.d. of 177 and 233, and from these calcula- 

,$ tions he determined the convergents *, +g,  3, +, and z. 1 ,  
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The next writer of prominence to use continued fractions was 
Lord Brouncker (1620-1684), the first President of the Royal 
Society. He transformed the interesting infinite product 

discovered by the English mathematician John Wallis (1655), into 
the continued fraction 

but made no further use of these fractions. 
In the discussion of Brouncker's fraction in his book Arithmetica 

Injinitorum, published in 1655, Wallis stated a good many of the 
elementary properties of the convergents to general continued frac- 
tions, including the rule for their formation. He also used for the 
first time the name "continued fraction". 

The great Dutch mathematician, mechanician, astronomer, and 
physicist, Christiaan Huygens (1629-1695) used continued fractions 
for the purpose of approximating the correct design for the toothed 
wheels of a planetarium (1698). This is described in his treatise 
Descriptio Automati Planetarii, published posthumously in 1698. 

From this beginning great mathematicians such as Euler (1707- 
1783), Lambert (1728-1777), Lagrange (1736-1813), and many 
others developed the theory as we know it today. In particular, 
Euler's great memoir, L)e Fractionibus Continius (1737), laid the 
foundation for the modern theory. 

Continued fractions play an important role in present day 
mathematics. They constitute a most important tool for new dis- 
coveries in the theory of numbers and in the field of Diophantine 
approximations. There is the important generalization of continued 
fractions called the analytic theory of continued fractions, an 
extensive area for present and future research. In the computer 
field, continued fractions are used to give approximations to various 
complicated functions, and once coded for the electronic machines, 
give rapid numerical results valuable to scientists and to those work- 
ing in applied mathematical fields. t 

t See F. B. Hildebrand, Introduction to Numerical Analysis, New York: 
McGraw-Hill Book Company, 1956 (Chapter 9). 

C H A P T E R  T W O  

Diophantine Equations 

2.1 Introduction 

A great many puzzles, riddles, and trick questions lead to mathe- 
matical equations whose solutions must be integers. Here is a typical 
example: A farmer bought a number of cows a t  $80 each, and a 
number of pigs a t  $50 each. His bill was $810. How many cows and 
how many pigs did he buy? 

If x is the number of cows and y the number of pigs, we have 
the equation 

which is equivalent to 

If nothing limits the values of x and y in equation (2.2), we can 
give x any value, say x = $, and then solve the resulting equation 

for y, getting y = s7-. In  this sense, (2.2) is an indeterminate equa- 
tion, which means that we can always find some value of y corre- 
sponding to any value we choose for x. 

If, however, we restrict the values of x and y to be integers, as 
the farmer is likely to do (since he is probably not interested in half a 
cow), then our example belongs to an extensive class of problems 
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requiring that we search for integral solutions x and y of indeter- 
minate equations. Indeterminate equations to be solved in integers 
(and sometimes in rational numbers) are often called Diophantine 
equations in honor of Diophantus, a Greek mathematician of about 
the third century A.D., who wrote a book about such equations. 
Our problem, i t  should be noted, has the further restriction that both 
x and y must not only be integers but must be positive. 

Equation (2.2) and hence equation (2.1) can be solved in many 
wa.ys. I n  fact there i s  no  harm in solving such equations by trial and 
error or by making intelligent guesses. For example, if we write equa- 
tion (2.2) in the form 

81 - 8x = 5y, 

me need only search for positive integral values of x such that 
81 - 8 s  is a multiple of 5 .  Letting x, in turn, take on the values 
0, 1, 2,3,  . . . , 10, we find that x = 2 and x = 7 are the only 
non-negative values which make 81 - 82 a non-negative multiple 
of 5. The calculations are 

hence the two solutions to our problem are (x, y) = (2, 13) and 
(x, y) = (7, 5). So the farmer could buy 2 cows and 13 pigs, or 
7 cows and 5 pigs. 

There are other ways of solving Diophantine equations. We shall 
give two additional methods. The first of these was used extensively 
by Euler in his popular text Algebra, published in 1770. The second 
method will show how the theory of continued fractions can be 
applied to solve such equations. 

2.2 The Method Used Extensively by Eulert 

Let us consider again the equation 

Since y has the smaller coefficient, we solve the equation for y, 
getting 

t For additional examples, see 0. Ore [lo]. 
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Both 81 and 8 contain multiples of 5, that is, 

81 = 5 - 1 6 +  1 and 8 = 5 . 1 + 3 ;  
I 

therefore, from (2.4), we have 

( 5 .  16 + 1) - ( 5 .  1 + 3)x 
Y =  5 

where 

Since x and y must be integers, we conclude from equation (2.5) 
that t must be an integer. Our task, therefore, is to find integers x 
and t satisfying equation (2.6). This is the essential idea in Euler's 
method, i.e., to show that integral solutions of the given equation 
are in turn connected with integral solutions of similar equations 
with smaller coefficients. 

We now reduce this last equation to a simpler one exactly as  we 
reduced (2.3) to (2.6). Solving (2.6) for x, the term with the smaller 
'coefficient, we get 

(2.7) 

where 
t + l  u = - ,  

3 
or 

(2.8) t = 3u - 1. 

Again, since x and t must be integers, u must also be an integer. 
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Conversely, if u is an integer, equation (2.8) shows that 

is an integer; x also is an integer since, from (2.7), 

Substituting x = 2 - 5u and t = 3u - 1 in (2.5) gives 

so that y is an int,eger. This shows that the general integral solution 
of (2.3) is 

where u is any integer, positive, negative, or zero, i.e., 

u = 0 ,  $1, f 2 ,  + 3 , . . . .  

A direct'substitution into (2.3) shows indeed that 

82 + 5y = 8(2 - 5u) + 5(13 + 8u) = 81. 

Consequently (2.3) has an infinite number of solutions, one for each 
integral value of u. A few solutions are listed below: 

If the problem is such that we are limited to positive values of x 
and y, then two inequalities must be solved. For example, if in (2.9) 
both x and y are to be positive, we must solve the two inequalities 

for u. These inequalities require that ZL be an  integer such that 

and a glance a t  Figure 1 shows that the only two possible integral 
values of u are 0 and - 1. Substituting, in turn, u = 0 and 
u = - 1 in (2.9) gives (x,y) = (2,13) and ( x , ~ )  = (7,5), the 
original answers to the farmer's problem. 

1 .  ; Figure 1 

Going back over the solution of equation (2.3) we can raise certain 
questions. For example, why should we solve for y, rather than for 
x, simply because y has the smaller coefficient? If we had solved 

I first for x, could we have arrived a t  a shorter solution? In the second 
line below equation (2.4) we replaced 8 by 5 . 1 + 3. Why not 
replace 8 by 5 . 2 - 2 Y In  solving equation (2.3) the writer did not 
have in mind the presentation of the shortest solution. We leave i t  
to the reader to experiment and try to obtain general solutions in 
the least number of steps. 

I 
0 Problem Set 5 

I 

1. Use Euler's method to solve the following linear Diophantine equations. 
In each case list the positive integral solutions, if any. 

(a) 15s + 47y = 2 (c) 152 + 47y = 4 
(b) 312 + 7y = 1 (d) 132 + 21 y = 295 

I 2. Does the indeterminate equation 6x + 15y = 17 have integral solu- 
tions? Note that the left side of the equation is divisible by 3. What 
about the right-hand side? What happens if we go ahead and use Euler's 
method anyway? 

3. Return to equation (2.9) and fill out the following table for the values of 
u indicated. 

1 On ordinary graph paper plot the points (x, y) and join them by a 
straight line. Use this graph to pick out the positive solutions of the 
equation 82 + 5y = 81. 

4. A man buys horses and cows for a total amount of $2370. If one horse 
costs $37 and one cow $22, how many horses and cows does he buy? 

5. Show that the equation 172 - 15y = 5 has infinitely many positive 
integral solutions. 
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6. Find integers u and v such that u + v = 84 and such that u is 
divisible by 9 and v is divisible by 13. Hint: Let u = 92, v = 13y. 

7. Find a number N which leaves a remainder 2 when divided by 20 and a 
remainder 12 when divided by 30. Hint:  Find integers x and y so that 
the required number N = 202 + 2 = 30y + 12. Hence solve the 
equation 202 - 30y = 10. 

2.3 The Indeterminate Equation ax - by = + 1 
We are now ready to show how continued fractions can be used to 

solve the linear indeterminate equation ax + by = c where a, b, 
and c are given integers, and where x and y are the unknown 
integers. 

Our approach to this will be a step-by-step process, through easy 
stages, culminating in the final mastery of the solution of any 
solvable equation of the form ax + by = c. We start with the 
restrictions that the coefficients of x and y are of different signs 
and that they have no common divisor but 1. Thus we first learn to 
solve the equation 

where a and b are positive integers. [The equation -ax + by = 1, 
(a, b) = 1, is of the same form with the roles of x and y inter- 
changed.] The integers a and b can have no dizrisors greater than 1 in  
common; for, if an integer d divides both a and b, i t  also divides 
the integer 1 on the right-hand side of the equation and hence can 
have only the value d = 1. In other words, a and b must be 
relatively prime, or d = (a, b) = 1. 

We shall now state and prove 

THEOREM 2.1. The equation ax - by = 1, where a and b are 
relatively prime positive integers, has an infinite number of integral 
solutions (x, y). 

We first convert a/b into a finite simple continued fraction 

a 
(2.11) - - 

b - [al, an, . . . , an-,, a,], 

and calculate the convergents CI, c2, . . . , ~ ~ - 1 ,  cn. The last two 

convergents, 

are the key to the solution, for they satisfy the relation stated in 
Theorem 1.4, namely that 

pnqn-1 - qnpn-I = ( -Un,  

and since p, = a, q, = b, this gives 

If n is even, that is if we have an even number of partial quotients 
a,, an, . . . , a,, then (-1)" = 1 and (2.12) becomes 

(2.13) aq,-, - b ~ , - ~  = 1. 

Comparing this with the given equation 

we see that a solution to this equation is 

This, however, is a particular solution and not the general solution 
We indicate particular solutions by the notation (xo,yo). 

On the other hand, if n is odd so that ( -  1)" = - 1, we c,an 
modify the continued fraction expansion (2.11) by replacing 

or by replacing 

Thus, if (2.11) has an odd number of partial quotients, i t  may be 
transformed into 

[al ,an; . . ,a , -1,1] ,  if a n > l ,  
or into 

[al, a2, . . . , a,-1 + 11, if a, = 1;  
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in both cases the number of partial quotients is even. Using these 
continued fractions, one case or the other, we re-calculate ~,-~/q,- l  
and pn/qn = a/b, and equation (2.13) is satisfied once more. 

Once a particular solution (xo, yo) of equation (2.10) has been 
found, i t  is an  easy matter to find the general solution. To  this end, 
let (x, y) be any other solution of (2.10). Then 

and 

and a subtraction gives 

(2.14) a(x - XO) = b(y - yo). 

This shows that  b divides the left side of the equation. But b can- 
not divide a since a and b are relatively prime; hence b must 
divide x - xo, that  is, x - xo is an integral multiple of b, and we 
may write 

x - xo = tb (t an integer), 

x = xo + tb. 

But if this is true, (2.14) shows that  

so that  
= b ( ~  - YO), 

y - yo = at. 

I t  follows that any other solution (x,y) of ax - by = 1 has the 
form 

Conversely, if (xo, yo) is any particular solution of ax - by = 1, 
and if we set up the equations (2.15) with t any integer whatever, 
then the values (x, y) will satisfy the given equation, because 

= (ax0 - byo) + tab - tab 

We call the values of x and y given by equations (2.15) the general 
solution of the indeterminate equation ax - by = 1. 

': EXAMPLE 1. Find integral solutions of the indeterminate equation 

Here the integers 205 = 5 . 41 and 93 = 3 . 31 are relatively prime, so 
the equation has solutions. 

SOLUTION. The continued fraction a% = [2, 4, 1, 8, 21 has an odd 
number of partial quotients, but it can be replaced by 

1 . the equivalent expansion with an even number of quotients. The con- 
[ vergent~ are then computed. 
1 1  

f Here n = 6, pn-I = p5 = 108 = yo, qn-, = q6 = 49 = xo, and hence, 
by (2.15), the general solution of the equation ax - by = 2052 - 93y = 1 

I is 

I As a check, let t = 1; then x = 142, y = 313 and 205(142) - 93(313) 
= 29110 - 29109 = 1 .  As a general check we have 

I ainoe the terms involving t cancel. 

I The method for solving t.he equation 

is quite similar to that  used to solve (2.10). We convert a/b into 
a finite simple continued fraction with an  odd number of conver- 

! gents. In  this case equation (2.12) becomes 
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since n is odd. Comparing this equation with 

a x  - by = -1, 
we see that 

XO = qn-1, YO = pn-1 

is a particular solution of the given equation, the general solution 
being, as before, 

x = xo + tb 
t = O ,  f l ,  f 2 ,  L-3, . . . .  

y = yo + ta  

EXAMPLE 2. Find integral solutions of the equation 

SOLUTION. The numbers 205 and 93 are relatively prime, hence the given 
equation has integral solutions. The continued fraction expansion for 
3% is 

and has an odd number of partial quotients, so (- 1)" = (- = - 1 as 
required. To find the convergents we set up the table 

Our calculations show that  c,-~ = p,-l/qn-l = p4/q4 = s; hence a 
particular solution of the given equation is xo = q4 = 44 and yo = pr 
= 97. The general solution, therefore, is 

As a check, take t = - 1 ; then (x,y) = (-49, -108), and 

I 

I 

1 
J I 

t 

I.. . 
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I t  is interesting to notice that once we have calculated the 
particular solution (so, yo) = (qn+ pnPl) of the equation 

we can immediately obtain a particular solution, call i t  (xl, y,), of 
the equation 

The particular solution of (2.16) will be 

for then 
axl - byl = 

- - 

- - 

- - 

since from (2.13) we know that aqnPl - bpn-l = 1. 
The general solution of the equation a x  - by = - 1 will then be 

and this can be checked by a direct substitution. 

EXAMPLE 3. Show that we can solve Example 2 if we have already solved 
Example 1. That is, solve the equation 2052 - 93y = - 1, knowing that  
(zo, yo) = (49, 108) is a particular solution of 2052 - 93y = 4-1. 

SOLUTION. Using equations (2.17) we find that 

is a particular solution of 2052 - 93y = -1. Hence the general solution, 
according to (2.18), is 

which agrees with the solution given for Example 2. 
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There is still another way to solve Example 2 ,  provided we know a 
particular solution of Example 1. This is illustrated in the following 
example. 

EXAMPLE 4. Give a third solution of the equation 205% - 93y = - 1. 

SOLUTION. Since (xo,  yo) = (49, 108) is a particular solution of the equa- 
tion 2052 - 93y = + I ,  we know that  

If we multiply through by -1 we see that  

hence ( x l ,  y,) = (-49,  - 108) is a particular solution of 2052 - 93y = - 1, 
and the general solution becomes 

Notice that  equations (2.19) and (2.20) reproduce the same values of x and 
y but not for the same values of t. For example, t = 2 in (2.19) gives 
( x ,  y) = (230, 507), the same values obtained from (2.20) for t = 3. 

Problem Set 6 

1. Find the general integral solutions of the following equations. Check 
each answer. 

(a) 132 - 17y = I (c) 652 - 56y = 1 (e) 562 - 65y = 1 
(b) 13% - l 7 y  = -1 (d) 652 - 56y = -1 

2.4 The General Solution of ax - by = c, (a, b) = 1 

Once we have learned to solve the indeterminate equation 

where a and b are two relatively prime positive integers, i t  is a 
simple matter to solve the equation 

(2.22) a x  - by = c, 

where c is any integer. For, suppose that ( x o ,  yo) is any particular 
solution of (2.21)  ; then 
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and multiplying both sides by c, we obtain 

a(cxo) - b(cyo) = c, 

so that (cxo, cyo) is a particular solution of (2.22). Thus the general 
solution of equation (2.22) will be 

x = cxo + bt 
(2.23) t = 0,  + I ,  f 2 ,  . . .  . 

y = cyo + at 

This can easily be verified by a direct substitution into (2.22). 

EXAMPLE 1. Solve the equation 

2052: - 93y = 5. 

SOLUTION. 
(zo, Y O )  = (49, 
that is, 

From Example 1, Section 2.3, we know that  
108) is a particular solution of the equation 2052 - 93y = 1, 

Multiplying both ,sides by 5 we get 

205(5 .49)  - 93(5 . 108) = 5, 

so that  (5x0, 5y0) = (245, 540) is a particular solution of the given equa- 
tion. The general solution, according to (2.23), will be 

As a check, take t = 1 ;  then (x, y) = (338, 745) and 

EXAMPLE 2. Solve the equation 

2051: - 93y = -5. 

SOLUTION. In  Example 1 of this section we recalled that  

205(49) - 93(108) = 1. 

Multiplying through by -5 we get 

205 ( -5 .  49) - 9 3 ( - 5 .  108) = -5,  
or 

205(-245) - 93(-540) = -5, 

so that  (xO, yo) = (-245, -540) is a particular solution of the given 
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equation. The general solution, according to  equation (2.23), is then 

x = -245 + 93t 
t = 0 ,  L-1, +2, . , .  . 

y = -540 + 20% 

To check this, take t = 2, then ( x ,  y) = (-59, -130), and 

205(-59) - 93(-130) = -12095 + 12090 = -5. 

Problem Set 7 

1. Use particular solutions obtained from the problems a t  the end of 
Section 2.3 to obtain the general integral solutions of the following 
equations. Check each answer. 

(a) 132 - 17y = 5 (b) 65% - 56y = 7 (c) 56% - 65y = -3 

2.5 The General Solution of ax + by = c, (a,  b) = 1 

The discussion of this equation is similar, except for some minor 
changes, to that of the equation ax  - by = c. Still assuming that 
a and b are positive integers, we first find a particular solution of 
the equation 

ax + by = 1, (a,b) = 1. 

To do this, expand a /b  as a simple continued fraction with an even 
number of partial quotients. From the table of convergents read 
off pnPl and qnPl. Then 

as before. The trick now is to write the given equation ax + by = c 
in the form 

Rearrange terms to obtain 

This shows that b divides the left side of the equation; but ( a ,  b) = 1, 
so b cannot divide a. Therefore b divides cq,,-1 - x ,  so that 
there is an integer t such that 

(2.25) cqn-l - x = tb, 

(2.26) x = cqn-l - tb. 
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Substitute (2.25) into (2.24) to get 

a(tb) = b(y  + cpn-I), 

and solve for y to obtain 

(2.27) y = at - cpnPl. 

Conversely, for any integer t ,  a direct substitution of (2.26) and 
(2.27) into ax + by gives 

ax + by = a(cqn-1 - tb) + b(at - cpn-1) 

= acqnp1 - tab + tab - bcpn-1 

- - ~ ( a q , - ~  - b ~ , - ~ )  = c . 1 = c, 

so the equation ax + by = c is satisfied. Thus the general solution 
of the equation ax + by = c is 

EXAMPLE 1. Solve the indeterminate equation 

132 + 17y = 300. 

I SOLUTION. We find that (xo, yo) = (4, 3)  is a particular solution of the 
equation 

132 - 17y = 1, 
' or that 13(4) - 17(3) = 1, and so the given equation may be written in 

the form 
132 + 17y = 300(13.4 - 17 . 3 ) ,  

or 
13% - 13(4.  300) = - 17y - 17(3 . 300). 

This shows that  

(2.29) 13(x - 1200) = -17(y + goo), 

so that  17 divides x - 1200, or 

x = 1200 + 17t. 

Replacing x - 1200 by 17t in (2.29) gives 

y = -13t - 900. 

Hence the general solution of the given equation is 

x = 1200 + 17t 
t = O ,  f l ,  +2, + 3 , . . .  . 

y = -13t - 900 
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EXAMPLE 2. Solve the indeterminate equation 

13s + 17y = -300. 

SOLUTION. The second equation in the solution of Example 1 now 
becomes 

132 + 17y = -300(13.4 - 1 7 ~ 3 ) ~  

and equation (2.29) is replaced by 

(2.29a) 13(x + 1200) = -17(y - 900). 

It  follows that 17 divides x + 1200, or 

x = -1200 + 17t, 

and replacing x + 1200 by 17t gives 

y = 900 - 13t. 

Hence the general solution of the givea equation is 

2.6 T h e  General Solution of Ax f By = -+_ C 

By multiplying through by - 1, any equation of the form 

+Ax + By = C 

can be reduced to one or the other of the forms 

(2.30) A x + B y =  &C, A x - B y = + C ,  

where A and R are positive integers. For example, of the four 
equations 

the first two are already in the required form, and the second two 
can be replaced, respectively, by 

3 x + 7 y = - 1 0  and 3 2 - 7 y = - 1 0 .  

Not all equations of the form (2.30) have solutions. To see this, 
let d be the greatest common divisor of A and B. Then, if d 
does not  divide C, neither of the equations (2.30) can be solved in 
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integers x, y, for the left side of each would be divisible by d while 
t the right side is not. 

pr 
gi On the other hand, if d does divide C, then we can divide both 
9 sides of the equations (2.30) by d, reducing them respectively to 

equations of the form we have just discussed, namely 

where a and b are relatively prime, and of which we know the solu- 
tions. Conversely, any solution of equations (2.31) will automatically 
give solutions of equations (2.30). 

EXAMPLE 1. Solve the equation 

4102 - 186y = 10. 

SOLUTION. Since 410 = 2 .  5 .  41, 186 = 2 .  3 . 31, the g.c.d. of 410 
and 186 is d = 2. Since d = 2 divides 10, the equation can be solved. 
Divide the given equation by 2 to obtain 

where now 205 and 93 are relatively prime. This is the equation solved in 
Example 1 of Section 2.4. The general solution of 205% - 93y = 5 found 
there was 

x = 245 + 93t, 

y = 540 + 205t, 

and substituting it into 4102 - 186y we find that 

The main results obtained from our study of the linear Diophantine I > 5  

equation can be summarized as follows: 
Summary. Any equation of the form Ax f By = f C has 

I integral solutions x,y only if the greatest common divisor of A and 
B divides C. In this case, divide A, B, and C by d = (A, B), 
reducing the given equation to either the form 

ax + by = c, 

or the form 

where in both equations a and b are relatively prime positive 
integers, and where c is a positive or negative integer. The next step 
is to expand a/b as a simple continued fraction with an even number 
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n of partial quotients, and from the table of convergents read off 
pn-l and qn-l. Then aqnPl - bpn-l = 1, and the general solution 
of (i) is 

x = cqn-1 - tb 
(iii) t = 0, 1 1 ,  1 2 ,  . . .  . 

y = ta - Cpn-1 

Likewise the general solution of (ii) is 

The solutions (iii) and (iv) represent, respectively, for the cases (i) 
and (ii) the general solution of Ax + By = f C. 

Problem Set 8 

1. Two of these six equations do not have integral solutions. Find the 
general solution in integers of the others. 

(a) 183% + 174y = 9 (d) 342 - 49y = 5 
(b) 1832 - 174y = 9 (e) 342 + 49y = 5 
(c) 772 + 63y = 40 (f)  562 + 20y = 11 

2.  Express %as the sum of two fractions whose denominators are 7 and 11. 
68 x Y Hint: Find integers x and y such that - = - + - . 
77 7 11 

3.  The sum of two positive integers a and b is 100. If a is divided by 7 
the remainder is 5 ,  and if b is divided by 9 the remainder is also 5.  Find 
a and 6. Hint: Let a = 7 s  + 5 ,  6 = 9y + 5 and use the fact that 
a + b = 100. 

4. Find positive integral solutions (x ,  y)  of 132 + 17y = 300. 

2.7 Sailors, Coconuts, and Monkeys 

The following problem is of considerable age and, in one form or 
another, continues to appear from time to time. 

Five sailors were cast away on an island. To provide food, they 
collected all the coconuts they could find. During the night one of 
the sailors awoke and decided to take his share of the coconuts. He 
divided the nuts into five equal piles and discovered that one nut 
was left over, so he threw this extra one to the monkeys. He then 
hid his share and went back to sleep. A little later a second sailor 
awoke and had the same idea as the first. He divided the remainder 
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of the nuts into five equal piles, discovered also that one was left 
over, and threw i t  to the monkeys. Then he hid his share. In their 
turn the other three sailors did the same thing, each throwing a 
coconut to the monkeys. 

The next morning the sailors, all looking as innocent as possible, 
divided the remaining nuts into five equal piles, no nuts being left 
over this time. The problem is to jind the smallest number of nuts i n  
the original pile. 

In order to solve this problem, let x be the original number of 
coconuts. The first sailor took +(x - 1) coconuts and left %(x - 1). 
Similarly the second sailor took 

coconuts and left four times this number, or 

Similarly, we find that the third, fourth, and fifth sailors left, 
respectively, 

nuts. 
Now the number of nuts in the last pile must be a multiple of 5 

since i t  was divided evenly into five piles with no nuts left over. 
Hence 

10242 - 8404 

3125 = 5 ~ 1  

where y is some integer. Multiplying both sides by 3125 we obtain 
the indeterminate equation 

(2.32) 1024s - 1 5 6 2 5 ~  = 8404. 

Factoring into primes we find 1024 = 21° and 15625 = S6; hence 
these numbers are relatively prime and the equation (2.32) has 
integral solutions. We first seek a particular solution (xl, yl) of the 
equation 

(2.33) 1024s - 15625y = 1. 

To this end, the convergents of the continued fraction 
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are calculated : 

The convergent c9 yields the particular solution xl = qg = 10849, 
y~ = pg = 711 of equation (2.33). Hence xo = 8404x1 = 91174996, 
yo = 8404y1 = 5975244 will be a particular solution of equation 
(2.32). The general solution is 

Since both x and y must be positive, we search for the value of t 
which gives the smallest positive value of x and which a t  the same 
time makes y positive. From (2.34) we find that t must be an 
integer satisfying the two inequalities 

Hence the required value is t = - 5835. Introducing this value of t 
into equations (2.34), we finally obtain 

x = 91174996 - 91171875 = 3121, 

y = 5975244 - 5975040 = 204, 

which means that the original number of coconuts was 3121 and 
each sailor received 204 in the final distribution. 

For an interesting discussion of this and related problems, see the 
article entitled "Mathematical Games" by Martin Gardner in 
Scientific American, April, 1958. One should also keep in mind the 
excellent collection of references, Recreational Mathematics, A Guide 
to the Literature, by William L. Schaaf, published by the National 
Council of Teachers of Mathematics. 

f 
k 
1 

f C H A P T E R  T H R E E  
i' 
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Expansion of Irrational Numbers 

3.1 Introduction 

So far our discussion has been limited to the expansion of rational 
numbers. We proved that a rational number can be expanded into a 
finite simple continued fraction, and, conversely, every finite 
simple continued fraction represents a rational number. 

This chapter will deal with the simple continued fraction expan- 
sion of irrational numbers, and we shall see that these fractions do 
not terminate but go on forever. 

An irrational number is one which cannot be represented as the 
ratio of two integers. The numbers 

I , are all irrational. Any number of the form 

' where P, D, Q are integers, and where D is a positive integer not a 
perfect square, is irrational. A number of this form is called a 
quadratic irrational or quadratic surd since i t  is the root of the 
quadratic equation 

Q2x2 - 2PQx + (P2 - D) = 0. 

Our discussion will be limited to the expansion of quadratic 
irrationals. 

51 
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There are irrational numbers which are not quadratic surds. The 
irrational number ?r = 3.14159 . . .  is one example. The irrational 
number dZ is the solution of the algebraic equation x2 - 2 = 0, 
and is therefore called an "algebraic number". An algebraic number 
is a number x which satisfies an algebraic equation, i.e., an equation 
of the form 

where ao, al, . . .  are integers, not all zero. A number which is not 
algebraic is called a transcendental number. I t  can be proved that ?r 

is transcendental, but this not easy to do.1 The number e is also 
transcendental. I t  is quite difficult to expand transcendental num- 
bers into continued fractions; using decimal approximations to these 

. . .  . . . ,  numbers, such as ?r = 3.14159 and e = 2.71828 we can 
calculate a few of the first terms of their continued fraction expan- 
sions, but the methods of obtaining the expansions of ?r and e 
given in Appendix I1 are beyond the scope of this monograph. 

Those who wish to learn about the two classes of irrational 
numbers, namely algebraic irrational numbers and transcendental 
numbers, and to study the deeper properties of each should read the 
first monograph in the NML (New Mathematical Library) series: 
Numbers: Rational and Irrational, by Ivan Niven. 

3.2 Preliminary Examples 

The procedure for expanding an irrational number is funda- 
mentally the same as that used for rational numbers. Let x be the 
given irrat,ional number. Calculate al, the greatest integer less than 
x, and express x in the form 

where the number 

is irrational; for, if an integer is subtracted from an irrational 
number, the result and the reciprocal of the result are irrational. 

To continue, calculate a2, the largest integer less than x2, and 
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express 2 2  in the form 

where, again, the number 

is irrational. 
This calculation may be repeated indefinitely, producing in 

succession the equations 

. . . ,  . . .  f where al, as, a,, are all integers and where the numbers 
b . . .  x, x2, 2 3 ,  24, are all irrational. This process cannot terminate, for 
' the only way this could happen would be for some integer an to 

be equal to x,,, which is impossible since each successive x, is 
irrational. 

Substituting xz from the second equation in (3.1) into the first 
equation, then x3 from the third into this result, and so on, pro- 
duces the required infinite simple continued fraction 

t See I. Niven (81. 
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where the three dots indicate that the process is continued 
indefinitely. 

Before discussing some of the more "theoretical" aspects of 
infinite simple continued fractions, an example or two should be 
worked to make sure the expansion procedure is understood. 

EXAMPLE 1. Expand 4 2  into an infinite simple continued fraction. 

SOLUTION. The largest integer < d2 = 1.414 . . . is al = 1, so 

Solving this equation for x2, we get 

Consequently, 

The largest integer < 22 = d2 + 1 = 2.414 . . . is a2 = 2, so 

where 

At this stage we know that 

Since x3 = d2 + 1 is the same as x2 = d2 + 1, the calculations of 
x4, x5, . . . will a11 produce the same result, namely 42 + 1. Thus all 
the subsequent partial quotients will be equal to 2 and the infinite expan- 
sion of 42 will be 

The bar over the 2 on the right indicates that the number 2 is repeated 
over and over. 
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Immediately some questions are raised. For example, is it possible 
to prove that the infinite continued fraction [l,  2, 2, . . . ]  = [I ,  $1 
actually represents the irrational number &' ? Certainly there is 
more to this than is evident a t  first glance, and it will be one of the 
more difficult questions to be discussed in this chapter. We can, 
however, give a formal answer to this question. A formal answer 
means, roughly speaking, that we go through certain manipulations, 
but no claim is made that every move is necessarily justified. With 
this understanding, we write 

hence 
x = 1 + (x - I), 

or  1  = 1, which tells us nothing about x. However, using the same 
idea, we can write 

from which we see that 
1 x - l = - ,  

x + l  
SO 

(X - l ) (x  + 1) = 1, or 22 = 2. 

Thus 
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Some additional examples of a similar sort  a re :  

I n  each of these examples t h e  numbers under t h e  bar  form t h e  
periodic part of t h e  expansion, the  number 1/31 having quite a long 
period. These examples a re  illustrations of a theorem first proved b y  
Lagrange in  1770 t o  t h e  effect t h a t  the continued fraction expansion 
of any quadratic irrational i s  periodic after a certain stage. This  
theorem will be proved in  Chapter 4. 

EXAMPLE 2. Find the infinite continued fraction expansion for 

SOLUTION. We proceed exactly as in Example 1. Since a is between 
7 and 8, the largest integer < x  is a l  = 1. Then 

where 
1  - x2=-- 22 3 - 1 / 5 3  - - 6 - 3  > 1. 

- 1  3 + 1 / 5 3  3 - 1 / 5 3  2 

The largest integer < x 2  is a2 = 2, so 

where 

The largest integer < 23 is a3 = 7, so 

where 

Thus z4 = z3, and so the last calculation will repeat over and over again. 
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Hence, the required expansion is 

1  1  
x = l + - = l + - = 1 +  

1  - - . . .  
1  1  

1 

X I  
2 + -  2 + --- 

23 1  
7 + -  

24 

so that finally we obtain 

Now let us reverse the process; let us start with the infinite expansion and 
try to get back to the original value of x. I t  is convenient to replace 

where 

Then y satisfies the equation 

Solving for y (by the quadratic formula) and noting that y > 0, we find 
that 

,- 

' Hence 

Simplifying the right-hand side, we obtain 

which is the original value of x. 
? 
! 

i 
J 
I 
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3.3 Convergents 

The convergents t o  the infinite continued fraction 

are calculated in exactly the  same way as before. The  convergent 
cn = pn/qn is calculated by the same formulas 

pn = a&-i + pn-2, 
9~ = G Q n - 1  + Qn-2 

for all n 2 1, where, a s  before, we define pPl = 0, po = 1,  
q-l = I, and qo = 0. The computational scheme is the  same. 

EXAMPLE 1. The infinite continued fraction for ?r = 3.14159 . . . starts 
out as follows: 

a = [3, 7, 15, 1, 292, 1, 1, . . . I .  
Calculate the first five convergents. These convergents give successively 
better approximations to a. 

SOLUTION. The table of convergents is as follows: 

i - 1  0 1 1 2 3 4 5 

I n  this connection i t  is interesting to  note tha t  the  earliest 
approximation to a is to  be found in the Rhind P a p y r u s  preserved in 
the  British Museum and dated about 1700 B.C. Translated into our 
decimal notation, the value of a stated there is 3.1604. 

The approximation a = 3, less accurate than the above Egyptian 
value, was used by the Babylonians. Archimedes (c. 225 B . c . )  

stated tha t  the  ratio of the  circumference of any  circle to  i ts  
diameter is less than 3+ = -2+ = 3.14285 . . . , but  greater than 
3 e  = 3.14084 . . . ; this is quite a remarkable result considering 

the  very limited means a t  his disposal. The approximation 

is correct to  six decimal places. More information on the use of 
continued fractions to  give rational approximations to  irrational 
numbers will be taken u p  in Chapter 5. 

Problem Set 9 

1. Verify the following expansions and calculate the first - five convergents: 

(d) 24 -/15 = [ l ,  5, 2,3] 

i 1/30 - 2 
j (b) 1/? = [2, 1, 1, 1, 41 
1 

(" 
113 

= [O, 3, 172, 1J41 

(c) 6 = [6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 121 

As in the second half of Example 2, Section 3.2, verify that the following 
continued fractions represent the irrational numbers written on the right. 

(a) [2,2,41 = 1 / 6  (b) [5 ,1 ,1 ,1 ,101 = 6 

Discussion Problem. The following is one of the classical straight-edge and - 

compass problems. Construct, using only a straightedge and compass, a 
square equal in area to a circle of radius 1. A circle of radius 1 has an 
area A = ar? = a,  so a square with the same area would have a side 
equal to Z/;;. Were it possible to construct the length a we could then 
construct & by the following means: Let A B  = a,  BC = 1 and 
draw a semicircle with center a t  0 and passing through A and C ;  see 
Figure 2. Draw BD perpendicular to AC. Then 1: = B D  = 4;. TO 
prove this use the similar triangles A B D  and CBD. 

j. 
A O B C  

Figure 2 
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I t  can be proved that a length equal to ?r cannot be constructed with 
straightedge and compass. However, there are many interesting approxi- 
mate constructions. For example, Jakob de Gelder in 1849 gave the fol- 
lowing construction using the convergent = 3.141592 . . . dis- 
cussed a t  the end of Section 3.3. Since 

the approximation to  ?r can easily be constructed as follows: Let 0 be 
the center of a circle with radius OE = 1. Let d B  be a diameter per- 
pendicular to OB. Let OD = ;, and AF = $; see Figure 3. Draw 
FG parallel to EO and F H  parallel to DG. Then prove that  
AH = 42/(72 + g2), and i t  only remains to construct a line equal in 
length to 3 + AH. 

C 

Figure 3 

4. Show that + ( d 5  + I )  = [I, 1, I ,  1, . . . I ,  and also verify that the con- 
vergent~ are 

both numerators and denominators being formed from the sequence of 
Fibonacci numbers 

Each of these numbers is the sum of the preceding two. A discussion of 
these interesting numbers will be given in Section 3.10. 

5. The Fibonacci numbers F ,  = 1, F 2  = 1, F 3  = 2, F4 = 3, . . . can be 
reproduced by substituting n = 1, 2, 3, . . . in the general formula 

Verify this by substituting n = 1, 2, 3, 4 into this formula. 

6. Imagine that  each branch of a certain tree has the following pattern of 
growth. I t  produces no new branches during its first year of growth. 
During the second, it puts forth one branch, then "rests" for a year, then 
branches again, and so on. Sketch such a tree after a five-year growing 

period and show that, if we regard the trunk and its extensions as 
branches, then in the first year of the tree's growth i t  has one branch 
(the trunk), in the second year two branches, and in general the number 
of branches will reproduce the Fibonacci numbers 1, 2, 3, 5, 8, . . . . 

7. Wythoff 's game (invented in 1907 by W. A. Wythoff). Alternately two 
players A and B remove counters from two heaps according to the follow- - - 
ing rules: At his turn a player may take any number of counters from 
the first or from the second heap. If he wishes to take counters from both 
heaps, then he must remove an equal number of counters from each. 
The player who takes the last counter from the table wins. 

In order for player h to win he should, after his move, leave one of 
the following safe combinations (safe for .4) : 

(1, 21, (3, 5)l (4, 7), (6, lo), (8, 131, (9, 15)J (11, 181, (12, 2'3, . . . . 
Then no matter what B does in the next move he will leave an unsafe 
combination (unsafe for B), and A can always convert this back into a 
safe combination (safe for A). So unless A makes a mistake, he will win 
the game. 

I t  can be proved that  the nth pair of numbers forming a safe com- 
bination is given by 

where T = $ ( d 5  + 1) and where ( z }  stands for the greatest integer 
less than or equal to x. Verify this statement for n = 1, 2,3.  For more 
details about this game and related subjects see H. S. M. Coxeter: The 
Golden Section, Phyllotaxis, and Wythoff 's Game, Scripta Yfathematica, 
vol. 19 (1953), pp. 135-143. 

8. Using only a straightcdge and compass, construct a point G on a line 
segment AB such that (AG) = T(GB), where T = ;(I + &). 

9. Use the results of Problem 8 to show how to construct a regular pentagon 
using only a straightcdge and compass. 

3.4 Additional Theorems on Convergents 

T h e  n ~ m e r a t ~ o r s  p, and  denominators qn of t he  convergents 
C, = pn/qn of t he  infinite simple continued fraction 

[al, az, . . . , an, . . . I  
satisfy t h e  fundamental  recurrence relation 

(3.2) pnqn-1 - pn-lqn = (-I)", n >- 0, 

proved in  Theorem 1.4, t h e  proof given there being independent of 
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whether the continued fraction was finite or infinite. 
From this equation, upon dividing both sides by qnqn_~, we find 

that 

Since cn = pn/qn, equation (3.3) can be stated as 

Similarly we can prove 

PROOF. Clearly 

In the numerator on the right, substitute 

obtaining 

where the last equality follows from equation (3.2) with n replaced 
by n - 1. This proves Theorem 3.2. 

These theorems give us important information as to how the 
convergents c, change as n increases. If we set n = 2 and then 
n = 3 in Theorem 3.1, and recall that the qnls are positive, we see 
that 

respectively. These inequalities show that 

(3.4) cl < cz and that c3 < c2, 
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On the other hand, setting n = 3 in Theorem 3.2 shows that 

since q3, q l ,  a3  are all positive numbers. Hence cl < c3, and 
combining this result with those in (3.4) proves that 

Similarly, using n = 3, then n = 4 in Theorem 3.1, followed 
by n = 4 in Theorem 3.2, we see that 

Proceeding step by step in this fashion, we obtain the inequalities 

Combining these inequalities we obtain the fundamental result 

We state it as a theorem: 

THEOREM 3.3. The odd convergents c2,,+l of an insfinite simple 
continued fraction fornz an increasing sequence, and the even con- 
vergent~ c2, form a decreasing sequence, and every odd convergent is less 
than any even convergent. Moreover, each convergent c,,, n > 3, lies 
between the two preceding convergents. 

Problem Set 10 

1. Give a numerical verification of Theorem 3.3 using the convergents 

3.6 Some Notions of a Limit 

The conversion of an  irrational number x into an infinite con- 
tinued fraction gave, as we have seen, in succession, 
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so that, a t  the end of the (n - 1)st calculation we had 

where x,  is irrational, and we saw that the process could be con- 
tinued indefinitely. Realizing this, one is tempted to write (as we 
did) 

1 1  1 
x = a l + -  - 

a2 + a3 + . . .  +a<+ . . .  ' 

which implies that the infinite continued fraction on the right 
actually represents the irrational number x. I t  is advisable to reflect 
on the meaning of such a statement. The implication is that we can 
somehow carry out an injinite number of operations and thereby 
arrive a t  a certain number which is asserted to be x, the given 
irrational number. We shall see, however, that the only way to attach 
a iizathe~natical meaning to such an injni te  process i s  to introduce the 
notion of a limit. 

To make this clear, let us first go back to ordinary addition. 
Which of the following infinite sums have meaning'! 

Clearly, if we add 1 to itself over and over, we can make the "sum" 
as large as we please, so we say the sum A becomes infinite as the 
number of terms added increases indefinitely, and such a result is not 
of much use to us. On the other hand, if we add the numbers 1, +! 
t ,  +, . . .  we get in succession the partial sums 

which can be represented graphically as shown in Figure 4, where 

so that the partial sums continually increase. But each partial sum 
s, is less than 2; that is, they are all bounded above by the constant 2. 

Figure 4 

In order to prove that they continually approach this upper limit 2, 
we write 

so that 

Subtracting the second line from the first, we obtain 

As n increases indefinitely, that is, as n -+ m,  ($)"-' approaches 
zero, and so s, gets closer and closer to 2, or approaches 2 as a limit. 
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We say that s,, converges to the value 2 as n --, x , or in symbols, 

lim s, = 2 
n+ m 

We then assign this limit 2 as the value of the infinite sum in question 
and we write 

This illustrates, in an admittedly rough fashion, the mathematical 
notion of a limit needed to attach meaning to an infinite continued 
fraction. I t  also illustrates a fundamental theorem of analysis 
which we state but do not attempt to pr0ve.t 

THEOREM 3.4. If a sequence of numbers sl, SZ, s3, . . . continually 
increases, and if for each n, s,, is less than U, where C is some fixed 
number, then the numbers sl, 8 2 ,  SB, . . . have a limit lu, where 
lu I U. If the numbers sl, SZ, ss, . . . continually decrease but are all 
greater than L, then they have a limit l ~ ,  where lL > L. 

We return to the discussion of infinite simple continued fractions. 

3.6 Infinite Continued Fractions 

Our task is to attach a meaning to the infinite continued fraction 

Theorem 3.3 states that the odd convergents el, c3, cs, . . . form an 
increasing sequence of numbers all bounded above by the convergent 
c2 = C ,  that is, 

hence they will converge to a limit lu I I/'. Moreover, since all odd 
convergents are less than all the even convergents, the limit lu must 
be a number less than all the even convergents. 

On the other hand, the even convergents c2, c4, c6, . . . , c2,, . . . 
form a decreasing sequence of numbers all bounded below by the 
convergent cl = L, that is, 

t For a discussion of limits of sequences, see L. Zippin [15], which also treats 
this fundamental theorem of analysis (Theorem 3.4). 

so that even convergents approach the limit ZL 2 L, where 1L is a 
number greater than every odd convergent. Looking a t  the con- 
vergent~ graphically (see Figure 5 ) ,  we see that all we have proved so 
far is that the even convergents have a limit 11. and the odd con- 
vergent~ have a limit Iu. If l~ # 11, we would be in trouble. We can 
prove, however, that = 1 ~ .  

I 
C I  c, c, c, c, !? 1 !L c;, C? C! c, C? 

I 
I 

Figure 5 

To this end, return to Theorem 3.1 and replace n by 2k and 
n - 1 by 2k - 1.  Weget 

( -  
c21; - C2k-1 = 1 

q 2 k q 2 k - 1  

or, since = 1, 

The numbers q, are calculated by means of the recurrence relation 

q n  = a,,g,,-1 + q,,-?; 

therefore it fol1011-s, since each a,, (n 2 2) and each q,, (n > 1) is 
a positive integer, that the q,'s increase without bound as n in- 
creases. Hence, the denominator q 2 ~ c y 2 ~ - l  of the fraction in (3.6) 
increases without bound as 1i increases, that is, the fraction 
l/q'Lky2k-l approaches zero as li approaches infinity. But then from 
equation (3.6) we conclude that the difference C2k - C Z ~ - 1  ap- 
proaches zero as li approaches infinity, and tlhe only way this can 
happen is for both c2/. and czk -~  to have the same limiting value 
I = lo = 1 ~ .  We have proved: 

THEOREM 3.5. Every infinite simple continued fraction converges 
to a limit 1 which is greater than any odd conwrgent and less than any 
even convergent. 

How far have we progressed? Is this limit 1 the same numbcr z 
which gave rise to the continued fraction in the first place? Actually 
it is, but this must be proved. 
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To do so, let x be the givcn irrational number, and return to the 
expansion (3.5), 

where xn is the "rest" of the fraction, that is, 

1 
= a n + - ,  

X n + l  

where again 

1 
(3.8) xn+l = an+i + - 

an+2 + . . .  ' 

The second line in (3.7) shows that 

Xn > an, 

since x , + ~  is positive. Similarly, (3.8) shows that 

Again, according to the second line in (3.7), 

1 1 
and since --- < -- it follows that 

Xn+1 an+i 

so, combining these results, we see that 

The next, step in the proof is to show that x lies between c,, and 
c,+~.  To this end, we compare the three expressions: 

We first observe that these expressions have the term 

in common so that i t  is necessary only to compare the terms in 
which they differ, namely 

But by (3.9) we know that 

and we can conclude from (3.10) that x will always lie between two 
consecutive convergents cn and c,+~;  that is, either 

A direct calculation shows that 

for, (3.9) gives a1 < XI, and since cl = a1 and xl = x, we see 
that cl < x. On the other hand, x = a l  + 1/x2, where by (3.9) 
az < xz or 1/x2 < l / az ;  hence 

Thus 
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Similarly, equations (3.10) show that x lies between c2 and c3, 
between c3 and c.4, between c.4 and C6,  and so on. Since all odd 
convergents are less than all even convergents, we are forced to the 
conclusion that 

or, in expanded form, that  

Thus we see that the convergents cl, cl, approach z from the 
left, and c2, c.4, approach z from the right. But we know that as 
lc increases indefinitely, the odd convergents c2k-1 and the even 
convergents cpk approach a limit 1; hence x and 1 must be one 
and the same. Therefore it is permissible to write 

and we have proved 

THEOREM 3.6. If an irrational number x is expanded into an 
infinite simple continued fraction [al, az, . . . , a,, . . . ]  according to 
the rules described, then the limit to which the convergents cl, cz, . . . , 
cn, . . . of the .fraction [al, a2, . . . , a,~,  . . . ]  converge is the number x 
which gave rise to the jraction in the first place. 

This theorem should be followed by an additional theorem stating 
that the expansion of any irrational number into an infinite simple 
continued fraction is unique. This is true, and the reader will find it 
impossible to expand, as explained, any given irrational numbers in 
two different ways. 

3.7 Approximation Theorems 

Our experience with continued fractions and in particular our 
study of Theorem 3.6 have supplied ample evidence that each 
convergent in the continued fraction expansion of an irrational 
number x is nearer to the value of x than is the preceding con- 
vergent. Before stating such a result as a theorem we make some 
preliminary remarks. 

Let the expansion of the irrational number x be 

We assume that 2 2 ,  x3, . . . are all positive numbers; also note that 
xl = x. While X,+I contains an infinite number of integral partial 
quotients an+l, an+2, . . . , i t  need not itself be an integer, and con- 
sequently we have no right to treat i t  as though it were a legitimate 
partial quotient. 

Suppose, however, we write (3.11) in the form 

x = [al, az, . . . , a,,, x,+1] 

of a "finite" continued fraction and treat x , + ~  as a legitimate partial 
quotient. Then, if we calculate convergents in the usual manner, 
the last "convergent" (in Theorem 1.3, take i = n + 1 and 
an+l = x,+~) would be 

and, by analogy with our study of finite continued fractions, this 
should be equal to x, the given irrational number. Thus it seems 
reasonable to write 

(3.12) 
zn+lPn + Pn-I , x = [all a2, . . . , a,, x,+~] = 
Xn+lqn + qn-I 

where, it should be stressed, p,, q,, p,-~, y,-1 depend only upon 
the integers al l  az, . . . , a, as before. In particular, when n = 0, 
equation (3.12) gives 

and by definition, 

When n = 1, (3.12) gives 
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That (3.12) holds for all n can be proved in exactly the same way as 
we proved Theorem 1.3, the successive steps being nearly identical. 
We are now ready to state the main theorem of this section: 

THEOREM 3.7. Each convergent is nearer to the value of an injinite 
simple continued fraction than is the preceding convergent. 

PROOF. Let the expansion of the given irrational number x be 

where 

Then, according to (3.12), 

and from this we obtain 

or, rearranging, we have for n > 2 

Dividing through by xn+lqn, we obtain 

Now if a = b c, then la1 = Ibl . lcl, and I-a1 = lal;t hence 

We know that for n > 2, xn+l > 1, and that  qn > q n - ~  > 0 ;  
hence 

t The symbol /all read "absolute value of a", means 

la1 = a i f a  2 0 ;  

la1 = -a if a < 0. 

For example, 171 = 7, 1-71 = 7 . 

and so 

Thus (3.13) shows that 

or, what is the same thing, 

This shows that cn is closer to x: than is c,-~, and the theorem is 
proved. 

I t  would be interesting to have some measure, or estimate, of just 
how closely cn approximates x. In  fact, we know already from 
Theorem 3.1, with n replaced by n + 1, that 

Taking the absolute value of both sides, this tells us that 

Figure 6 

Moreover, we know from Theorem 3.7 that x is closer to c,+l than 
i t  is to c,~, and i t  follows that the absolute value of the difference 
between x and cn will always be greater than one-half the absolute 
value of the difference between cn and cn+l. This becomes clear if 
the situation is studied graphically. Figure 6 shows the case when n 
i s  odd, so that c, is to the left of Clearly AB < AC < AD, 
or 

Since qn+~ > qn, qnqn+l > qz and SO l/qnqn+l < 
Hence we can state 
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If x is irrational, there exists a n  infinite number  of convergents 
pn/qn satisfying Theorem 3.8. Thus  we have the  following theorem: 

THEOREM 3.9. I f  x is i~ra t ional ,  there exists a n  infinite number of 
rational fractions p/q, q > 0, (p, q)  = 1, such that 

This  is t he  beginning of the  theory of rational approximation t o  
irrational numbers, a subject we shall discuss briefly in Chapter 5 .  

EXAMPLE 1. Show that the first few convergents to the number 

t = 2.718282 . . . 

give better and better approximations to this number. These convergents 
should be calculated by finding the first few convergents to 2.718282, a 
decimal fraction which approximates e correctly to six decimal places. 

Comments. The irrational number e arises quite naturally in the study 
of calculus and is defined as 

That the sequence of numbers (1 + :)Il (1 + . . . ~ ( 1  + . , , 

actually approaches a limit can be suggested by numerical evidence: 

The number e is taken as the base of the system of natural logarithms, just 
as 10 is used as the base for common logarithms. The continued fraction 
expansion of e is 

e =  [2 ,1 ,2 ,  1 , 1 , 4 , 1 , 1 , 6 . 1 , 1 , 8 ,  . . . I ;  
the proof is quite difficult. 

SOLUTION. Assuming the above expansion for el or being content with 
the approximation 

we find that 
e = [2, 1, 2, 1, 1 , 4 ,  1, . . . I .  

The corresponding convergents are 

and a conversion to decimals shows, indeed, that in succession these give 
better and better approximations to e. 

As a check on Theorem 3.9, notice that p7/q7 = %; hence it should 
be true that 

A numerical calculation shows that 

and this is certainly less than 1/3g2 = 0.00065746 . . . We observe that the 
value of e - is approximately one-half that of 1/3g2, and this sug- 
gests that Theorem 3.9, regarded as an approximation theorem, might be 
considerably improved. We shall see in Chapter 5 that this is indeed the 
case. 

T h e  inequality 

of Theorem 3.8 is t rue  for rational or  irrational x. I n  the  next 
example we shall approximate a rational number. 

EXAMPLE 2. Given the fraction 2&&5--, find a fraction with a smaller 
numerator and a smaller denominator whose value approximates that of 
the given fraction correctly to three decimal places. 

SOLUTION. Convert ++&5- into a continued fraction and calculate the 
convergents. The table gives the numerical results: 
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1 2 3 4 5  6 7 

ai 2 3 2 5  5 1 3 

Referring now to Theorem 3.8, we search for two convergents en = p,/qn 
and en+l = p,+,/q,+l which will make 

That is, we wish to approximate s$'$$- by pJq, with an error less than half 
a unit in the fourth decimal place. A little experimentation soon shows that 

Hence the required fraction is +$. Note that if we had worked with the 
fraction instead of l/q,q,+l our answer would have been the next 
convergent f s, since 1/3g2 is not less than 0.0005. In order to find values 
of q,q,+l such that l/q,q,+l < E ,  where E isany givennumber, we could 
use a table of squares and first check that qf > I/E, following this by an 
additional check to see if qnqn+, > l / e .  

Problem Set 11 

1. Given the fraction m, find a fraction with a smaller numerator and a 
smaller denominator whose value approximates that of the given fraction 
correctly to three decimal places, that is, with an error of less than 5 units 
in the fourth place. 

2. Expand 2/19 into an infinite simple continued fraction and find a frac- 
tion which will approximate 6 9  IT-ith accuracy to four decimal places. 

3. The continued fraction expansion of ?r is (3, 7, 15, 1, 292, 1, 1, 1, . . .]. 
Use Theorem 3.8 to investigate how closely the first four convcrgents 
approximate r. 
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3.8 Geometrical Interpretation of Continued Fractions 

A striking geometrical interpretation of the manner in which the 
convergents CI ,  cz, . . . , c,, . . . of a continued fraction for an 
irrational number converge to  the value of the given number was 
given by Felix Kleint in 1897. Felix Klein was not only a prominent 
mathematician but a most popular mathematical expositor, some 
of whose works are available today in reprint form. 

Let a be an irrational number whose expansion is 

[all a2, . . . , a,,, . . . I ,  
and whose convergents are 

For simplicity, assume a positive, and on graph paper mark with 
dots all points (x, y) whose coordinates x and y are positive 
integers. At these points, called lattice points, imagine that  pegs or 
pins are inserted. Kext plot the line 

7J = ax. 

This line does not pass through any of the lattice points; for, if i t  did 
there would be a point (x. y) with integral coordinates satisfying 
the equation y = ax, and a = y/x would be a rational number. 
This is impossible since a is irrational. 

Kow imagine that  a piece of thin black thread is tied to  an 
infinitely remote point on the line y = ax, and that  we hold the 
other end of the thread in our hand. We pull the thread taut  so that  
the end in our hand is a t  the origin. Keeping the thread taut,  we 
move our hand away from the origin, toward the left; the thread 
will catch on certain pegs above the line. If we move the thread 
away from the line in the other direction, i t  will catch on certain 
other pegs. See Figure 7. 

The pegs contacted by the thread on the lower side are situated 
a t  the lattice points with coordinates 

and correspond, respectively, to  t,he odd convergents, 

Pl P3 P 5 

C 1 = C 1 l l  
c 3 = - - ,  c 5 = - - ,  " '  1 

'2 3 '2 5 

t F .  Klein: ilusgewahlte Kapi te l  der Zahlentheorie, Teuhner, 1907, pp. 17-25. 
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Figure 7 

which are all less than a. The pegs contacted above the line are 
situated a t  the lattice points 

I R R A T I O N A L  N U M B E R S  

corresponding to the even convergents, 

all of which are greater than a .  Each of the two positions of the 
string forms a polygonal path which approaches the line y = ax  
more and more closely the farther out we go. 

EXAMPLF:. Draw a Klcin diagram for the continued fraction expansion of 

SOLUTION. The  convergents are 

The points or pegs corresponding to the odd convergents are (1, I), (2, 3 ) ,  
( 5 ,  €9, . . . and are all below the  line; see Figure 7 .  Those points corre- 
sponding t o  the even convergents are ( 1 ,  2 ) ,  ( 3 ,  5 ) ,  (8, 13) ,  . . . and are 
ahove the line. 

Let us show, for example, t h a t  the point (q4,  p4) = ( 3 ,  5 )  corresponds t o  
the even convergent p4/q4 = 5 / 3 ,  which is greater than a .  Consider the 
point ( 3 ,  y)  marked in Figure 7 .  Since i t  is on the line y = a x ,  we see t h a t  
y = a . 3 ,  or a = y / 3 .  The point (3 ,  5 )  is ahove the line so 5  > y, or 
5 / 3  > 1//3 = a ;  hence the convergent 5 / 3  > a .  

Most of the elementary properties of continued fractions have 
geometrical interpretations. In fact, the theory of simple continued 
fractions can hc developed geometrically. t 

Problem Set 12 

1. Construct a Klein diagram for the continued fraction expansion of 

(6 - 1 ) / 2 .  

2 .  Construct a Klein diagram for the continued fraction expansion of d 3 .  

t See H .  Hancock, Development of the Minkowsk i  Geometry of S~cn thers ,  
N e w  York: The Marmillan Company, 3939, (Chapter 8). 
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3.9 Solution of the Equation x2 = ax + 1 
Continued fractions can be used to approximate the positive root 

of any polynomial equation, provided, of course, that i t  has such a 
root. We shall now examine the quadratic polynomial equation 

If a > 0, the positive root of any quadratic equation of the form 
(3.14) has the continued fraction expansion 

To see this, we have only to divide both sides of (3.14) by x, getting 

so that 

I;or example, when a = 1, the equation 

x 2  = x + l  

has a positive root 

2 = [ l ,  1, 1, 1, . . . I ,  

and the successive convergents to this continued fraction will give 
better and better approximations to the actual solution i ( 1  + d5). 
See also Problem 4 of Section 3.3. A more detailed discussion of this 
particular number follows in the next section. 

Problem Set 13 

1. Use the quadratic formula to find the positive roots of the following 
equations and compare the exact solutions with the approximate solu- 
tions obtained by computing the first few convergents to the continued 
fraction expansions of these positive roots. 

(a) x2 - 32 - 1  = 0 (h) x? - 5x  - 1 = 0 

I R R A T I O N A L  N U M B E R S  

2. Suppose that 

and that b  is a multiple of a, that  is b  = ac (where c is an integer). 
Show that  then x satisfies the equation 

x z - b x - c = O  
and has the value 

b  + l / b 2  + 4c x=--. 
2 

3. Verify, by giving the positive integers a  and b  particular values, and 
by selecting particular convergents pn-z/ps-2, pn/qnt pn+z/~n+zi 
that if 

1 1 1 1 1 1  x = - + -  - 
n b + a + b + a + b + . . . '  

then 
pa+, - (ob + 2)pn + Pn-z = 0. 

3.10 Fibonacci Numbers 

The simplest of all infinite simple continued fractions is 

7 = [ l ,  1, 1, . . . I ,  
where T satisfies the equation 

1 
~ = 1 + - ,  or ~ ~ - 7 - 1 = 0 ,  

7 

which has the positive root 

The convergents to T are 

both numerators and denominators being formed from the sequence 
of integers 
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Each of these numbers, after the first two, is equal to the sum of the 
preceding two; thus 2 = 1 + 1, 3 = 2 + 1, and so on. The 
numbers (3.16) are known as the Fibonacci numbers, named after 
the great thirteenth century mathematician Leonardo Fibonacci 
(c. 1170-1250), although he was not the first to use them. 

The Greeks claimed that the creations of nature and art owed 
their beauty to certain underlying mathematical patterns. One of 
these was the law of the golden mean, or golden section, which has 
many forms. In geometry, it arises from what some call the "most 
pleasing" division of a line segment Ah' by a point C. This is said 
to be attained by selecting a point C such that the ratio of the parts 
a to b (see Figure 8 )  is the same as the ratio of b to the whole seg- 
ment a + b, i.e., 

If we now let = b / a ,  we have 

- 

so that x: = b/a = i ( 1  + 4 5 )  = T, or b = ra. Thus a line seg- 
ment is said to be divided according to the golden mean if one part 
is T times the other. 

Figure 8 

In  1.509, Luca Pacioli published a book, Diuina Proportione, 
devoted to a study of the number T. The figures and drawings were 
made by Leonardo da Vinci. In this book Pacioli described thirteen 
interesting properties of T. 

The golden mean appears a t  many unexpected turns: in the 
pentagonal symmetry of certain flowers and marine animals, in the 
proportions of the human body, and so on. Man has employed the 
golden mean in the creative arts and in various aspects of con- 
temporary design, especially in the printing and advertising crafts. 
For example, the majority of people considers that rectangle to be 
most pleasing, aesthetically, whose sides are in the approximate ratio 
1 to T. Witness the popularity of the 3 X 5 index card; the ratio 3 to 
5 is approximately equal to the ratio I to T. 
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In geometry, the golden mean is the key to the construction of the 
regular pentagon. The number T occurs in connection with many 
mathematical games, and the convergents to r also occur in connec- 
tion with certain geometrical deceptions. The most familiar, 
perhaps, is the one involving a square 8 units by 8, which, as shown 
in Figure 9a, can seemingly be broken up and fitted together again 
to form a rectangle 5 by 13. The area of the square is 8 . 8 = 64, 
while that of the rectangle with what seem to be the same com- 
ponent parts is 5 . 13 = 65, so that somehow the area has been 
increased by 1 unit. 

Figure 9a 

This puzzle is based on the following facts: The convergents (3.15) 
have the property that the denominator of each is the numerator of 
the previous one. I n  particular, 

Now consider the relation 

pnqn-I - pn-lqn = 

which in this case, for n = 6, becomes 

1 3 . 5  - 8 . 8  = 

We have chosen p6, q5 as the dimensions of our rectangle, and 
p5, q~ (p5 = ~ 6 )  as the dimensions of our square, and the above rela- 
tion tells us that the areas of these figures differ by only one unit. 

Actually, the points A, B, C, D do not lie on a straight line but 
are the vertices of a parallelogram ABCD (for an exaggerated 
picture of the situation see Figure 9b) whose area is exactly equal 
to the "extra" unit of area. In case of the rectangle of Figure 9a, 
the obtuse angles ADC and ABC differ from straight angles by less 
than 1)". 
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Figure 9b 

More generally, if the Fibonacci numbers are defined by the 
relations 

and if a square with a side equal to a Fibonacci number F2, (with 
even subscript) is divided into parts as shown in Figure 9c, then i t  
can be shown that when the parts are reassembled to form a rectan- 
gle, a hole in the shape of a parallelogram ABCD of unit area will 
appear and the altitude of this parallelogram is l/-\/F;, + ~ ; ~ - 2  . 
If F2, is large (say F2, = 144, F2,,-~ = 55), then the hole is so 
narrow that i t  is difficult indeed to detect it. 

Figure 9c 

3.11 A Method for Calculating Logarithmst 

Daniel Shanks, in a journal devoted to numerical computations, 
[Mathematical Tables and Other Aids to Computation, Vol. 8, No. 45, 
April 1954, pp. 60-641, describes a method for calculating logarithms 
which is worth recording because of its adaptability to high-speed 
computing machines. 

t This section is rather technical and may be omitted without loss of 
continuity. 

To calculate the logarithm logs, bl to  the base bo of 
(where 1 < bl < bo) we compute two sequences: 

and the sequence of positive integers 

where the numbers nl,  b2, n2, b3, . . .  are determined 
the relations 

. . . . . . . . .  . . . . . . . . . . . . . . .  
1 1 

b;" < bk-1 < b;k+l, 
bk-1 

bk+l = - ' bik  
. . . . . . . . . . . . . . .  . . . . . . . . .  

1 

Thus, we first find an integer nl  such that  

by' < bo < b;'+'. 

This shows that  
1 

n~+; 
(3.17) bo = bl , 
where 1/21 < 1;  we then calculate 

and determine an integer n2  for which 

b;' < bl < blZ+'. 

If n2 is such an integer, then 
1 n ~ + ~  

(3.19) b l = b z  , 
The procedure is now continued. Calculate 

a number 

by means 
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and find an  integer n3 such tha t  

b;' < bp < b;'+l, 
whence 

and so on. 
T o  see tha t  we are actually calculating log*, bl notice tha t  from 

equations (3.17) and (3.18) we have 

On the other hand, from (3.19), 

and hence we can write 

Similarly we can show tha t  

1 
xz=ns+-1 

2 3  

and so on. Solving equation (3.17) for bl and using these results we 
have 

and so, by the definition of a logarithm, 
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EXAMPLE. Calculate loglo 2. 

SOLUTION. With bo = 10, bl = 2, we find that 

so that nl = 3 and bz = lO/z3 = 1.25. Using a table of powers, we see 
that 

Thus n2 = 3 and bs = 2/(1.25)3 = 1.024. Subsequent calculations be- 
come more difficult but can easily be done with the aid of a desk calculator. 
The paper by Shanks gives the following results: 

This shows that 

1 1 1 1 1  
log 2 = - 

3 + 3 + 9 + 2 + 2 +  . . .  = [O, 3, 3, 9, 2, 2, . . .]. 

Next we calculate the convergents: 

f The convergent c8 gives the approximation 0.30103093; the value of log 2 to 
11 places is 0.30102999566. I t  can be shown that, in general, each convergent 

1 approximates log 2 to one more correct decimal place than does the previous 
2 Convergent. 
i 
I 

i 
k 
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Periodic Continued Fractions 

4.1 Introduction 

Our study so far has shown that rational numbers have finite 
continued fraction expansions, and that irrational numbers have 
non-terminating, or infinite, expansions. 

In Chapter 3 we dealt mainly with the expansion of quadratic 
irrationals, or quadratic surds, i.e., with irrational numbers of the 
form - 

where P, Q, D are integers and where D is positive and not a 
perfect square. In  all the examples considered, the expansions of 
such numbers were either purely periodic, like the expansion of 
+(I + a) below, or they were periodic from some point onward. 
For example, 

where, as before, the bar over the partial quotients indicates those 
numbers which are repeated indefinitely. I t  is not hard to show that 
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any purely periodic continued fraction, or any fraction which is periodic 
from solne point onward, represents a quadratic irrational. The more 
difficult theorem, that any quadratic irrational has a continued frac- 
tion expansion which is periodic after a certain stage, was first proved 
by Lagrange in 1770. The aim of this chapter is the presentation of 
the proofs of these theorems. This will be accomplished in several 
stages. 

First it will be shown that a purely periodic continued fraction 
represents a quadratic irrational of a special kind, called a reduced 
quadratic irrational; an example is presented a t  the beginning of 
Section 4.2 and is followed by the proof for the general case. 

Section 4.3 furnishes a more detailed discussion of quadratic 
irrationals, and Section 4.4 supplies a deeper study of reduced 
quadratic irrationals. These sections contain the tools necessary for 
proving, in Section 4.5, that any reduced quadratic irrational has a 
purely periodic continued fraction expansion. This is followed by the 
proof of Lagrange's theorem which states that the continued fraction 
expansion of any quadratic irrational is periodic from some point on, 
and, conversely, every periodic continued fraction represents a 
quadratic irrational. 

The chapter will end with a brief discussion of the indeterminate 
equation 

where x and y are unknown integers, and where N is a given 
integer not a perfect square. In 1657 Fermat stated that equation 
(4.1) has infinitely many solutions, but he did not supply the proof. t 
Lord Brouncker in the same year gave a systematic method for solv- 
ing the equation. The first complete discussion of (4.1) was given by 
Lagrange about 1766. Commonly, equation (4.1) is known as 
Pell's equation; but this is unjustified since Pell did not make any 
independent contribution to the subject.$ Many authors refer to 
the equation as Fermat's equation. 

References to indeterminate equations of the Pell type occur 
throughout the history of mathematics. The most interesting 

t Actually proposed by Fermat as a challenge to English mathematicians of 
the time. For a complete history of the subject see Ilickson 14, vol. 2, p. 3411. 

$ John Pel1 ( 161 1-1685) was a great teacher and scholar. Admitted to Trinity 
College, Cambridge, a t  the age of thirteen, Pell had mastered eight languages 
before he was twenty. He was professor of mathematics a t  Amsterdam (1643- 
1646), a t  Breda (164&1652), and he was Cromwell's representative in Switzer- 
land (1654-1658). He was elected a fellow of the Royal Society in 1663. 
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example arises in connection with the so-called "cattle problem" of 
Archimedes.? The solution of this problem contains eight unknowns 
(each representing the number of cattle of various kinds) which 
satisfy certain equations and conditions. The problem can be 
reduced to the equation 

whose smallest solution involves numbers x and y with 45 and 41 
digits respectively. The smallest solution of the cattle problem corre- 
sponding to these values of x and y consists of numbers with 
hundreds of thousands of digits. There is no evidence that the 
ancients came anywhere near to the solution of the problem. In fact 
some historians doubt that the problem had any connection with 
Archimedes, while others are convinced that it was propounded by 
Archimedes to Eratosthenes. See Heath [6, p. 1211, Dickson [4, vol. 
2, p. 3421. 

4.2 Purely Periodic Continued Fractions 

Certain continued fractions, like 

are periodic only after a certain stage. Others, like 

are periodic from the beginning on and are called purely periodic 
continued fractions. Numbers represented by purely periodic 
continued fractions are quadratic irrationals of a particular kind, 
and we shall now investigate how these numbers can be distinguished 
from other quadratic irrationals. 

(a) A numerical example. Consider some purely periodic con- 
tinued fraction, such as 

We can write 

t For a statement of the cattle problem see The World of Mathematics b y  
James R. Newman, New York: Simon and Schuster, 1956, pp. 197-198. 
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I t  is now necessary to recall a result studied in Section 3.7. There we 
showed that if 

where 

then 

where p,-l/q,-l and p,/q, are the convergents corresponding, 
respectively, to the partial quotients an-l and a,. In  effect, (4.5) 
shows that  we can treat (4.3) as though it were a finite continued 
fraction, and that in calculating a we can regard an+l as though i t  
were a legitimate partial quotient. 

I n  the case of a purely periodic continued fraction 

1 1  1 
a = [al,a2, . . . , a,] = al + - - 1 - - 

a2 + a3 + . . . + a, + an+l ' 

we see that 

k 1 1  
1 a n + l = a l + -  - = a ,  

a z + a 3 +  . . .  

/ and hence equation (4.5) shows that a can be calculated from the 
equation 

f, We now apply (4.6) to the special case (4.2), using al = 3, 1 a2 = 1, a3 = 2, a = [3, 1, 21. We form the table 
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Hence, we obt'ain 

This leads to the quadratic equation 

which is the same equation we would have obtained had we worked 
with equation (4.2). 

We now consider the number p obtained from a by reversing the 
period, that is, the number 

Applying (4.6) to 0, we get 

this leads to the quadratic equat,ion 

Equation (4.9) can he written in the form 

Comparing (4.7) and (4.10) we see that the quadratic equation 

has solutions x = a and x = - 1/p. These roots cannot be equal 
since both a and fl are positive, and so a and - l / p  have oppo- 
site signs. Moreover, p > 1, and so - 1 < - l / p  < 0. This shows 
that the quadratic equation (4.7), or (4.11), has the positive root a 
and the negative root a' = - 1/P, where - 1 < a' < 0. 

I t  is easy to check these results numerically. The quadratic 
formula shows that (4.7) has two roots, 

5 + 1 / 3 7  
a = and a' = 

5 - 1 / 3 7  
3 3 
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The positive root 0 of (4.9) is 

and hence 

which shows that - 1/p is equal to a'. Moreover, to three decimal 
places, a = 3.694 > 1, and a' = -0.361, so that -1 < a' < 0. 
The purely periodic continued fraction a is indeed a quadratic 
irrational. 

(b) The general case. We shall now prove 

THEOREM 4.1. If al,  a2, . . . , a, are positive integers, the purely 
periodic continued fraction 

is greater than 1 and is the positive root of a quadratic equation with 
integral coeficients. Moreover, if p = [a,, a,-l, . . . , all is the con- 
tinued fraction for a with the period reversed, then - 1//3 = a' is the 
second, or conjugate root, of the quadratic equation satisfied by a, and, 
equally important, a' lies between - 1 and 0. 

PROOF. We require two results stated in Problem 7 of Set 3, 
page 26, namely that if 

then 

I and 

' (4.14) Qn - -  P A - ~  
- [a,, a,-I, . . . , as, a21 = T- 

Qn-1 4n-1 

where and pA-l/q:- represent, respectively, the nth and 
(n - 1)st convergentsofthecontinuedfraction [anla,-I, . . . , a2,alI. 
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Since convergents are in their lowest terms, it follows that 

Since a is purely periodic we can write it in the form 

and, according to (4.6), in the form 

where p,/q, and pn-l/qn-l are defined, respectively, as the nth 

and (n - 1)st convergents of [all az ,  . . . , a,]. Equation (4.16) is 
equivalent to the quadratic equation 

(4.17) qna2 - (pn - ~n-1)a - Pn-1 = 0. 

Reversing the period in a, we obtain 

and again, according to (4.6), we see that 

where p;/q; and p:-~/q;-l are, respectively, thenthand (n - 1)st 
convergents to [a,, an-l, . . . , all. Using the results stated in (4.15) 
we can replace (4.18) by 

so that /3 satisfies the equation 

pn-1P2 - (pn - qn-1)P - qn = 0, 

which is equivalent to the equation 
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Comparing equations (4.17) and (4.19), we conclude that the 
quadratic equation 

has two roots: The root XI = a, and the root x2 = -I/@. Now, P 
stands for the purely periodic continued fraction [a,, an-l, . . . , all, 
where an, an+ . . . , a l  are all positive integers; thus we have 
B > 1, 0 < 1/P < 1, and so -1 < -I/@ < 0. In other words, 
the root a' = - l /P lies between - 1 and 0. This completes the 
proof. 

The converse of Theorem 4.1 is also true (and will be proved in 
Section 4.5). This means that if a > 1 is a quadratic irrational 
number, and hence satisfies a quadratic equation with integral 
coefficients, and if the second root &' of this quadratic equation lies 
between - 1 and 0, then the continued fraction expansion of a is 
purely periodic. This remarkable fact was first proved by Galois in 
1828, though the result was implicit in the earlier work of Lagrange. 
What is to be emphasized is that these few conditions on a and a' 
conzpletely characterize the numbers which have purely periodic con- 
tinued fraction expansions. 

Simple recurring continued fractions may be grouped as follows: 

1 
(i) Fractions which have no acyclic (or non-repeating) part, 

, such as 
l 

a = [al, a2,  . . . , a,]. 
9 

(ii) Those with an acyclic part consisting of a single quotient a l l  1 such as 

Ei a = [all bl ,  bs, bn, . . , b,]. 

1, (iii) Those with an acyclic part containing at least two quotients, 

We proved, for fractions of type (i), that a is a quadratic irrational 
which satisfies a quadratic equation with integral coefficients, whose 
second root a' lies between - 1 and 0. In cases (ii) and (iii) i t  can 
also be proved that a is a quadratic irrational satisfying a quadratic 
equation with integral coefficients, but in case (ii) the second root a' 
of this quadratic equation is either less than - 1 or greater than 0 ,  
while in case (iii) the second root is necessarily greater than 0. We 
will not prove these last two results. 
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Problem Set 14 

- - 
1. If a = [2, 61 and 0 = [6, 21, 

(a) verify numerically that  a > 1 and 0 > 1, 
(b) find the equation of which a is a root, 
(c) show that the other root, a', of this equation satisfies the relation 

a' = - 1/P, and that  a' therefore lies between - 1 and 0. 

2. Verify numerically 
(a) that a = [I,  2, 31 satisfies an equation whose other root, a', does 

not lie between -1 and 0, 
- 

(b) that  y = [I, 2, 31 satisfies an equation whose other root, y', is 
positive. 

4.3 Quadratic Irrationals 

In this section we shall be concerned mainly with numbers of the 
form 

A + B Z / D ,  

where A and B are arbitrary rational numbers, and where D is a 
fixed positive integer not a perfect square, so that d n ,  and hence 
also A + B Z/D, are irrational. 

First we observe that,  for an arbitrary but fixed positive integer 
D, not a perfect square, there is only one way of writing the number 
A + B d B ,  aside from trivial variations such as 

$ + & d i = % + + d i .  
In other words, 

if and only if A 1 = A2 and B1 = B2. To prove this, write the above 
equality in the form 

A1 - A2 = (Bz - B1) d D ;  

if Bz # B1, then 

would be rational, contrary to assumption. Hence the assumption 
that B1 # B2 leads to a contradiction and we must conclude that 
BI = Bz, and therefore, A l  - Az = 0 or A1 = A 2 .  
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Next, we claim that when numbers of this form are combined by 
any of the elementary operations of arithmetic (addition, sub- 
traction, multiplication, division), the result is again of this form. 
We leave the proofs of these properties to the reader (see Problem 
1 of Set 15), but call attention to the fact that in this connection, 
"numbers of the form A + B 1/D " include those for which 
B = 0, i.e. ordinary rational numbers. When we speak of quadratic 
irrationals, however, we shall assume B # 0, since otherwise the 
number under consideration would be rational. 

We prove next that every number x = A + B d 5 ,  where A and 
B # 0 are rational and D is a positive integer, not a perfect square, is 
the root of a quadratic equation ax2 + bx + c = 0, where the coefi- 
cients a > 0, b, c are integers and where b2 - 4ac > 0. Clearly if 
a = 0, x = -c/b would be rational and hence could not represent 
the irrational number A + B d D .  

In order to prove the statement in italics we recall that any 
quadratic equation 

ax2 + bx + c = 0, a > 0, 
has roots 

where D = b2 - 4ac, and consequently 

Hence, if a # 0, we can replace ax2 + bx + c = 0 by 

Conversely, we can verify by direct substitution that 

z = A + B d D  
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(and x = A - B d 5 )  satisfies this last equation: 

The equation x2 - 2Ax + (A2 - B2D) = 0 satisfied by 
A + B dZ;j and A - B fi need not have integral coefficients, 
but if we multiply through by a, the common denominator of the 
rational numbers 2A and A2 - B2D, we obtain the quadratic 
equation 

where the three coefficients a > 0, b = -2aA, and 
c = a(A2 - B2D) are integers. 

Finally, the discriminant b2 - 4ac of this last equation is 
positive; for, 

since D was assumed to be positive. Observe also that b2 - 4ac is 
not a perfect square. 

The above discussion leads us to a precise definition of a quadratic 
irrational, or quadratic surd; i t  is a number which satisfies a 
quadratic equation whose coefficients are integers and whose 
discriminant is positive but not a perfect square. The numbers 
A + B 2 / ~  we have been dealing with are therefore all quadratic 
surds according to this definition, provided B # 0. 

A quadratic surd A + B 45, B # 0, satisfies one and only one 
quadratic equation ax2 + bx + c = 0 where a, b, c have no factors in 
common. For, if x = A + B .\/D were a root of 

and also of 
g2(x) = a2x2 + b2x + c2 = 0, 

then it would also be a root of the equation 

Now if a2bl - albz # 0, then this would imply that 
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is rational, contrary to the assumption that x is irrational. Hence 
in this case x = A + B d D  could not satisfy both equations. On 
the other hand, if a2bl - alb2 = 0 then the equation 

implies that a2cl - alc2 = 0, and hence that 

so that a2 = kal, bz = kbl, cz = kc1 and the two quadratic 
equations gl(x) = 0 and g2(x) = 0 are actually equivalent, one 
being merely a constant multiple of the other. 

Every quadratic irrational 

a = A + B 1 / 5  
has a conjugate 

a l = A - B f i  

formed by merely changing the sign of the coefficient B of d 5 .  
This definition has a number of useful consequences: 

1. If a satisfies the quadratic equation ax2 + bx + c = 0, then 
a' also satisfies this equation. (Why?) 

2. The conjugate of the conjugate of a quadratic irrational num- 
ber a is a. This follows directly from the definition of a conjugate, 
or from consequence l., because a quadratic equation has only two 
roots. 

3. The conjugate of the sum, difference, product, or quotient of 
' two quadratic surds a1 and a2 is equal, respectively, to the sum, 
, difference, product, or quotient of their conjugates. In symbols, 
a this means that 

(a1 + ad' = a; + a;, 

' 

We prove the first assertion, leaving the rest as problems. Thus if 
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then the conjugate of the sum is 

On the other hand, the sum of the conjugates is 

a: + a; = (A1 + B l f i ) ' +  (Az + Bz f i ) '  

and comparing the two results we see that 

(a1 + a2)I = a: + a:. 

Problem Set 15 

1. Show that, if a1 = A1 + B1 dz, a2 = A2 + B2 45 (where Al ,  A2, 
BI, B2 are rational and D is a positive integer, not a perfect square), 
then a1 + a?, a1 - a 2 ,  a1 . a 2 ,  a ~ / a ?  (a2 # 0), can each be expressed 
in the form A + B ds with rational A,  B. 

2. Using the same representation of a,, a2 as in Problem 1, and denoting 
the conjugate of a by a', show that  

3. If A + B fi + C 4% = 0 and if A, B, C are rational and !If, N 
are positive integers, not perfect squares, such that  l /G/d% is not 
rational, prove that A = B = C = 0. 

4.4 Reduced Quadratic Irrationals 

The quadratic equation 

where a ,  b, c are integers, has roots 
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and 

where 

are integers. If we assume that D > 0 is not a perfect square, then 
the roots a and a' are quadratic surds of the form A L- B d B ,  
where A = P / Q  and B = 1/Q are rational. 

Under these assumptions the quadratic irrational a given by (4.20) 
i s  said to be reduced i f  a i s  greater than 1 and if i ts  conjugate a', given 
by (4.21), lies between - 1 and 0. I t  is important in what follows to 
find out more about the form and properties of reduced quadratic 
irrationals. Throughout the rest of this chapter, P, Q, D will be as 
defined by (4.22). 

Suppose, then, that the value of a given by (4.20) is a reduced 
quadratic irrational, i.e., that 

P + ~ D  P - Z / D  
a = 

Q > 1, and - 1  < a ' =  -- Q 
< 0. 

/ The conditions a > 1 and a' > - 1  imply that a + a' > 0, or 
- 

! 
\ and since Q  > 0, we conclude that P > 0. Also, from 

and ' it follows that P  - d\/D < 0, or that 0 < P  < f i .  The / inequality a > 1 implies that P + > Q ;  and the inequality 
' a ' >  -1  shows that P - d l j >  -Q, or d D - P < Q .  

Finally we observe that ! 
; 
4 We have shown that if a is a reduced quadratic irrational of the 
: form (4.20), then the integers P ,  Q, D satisfy the conditions 
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The reason for introducing the notion of reduced quadratic surds 
has not been explained. This idea, however, is a well-established 
concept in the theory of numbers, and is intimately related to the 
theory of reduced quadratic forms. For our purpose, the importance 
of the idea depends upon the fact that for any given D there is only a 
Jinite number of reduced quadratic surds of the form (4.20). This 
follows directly from the inequalities (4.23); for, once D is fixed, 
there is only afinite number of positive integers P and Q such that 
P < d D  and ~ < 2 1 / 0 .  

Could i t  happen that there are no reduced quadratic surds of the 
form ( P  + 45 )/Q associated with a given D?  If so we might be 
talking about an empty set of reduced surds. However, for any given 
D > 1, not a perfect square, there exists always at least one reduced 
quadratic surd associated with it, namely 

where X is the largest integer less than fi. With this determination 
of A,  X + .\/D = a is clearly greater than 1, and its conjugate 
a' = X - 1/D obeys - 1 < a' < 0. The quadratic equation satis- 
fied by a and a' is 

I t  is necessary to have the following result: If a is a reduced 
quadratic surd, i t  nzay be expressed in  the fornz 

where a l  is the largest integer less than a, and where al is again a 
reduced quadratic surd. 

To establish this result, let the reduced quadratic surd a be the 
root 

of the equation ax2 + bx + c = 0, where a, b, c are integers, 
a >  0, P = -b, Q = 2a, and D = b 2 - 4 a c >  0 not aperfect  
square; see (4.22). Write a in the form a = al  + l/al, where a1 is 
the greatest integer less than a. Clearly a = a l  + l/al satisfies the 
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quadratic equation 

Solving for the positive root all we obtain 

a1 = Pl + 40, , 
Q1 

where 
P I =  -(2aa l+b) ,  Q 1 = 2 ( a a ? + b a l + c ) ,  

and 

These expressions give us the explicit form of al.  I t  is also clear 
that P I ,  Q1, and Dl = D are integers, and 

has the same irrational part fi as a has. 
It will now be shown that al is a reduced quadratic surd. To this 

end, we recall that a ,  is the greatest integer less than a ;  therefore 
0 < l/al < 1, so a1 > 1, as required, and it only remains to 

i prove that -1 < a: < 0. Solving the equation a = a l  + ( l /al)  

1 for al and taking the conjugate of the result (see page 99), we 
i obtain 

1 

C a - a l  a' - a l  
1 

Therefore 
i' 

1 - - -  - a l  - a' > 1, 
ff ; 

since a l  2 1 and, by hypotheses, -1 < a' < 0. If follows that 
0 < -a; < 1, or - 1 < a: < 0. Thus a1 is a reduced quadratric 
surd, and hence the inequalities (4.23) are automatically inherited 
by PI, Q1, and Dl = D. 

Finally, we prove that if a is a reduced quadratic irrational, then 
its associate 0 = - l/al is also a reduced quadratic irrational; for, 
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the inequalities a > 1, - 1 < a' < 0 imply that ,8 > 1, and 
that 0' = - l / a  lies between - 1 and 0. 

Problem Set 16 

1. Show that, if a = Q(5 + 1/37) is expressed in the form 
a = al + (l/a,), where al is the largest integer less than a ,  then a ,  
is a reduced quadratic irrational. 

2. Show that the conditions (4.23) are necessary and sufficient conditions 
for a [defined by equation (4.20)] to be a reduced quadratic irrational, 
In other words, prove that conditions (4.23) imply that 1 < a and 
- I .<  a' < 0. 

3. Determine all the reduced quadratic irrationals of the form 
( P  + 6 3 ) / & .  

4.5 Converse of Theorem 4.1 

We are now ready to prove 

THEOREM 4.2 (CONVERSE OF THEOREM 4.1). If a i s  a reduced 
quadratic irrational, so that a > 1 i s  the root of a quadratic equation 
with integral coemients whose conjugate root a' lies between - 1 and 0, 
then the continued fraction for a i s  purely periodic. 

PROOF. We first investigate the actual expansion of a into a 
continued fraction; then we show that this expansion is necessarily 
purely periodic. 

The first step is to express the reduced quadratic irrational a in 
the form 

where al is the largest integer less than a ,  and where 

is again a reduced quadratic irrational associated with D. This we 
established in Section 4.4. 
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Step (4.24) is the first step in converting a into a continued 
fraction. Repeating the process on a l l  we obtain 

where a2 is the largest integer less than al ,  and 

is a reduced quadratic irrational. At this stage we have 

where a ,  a l l  a 2  are reduced, and 

Continuing the process, we generate step-by-step a string of 
equations 

I, . . . . . . . . . . . . .  i 1 

I 
. . .  "here a,, = al al ,  a ~ ,  are all reduced quadratic irrationals 

; associated with D,  and where 

Since a is irrational this process never comes to an end, and hence 
, we seemingly are generating an infinite number of reduced surds 
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ao, all ' ' ' , a,, . . . , a11 associated with D. But we proved in Sec- 
tion 4.4 that there can only be a finite number of reduced ai's 
associated with a given D; therefore, we must arrive eventually a t  a 
reduced surd which has occurred before. Suppose, then, that in the 
sequence 

all the complete quotients ao, all  . . . , al-I are different, and that 
aL is the first one whose value has occurred before, so that aL = ak, 
O < k < l .  

I t  is then possible to prove that: 

(i) Once a complete quotient is repeated, all subsequent com- 
plete quotients are repeated; in other words, a k  = a~ implies 
a k + l  = aL+l1 a k + 2  = a1+2,  ' ' ' . 

(ii) The very first complete quotient, a = ao, is repeated; in 
other words, the sequence a = ao, all az, . . . is purely periodic. 

To prove (i), we merely recall that 

and, since ak+~ and a ~ + ~  are the greatest integers less than ak = all 

we may conclude that ak+~ = a ~ + ~ .  It then follows that the recipro- 
cals of a k f l  and ~ L + I  are equal and hence that a k f 1  = al+l. 
This argument, when repeated, also yields a k + 2  = CYL+~,  

a k + 3  = a14-3, ' ' ' . 
To prove (ii) we shall show that ak = a1 for 0 < k < 1 implies 

a&1 = C ~ L - ~ ,  a!=-2 = ~ L - z ,  . . ' , a 0  = CYL-k. For this purpose, we 
use the conjugates of the equal complete quotients a k  and at, 

obtaining a; = a;, from which it  follows that 

Now if k # 0, we have 

1 1 
a k - l  = ak + - and alPl = at + - ; 

a k  0 1  

taking conjugates, we obtain 

and hence 
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which is the same as saying 

1 1 
(4.27) Pk = ak + -- and P ~ = a r + - -  

Pk-1 PI-1 

Since ( ~ k - ~ ,  al-l are reduced, we have 

- 1 < ( ~ ; - ~ < 0  and - 1 <  af-1 < O  

so that 

1 1 
0 < -a;-l = -- Pk-I  < 1, and 0 < -a;-l = - PI-1 < 1. 

This shows that the ak, a1 in (4.27) are the largest integers less than 
P k ,  PI, respectively; and since P k  = P1, it  follows that ak = a1 and 
hence, also, that 

Since the left side of (4.28) is and the right side is at-1, we 
have shown that ark = at implies ak-l = at-l. NOW if k - 1 # 0, 
i.e., if a k  is not the very first complete quotient, we may repeat this 
argument k times to prove that 

a k - 2  = aL-2, ffk-3 = a1-3) etc., 

until we arrive a t  the first a, and obtain 

ak-k = a 0  = a1-k = as. 

Thus, in expanding the reduced quadratic irrational a into a 
continued fraction we generate the string of equations 
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where a ,  all az, . . . , as-I are all different, and where a, = a, and 
from this point on the a's repeat. 

Since for every a k  > I ,  there exists exactly one biggest integer 
ak less than ail i t  is clear that the sequence a l l  az, . . . , a, will also 
repeat : 

1 1 
a, = a,+1 + --- = a o = a l + - .  

%+1 ff 1 

Therefore, the continued fraction for a has the form 

a: = [al, az, . . . , a,] 

of a purely periodic continued fraction. This completes the proof 
of Theorem 4.2. 

Before extending the proof to all quadratic irrationals (reduced 
and not reduced), we present a graphical illustration of the periodic 
character of the complete quotients al,  as, . . . in the expressions 

We shall define two functions, F(x) and G(x), such that F maps 
a, into l/c~,+~ and G maps l/an+l into its reciprocal, an+l. 
By first applying F to some a,, and then G to F(a,), we shall 
obtain an+l. 

To define the function F, observe that 

where ak+l is the largest integer less than ak.  Let the symbol ( x ]  
denote the largest integer less than x ;  t then we may write 

and we define the function F accordingly: 

We now have a function which assigns, to every ak, the reciprocal 
of the next a ;  that is, 

t The traditional notation for "largest integer less than x" is 1x1; but since 
this conflicts with our notation for continued fractions, we have adopted the 
braces here. 
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Now, since the reciprocal of the reciprocal of a number is the 
number itself, the appropriate definition of G is simply 

so that 

In other words, 
G[F(ak)] = f f k + ~ .  

Figure 10 

In  order to apply this scheme graphically, plot the functions 
F(x) = x - ( X I  and G ( x )  = 1/x on the same graph paper; see 
Figure 10. The graph of F(x) consists of the parallel line segments 
and the graph of G(x), for positive x, consists of one branch of the 
equilateral hyperbola y = l/x. 

Let a be the given quadratic irrational. We locate i t  on the hori- 
zontal axis (point A )  and find F(a) = l /aL by measuring the 
vertical distance from A so the graph of F(x) [i.e., to the point 
F(a)  = B]. We then find the point on the graph of G(x) which has 
the same ordinate as the point B, namely l/aI; we call this point 
C. The projection of C ont,o the x-axis represents the value of al,  
because 
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Starting with al, we now repeat this process, going from A' to B' 
to C' ;  the abscissa of C' represents the value of a2.  

The arrows in the figure indicate the paths that lead from each a 
to the next, a single arrow leading from a to al, a double arrow 
from a1 to a*, etc. If, in the course of our path, we are led to a 
point on the hyperbola which was already covered by the earlier 
part of the path, then there will be a repetition and the a; are 
periodic. Conversely, if the a, are periodic, then the path will 
eventually repeat itself. 

Problem Set 17 

1. Show that a = 1 + d 2  is reduced and verify that its expansion is 
the purely periodic continued fraction [2]. 

2. Show that 48 is not reduced and that its continued fraction expansion 
is not purely periodic. 

3. Use the graphical method explained at the end of the last section in 
order to show that 45, although not purely periodic, has a periodic 
continued fraction expansion, [2, 41. Observe that the partial quotients 
al, az, . . . can be determined by recording which segment of F ( x )  is 
hit by the part of the path issuing from a, a,, . . . , respectively. 

4.6 Lagrange's Theorem 

THEOREM 4.3. Any quadratic irrational number a has a continued 
fraction expansion which is periodic from some point onward. 

PROOF. The central idea of the proof is to show that when any 
quadratic irrational number a is developed into a continued frac- 
tion, eventually a reduced complete quotient is reached, and 
from then on the fraction will be periodic by Theorem 4.2. 

Let the expansion of a be 

Then, by equation (4.5) we know that 
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where a and a,+l are quadratic irrationals and an+l > 1. Taking 
conjugates of both sides of this equation, we get 

or, solving for a;+,, 

Factoring the numerator and the denominator, this gives 

where = pn-l/qn-l and cn = p,/qn are convergents to a. 
But from our study of convergents in Chapter 3 we know that as n 
increases indefinitely, both and cn tend to the limit a, and 
consequently 

a' - Cn-1 a' - a 
(4.30) tendsto ------ - 1 

a' - cn a' - a 

as n approaches infinity. We know also that the convergents cn are 

I i 
alternately less than a and greater than a ,  and hence eventually, 

1 as n increases, the values of the fraction (4.30) will not only get 
c closer and closer to 1, but they will be alternately slightly less than 1 

and slightly greater than 1. We notice also that in (4.29) the numbers I pn and qn-1 are both positive integers and (see page 67) that 
0 < q n - ~  < q., so that qn-,/qn < 1. Thus, once we have found a 
value of n which makes the fraction (4.30) slightly less than 1, the 

, value of a:+, given by (4.29) will of necessity lie between - 1 and 0. 
, This proves that is reduced; by Theorem 4.2 the continued 

fraction for a will be periodic from there on. Thus Lagrange's 
, theorem has been proved. 
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Problem Set 18 

1. S h o ~  that a = +(8 + dg) is not reduced, but that, if 

we eventually come to an a,+l which is reduced, and verify that the 
expansion is periodic from then on. 

4.7 The Continued Fraction for 4% 

If N > 0 is an integer which is not a perfect square, the con- 
tinued fraction for d N  has an interesting form. First notice that 
d~ is greater than 1, and hence its conjugate - d N  cannot lie 
between - 1 and 0, so v'N is not reduced, and its expansion 

cannot be purely periodic. On the other hand, since a l  is the largest 
integer less than ~ ' 8 ,  the number .\/N + a l  is greater than I ,  
and its conjugate, - d N  + al, does lie between - 1 and 0, so 
d w  + al  is reduced. Adding a l  to both sides of (4.31) we get 

and since this expansion is purely periodic i t  must have t'he form 

Consequently, the expansion for fi is 

= [al, at, an, . . . , an, 2al1, 

where the period starts after the first term and ends with the term 
2al. For example, 

d29 = [5, 2, 1, 1, 2, 101, 

d ~ = [ 4 , 2 , 1 , 3 , 1 , 2 , 8 ] .  

P E R I O D I C  C O N T I N U E D  F R A C T I O N S  113 

Kotice that, except for the term 2al, the periodic part is sym- 
metrical. The symmetrical part may or may not have a central term. 

To investigate the symmetrical part, recall from Section 4.2 that 
if a' = - .\/N + a l  is the conjugate of a = .\/N + al,  then 
the expansion of - l/a' is the same as that of a ,  but with the 
period reversed. Hence, reversing the period in (4.32), we obtain 

On the other hand, we can obtain the expansion for ( d %  - al)-I 
quite easily from (4.33); subtracting a l  from both sides of this 
equation yields 

and t,he reciprocal of this expression is 

We know, however, that continued fraction expansions are unique; 
hence, comparing (4.34) and (4.35), we conclude that 

an = U2, a,-1 = a,, . . . , a3 = a,-l, aa  = a,. 

I t  follows that the continued fraction for dN necessarily has the 
form 

- 

d N  = [a,, as, a,, a4, . . . , a4, an, a ,  2~11.  

See Table 2, page 116, for additional examples. 

4.8 Pell's Equation, x2  - Ny2 = + 1 

At the beginning of this chapter we mentioned that the cattle 
problem of Archimedes reduced to the solution of the equation 

In this section we shall discuss the solutions in integers x and y of 
the equation 

(4.36) x2 - Ny2 = 1 

where N > 0 is a given integer, and where x and y are unknown 
integers whose values we are seeking. We assume that N is not a 
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perfect square; otherwise the equation is of little interest, since the 
difference of two perfect squares is never equal to 1 except in the 
special cases (+_ - 02. (Why?) 

The continued fraction expansion for TN supplies all the 
equipment we need to solve Pell's equation x2 - Ny2 = 1, or 
x2 - Ny2 = - 1, provided solutions exist. We know that 

where 

We aga,in use the fact that 

where pn-,, qn-l, p,, and qn are calculated from the two con- 
vergent~ c,-~ = pn-l/qn-l, c, = pn/qn which come immediately 
before the term 2al in (4.37). Replacing in (4.39) by the right 
side of (4.38) yields 

then, multiplying both sides by the denominator, we get 

d N ( d N  + al)qn + q,-1 d N  = ( 4 %  + al)p, + p,-I, 

which is equivalent to 

Nqn + (alpn + qn-1) 4% = (alpn + pn-1) + pn d Z .  

Now this is an equation of the form a + b d\/N = c + d 43, 
where a, b, c, d are integers and 1/N is irrational, and this implies 
that a = c and b = d (see Section 4.3). Hence the last equation 
requires that 
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Solving these equations for pn-1 and qn-1 in terms of pn and q,, 
we find that 

But from Theorem 1.4 we know that 

and, with the values of pn-l and q,-1 from (4.40), this equation has 
the form 

pn(pn - aiqn) - qn(Nqn - alpn) = (- 1)"; 
that is, 

If n is even, equation (4.41) becomes 

and hence a particular solution of Pell's equation x2 - Ny2 = 1 is 

If n is odd, then 
2 2 

pn - Nqn = = - I ,  
and 

= pnl = q n  

, gives a particular solution of the equation x2 - Ny2 = - 1. 

1 If n is odd and we still desire a solution the equation 

j x2 - Ny2 = 1, we move ahead to the second period in the expansion 
J of d m ,  that is, out to the term an where it occurs for the second 1 
k time. Notice that 

1 so that the term an, when it occurs again, is actually the term a2,; 
I then 

2 2 pzn - NqPn = = 1, 
I and so 

21 = p2nl 5/1 = qzn, 

y - 1.  ' gives us again a particular solution of the equation x2 - N - 
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Continued Fraction 
for 2 / N  
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The  above analysis shows tha t  we can always find particular 
solutions of the equation 

and somet'imes particular solutions of the  equation x 2  - N y 2  = - 1. 
Not all equations of the form x 2  - N y 2  = - 1 can be solved. For 
example, i t  can be proved (see Appendix I a t  the  end of this book) 
tha t  the equation x 2  - 3 y 2  = -1 has no integral solutions. Here 
we shall confine our examples to  equations tha t  have solutions. 

EXAMPLE 1. Find a particular solution of the equation x2 - 21y2 = 1. 

SOLUTION. Here N = 21, and the continued fraction expansion given in 
Table 2 is 

6 = 14, 1, 1, 2 ,  1, 1, 81 = [al, a ~ ,  a3, a*, a5, a6, 2all, 

which shows that a, = a6, so that n = 6 ,  an even number. A calculation 
shows that c6  = eg, SO that 

and 

hence X I  = 55, y, = 12 is a particular solution of the given equation. 

EXAMPLE 2. Find a particular solution of the equation x2 - 29y2 = 1. 

SOLUTION. The expansion of 2/29 is 

so that n = 5 ,  an odd number. The first five convergents are 

But x ,  = p5 = 70 ,  yl = q5 = 13, give xZ - 29y2 the value 
702 - 29 . 132 = -1 and not +l. Hence, we must move on to the next 
period. The next period gives the convergents 

and so, if we take 

X I  = 9801, yl = 1820, 
we get 

2: - 2gy; = 96059601 - 96059600 = 1. 
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The solutions arrived at  in Example 1 can be checked against Table 2. 
In this Table, opposite N = 21 we find the expansion of 

1/z = 6 = [4, 1, 1, 2, 1, 1, 81, 

and further to the right we find listed a solution xl = 55, y1 = 12 of the 
equation x2 - 21y2 = 1. 

Likewise we can check Example 2, for the Table shows that 

d N  = 4% = [5, 2, 1, 1,2, 101 

and gives a solution X I  = 70, y1 = 13 of the equation x2 - 29y" -1, 
which indicates that we have to move to the next period to obtain a solution 
of the equation x2 - 29y2 = +l .  

Problem Set 19 

Show that X I  = 8, yl = 3 is a solution of the equation x2 - 7y2 = 1, 
as indicated in Table 2. 

Show that xl = 18, y l  = 5 is a solution of the equation 
x2 - 13y2 = - 1, and proceed to the next period to find a solution of the 
equation x2 - 13y2 = 1. 

4.9 How to Obtain Other Solutions of Pell's Equation 

We have seen that Pell's equation x2 - Ny2 = 1, N a positive 
integer not a perfect square, can always be solved, but that not all 
equations of the form x2 - Ny2 = - 1 have solutions. However, 
if either of these equations has solutions, then the method outlined 
in Section 4.8 will always produce the least positive (minimal) 
solution; that is, i t  will always produce the two smallest integers 

2 2 2 xl > 0, y1 > 0 such that x? - Nyl = 1 or XI - Nyl = -1. 
Once the least positive solution has been obtained, we can sys- 
tematically generate all the other positive solutions. These state- 
ments will not be proved. We shall state the main theorems involved 
and illustrate them by examples. 

THEOREM 4.4. Ij (XI, yl) is the least positive solution of 
x2 - Ny2 = 1, then all the other positive solutions (x,, y,) can be 
obtained from the equation 

by setting, in turn, n = 1, 2, 3, 

The values of x, and y, are obtained from (4.42) by expanding 
the term (XI + yl 1 / N ) n  by the binomial theorem and equating the 
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rational parts and purely irrational parts of the resulting equation. 
For example, if (XI, yl) is the least positive solution of 
x2 - Ny2 = 1, then the solution (22, y2) can be found by taking 
n = 2 in (4.42). This gives 

so that x2 = x? + Ny? and y:, = 2x1~1. Using these values, a 
direct calculation shows that 

since by assumption (x,, yl) is a solution of x2 - Ny2 = 1. 
I t  is easy to show that if x,, y, are calculated by equation (4.42), 

then x: - Ny: = 1. We have, from (4.42), 

x. + y, <N = (xl + yl 1/N)(xl + YI  1/N) . . . (XI + yl d N ) ,  

where there are n factors in the expression on the right-hand side. 
Since the conjugate of a product is t'he product of the conjugates, 
this gives 

Thus x, and y, are solutions of the equation x2 - Ny2 = 1. 

EXAMPLE 1. In Example I of Section 4.8 we found that xl = 55 and 
y, = 12 is a solution (minimal) of the equation x2 - 21y2 = 1. A second 
solution (x2, yz) can be obtained by setting n = 2 in (4.42); this gives 
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which implies that 2 2  = 6049, y, = 1320. These values satisfy the equa- 
tion x2 - 21y2 = l ,  since 

In general, the solutions of Pell's equation become large very fast. 

EXAMPLE 2. Table 2 shows that XI = 2, yl = 1 is a solution of the 
equation x2 - 3y2 = 1. A second solution (xz, yz) is given by the equation 

x ? + y ~ & = ( 2 + 1 2 / 3 ) ~ = 7 + 4 - \ / 3 ,  

so that x3 = 7, y3 = 4, and 72 - 3 . 42 = 1. A third solution (x3, y3) is 
given by the equation 

2 3  + y3 1/3 = (2 + 1 4313 = 26 + 15 1 / 3 ,  

so that x3 = 26, y3 = 15. This is true since 

(26)2 - 3(15)' = 676 - 675 = 1. 

The procedure can be continued. 

THEOREM 4.5. Assuming that x2  - Ny2 = - 1 i s  solvable, let 
(xl, yl) be the least positive solution. Then all positive solutions 
(x,, y,) of x2 - Ny2 = - 1 can be calculated from the equation 

by setting n = I ,  3, 5, 7,  . . . . Moreover, using the same values 
XI ,  y1, all positive solutions of x2 - Ny2 = 1 are given by 

(4.45) x n  + yn fi = (XI + ?/I Z/N)n ,  
with n = 2, 4 ,  6, . . . . 

EXAMPLE 3. Table 2 shows that xl = 3, yl = 1 is the minimal solution 
of x2 - 10yZ = -1. A second solution is obtained from (4.44) by setting 
n = 3. We have 

2 3  + y 3 d %  = (3 + 1 = 117 + 37 1/10, 
so that 2 3  = 117, y3 = 37; this is a solution since 

(117)' - lO(37)' = 13689 - 13690 = -1. 

If we take n = 2 in (4.45), we get 

x2 + y? 1/10 = (3 + 1 v%)2 = 19 + 6 1/10. 
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This gives x2 = 19, yz = 6, and 1g2 - 10 . 62 = 1 so that these values 
are solutions of x2 - 10y2 = 1. 

I n  concluding this section, we remark t h a t  the  s tudy of the  equa- 
tion x2 - Ny2 = I is preliminary t o  t h e  s tudy  of the  most general 
equation of second degree in two unknowns, equations of the  form 

Ax2 + Rxy + Cy2 + Dx + E y  + F = 0, 

where A, B, C, D, E and  F are integers, and  where x a n d  y are  
t h e  unknown integers. B y  means of certain substitutions for t h e  
variables x a n d  y, t he  solutions of this  equation (if they exist) can 
be made t o  depend upon the  corresponding solutions of a n  equation 
of the  form x2 - Ny2 = M. This  involves a n  extensive study,  a n d  
so  we must  be content with this introduction. 

Problem Set  20 

1. Table 2 indicates that xl = 17, yl = 4 is the minimal solution of the 
equation x2 - 18y2 = 1. Use Theorem 4.4 to find the next two solutions. 

I 
2. Table 2 shows that xl = 18, y1 = 5 is the minimal solution of the 

equation x2 - 13y2 = -1 . Use Theorem 4.5 to find the next solution. 
I Also, find two solutions of the equation x2 - 13yZ = 1. 
r 

/ 3. Consider the Pythagorean equation xz + yz = z" if m and n are 
integers, then the values 

x = 2mn, y = m2 - nZ z = m2 + n2 

will always give integral solutions of x2 + y2 = z2 because of the 
' identity 

(2mn)z + (m2 - n2)2 = (m2 + n2)2. 

We now propose the problem of finding right triangles with legs of 
lengths x and y, see Figure 11, so that  x and y are consecutive 
integers. Then, 

y - x = m 2 -  n 2 -  2mn = (m - n ) 2 -  2n2 = f 1. 

1 Let m - n = u, n = u, so that m = u + n = u + v.  Now the 
problem is reduced to finding integral solutions of the equation 

I u2 - 2v2 = + I .  
1 
{ Solve this equation and list the first four solutions of x2 + y2 = z2 
6 s u c h t h a t y - x = - t l .  
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4. Find sets of integers (x, y, z) for the sides of the right triangle of Figure 
11 such that, as these integers increase, the angle 0 between z and z 
approaches 60'. 

Figure 11 

C H A P T E R  F I V E  

Epilogue 

6.1 Introduction 

In  this chapter we shall preview some results that can be studied 
once the first four chapters of this book have been mastered. We 
have already indicated that a complete study of Pell's equation 
x2 - Ny2 = M could be undertaken, and would lead to  the gen- 
eral solution, in integers, of the equation 

We shall concentrate now, however, on theorems related to the 
approximation of an irrational number by a rational fraction. 

I 

Proofs of the theorems stated here and of many related theorems 
can be found in the books by Niven [8], and Hardy and Wright [5 ] .  

k 
I' 

6.2 Statement of the Problem 

3 

Throughout this chapter let a be a given irrational number, and 
let p/q be a rational fraction, where p and q have no factors in 
common. I t  is clear that we can always find a rational fraction 
p/q, with positive q, as close as we please to a ;  in other words, if e 
is any given number, however small, we can always find relatively 
prime integers p, q such that 
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But this is not the interesting point. What we should like to know is : 
Given a and E in (5.1), how large must q be? Or, given a and q, 
how small can we make e ? 

We have already accomplished something along these lines. We 
proved in Chapter 3, Theorem 3.9, that if a is irrational, there exists 
an infinite number of rational fractions in lowest terms, of the form 
p/q, q > 0, such that 

Any of the convergents pl/ql, p2/q2, . . . , pn/qn, . . . to the con- 
tinued fraction expansion of a can serve as the fraction p/q 
in (5.2). 

I t  is possible to sharpen the inequality (5.2) as shown by the fol- 
lowing theorem, stated here without proof. 

THEOREM 5.1. Of any kwo consecutive convergents pn/qn and 
p,+l/q,+l to the continued fraction expansion of a ,  at least one (call 
i t  p/q) satisfies the inequality 

Moreover, the inequality (5.3) has this interesting feature: If a 
is any irrational number, and if p/q is a rational fraction in lowest 
terms, with q 2 1, such that 

then it can be proved that p/q is necessarily one of the convergents of. 
the simple continued fraction expansion of a .  

5.3 Hurwitz's Theorem 

Inequality (5.3) immediately suggests the following question 
concerning still better approximations. Given an  irrational number 
a ,  is there a number k > 2 such that the inequality 

has infinitely many solutions p/q ? If so, then how large can k be? 
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It can be shown that, if the continued fraction expansion of a is 
[a1, a2, . . . , a,, . . .I, and if pn/qn is the nth convergent, then 

hence we can get very good approximations to a if the numbers 
all  az, . . . , a,, . . . get large very fast. On the other hand if there 
are small numbers in the sequence a*, a*, . . . , a,, . . . , no matter 
how far out we go, then the rational approximations p,/qn cannot 
be too good for small a,. 

From the point of view of %pproximation, the "simplest" num- 
bers are the worst in the following sense: The "simplest" irrational 
number is 

di - 1 
t =  = [o, 1, I ,  . . . I  = [o, 11, 

where each ai  has the smallest possible value. The convergents to t 
are the fractions 

so that q,-I = p, and 

1 I t  can be shown that, for n very large, the expression 

gets closer and closer to 1/& q:. 
These remarks suggest the truth of the following theorem, first 

I j proved by Hurwitz in 1891. 

f THEOREM 5.2. Any irrational number a has an inftnity of rational 
I 
! approximations p/q which satisfy the inequality 

' The number is the best possible number; the theorem would become 
false if any larger number were substituted for 45. 
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By "false" we mean here that if 4 5  were replaced by any num- 
ber k > 4 5 ,  then there exists only afinite number of such rational 
approximations p/q to a ,  not an infinite number. Niven [S] gives 
an elementary proof that 4 5  is the best possible number in this 
sense. 

One proof (by means of continued fractions) of Theorem 5.2 
depends upon the fact that,, in the continued fraction expansion of 
a, a t  least one of every three consecutive convergents beyond the 
first satisfies the inequality (5.6). 

In  his original proof of Theorem 5.2, Hurwitz did not use con- 
tinued fractions; instead he based his proof on properties of certain 
fractions known as the Farey sequences. For any positive integer 
n, the sequence Fn is the set of rational numbers a/b with 
0 < a < b I n, (a, b) = 1, arranged in increasing order of magni- 
tude. The first four sequences are: 

Fz: 
0 1 1  - ,  - 1  - 7  

1 2  1 

These sequences have many useful properties; the one important 
for this study is: If for any n, the irrational number 0 < p < 1 
lies between two consecutive fractions p/q, r/s of the sequence F,, 
then at least one of the three ratios p/q, (p + r)/(q + s), r/s can 
be used for x/y in the inequality 

In order to make such an inequality valid also for an irrational num- 
ber a > 1, we let p = a - n where n is the greatest integer less 
than a .  Substituting for (3 in the above inequality, we obtain 

where x' = ny + x. This is the central idea in Hurwitz's proof. For 
complete details see LeVeque [7]. 
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Mathematicians are never content with a "best possible result", 
such as the constant 4 in Theorem 5.2. Such a statement always 
seems to stimulate further research. If a certain class of irrationals 
were ruled out, could this constant perhaps be replaced by a larger 
number? Indeed this can be done. The class of irrationals to be 
excluded consists of all numbers equivalent to the critical number 
[ = + (fi - 1) which forced us to accept 2/5 as the "best possible" 
constant in the inequality (5.6). We shall show that all numbers 
equivalent to C; have the same periodic part a t  the end of their con- 
tinued fraction expansions as [ has, and are therefore just as hard 
to approximate. 

DEFINITION : Here a number x is said to be equivalent to a number 
y (in symbols, x - y) if there are integers a, b, c, d satisfying the 
condition 

(5.7) a d -  bc = +_I  

and such that .c can be expressed in terms of y by the fraction 

For example, if y = 4 2  and x = (2 d2 + 3)/(2/2 + I) ,  x -- y 
because x = (a 1/Z + b)/(c 2 / 2  + d )  with a = 2, b = 3, c = 1, 
d = 1. and ad - bc = 2 - 3 = -1. I t  is easy to see that the 
equivalence just defined has all the properties reqiired of an equiva- 
lence relation, namely that i t  be 

; (i) rejle.uive, i.e., every x is equivalent to itself (x ,- x), 
(ii) symmetric, i.e., if x -- y, then y ,- 5, 

(iii) transitive, i.e., if x ,- y and y ,- Z, then x - Z. 

An equivalence relation divides the set of all numbers into equiva- 
lence classes in such a way that each number belongs,to one and only 
one equivalence class. 

Now, if a real number a has the continued fraction expansion 

1 and from p,qnVl - ~ , - ~ q ,  = (- 1)" (see Theorem 1.4), that 
a - an+1 [cf. (5.7) and (5.8)]. Hence if a and /3 are any two real 
numbers with continued fraction expansions 
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and if an+] = Pm+l, then a ,- a,+~ ,- Pm+l ,- 6, SO a ,- P. In 
particular any two rational numbers x and y are equivalent, for 
their expansions can always be written in the form 

Y = [bl, bz, . . . , b,, 11; 

and since 1 ,- 1, x ,- y. 
The question as to when one irrational number is equivalent to 

another is answered by the following theorem, stated here without 
proof. 

THEOREM 5.3. Two irrational numbers a and P are equivalent if 
and only if 

a = [a,, an, . . . , a,, co, cl, cz, . . .I, 

that is, if and only if the sequence of quotients in a after the mth is the 
same as the sequence in /3 after the nth. 

Kow let us return to Hurwitz's theorem. There are infinitely 
many irrational numbers equivalent to F = + ( d 5  - 1); let us 
suppose that each of these is expanded into a simple continued frac- 
tion. Then, by Theorem 5.3, from a certain place on, each of these 
expansions will contain the same sequence of quotients, co, cl, 
CP,  . . . , and hence all these equivalent irrationals play essentially 
the same role in Hurwitz's theorem as the number f = + ( 4 5  - 1) 
does. I t  seems reasonable to guess that if we rule out the number F 
and all irrationals equivalent to it, then the constant 4 5  in Hur- 
witz's theorem could be replaced by a larger number. In fact the 
following theorem can be proved. 

THEOREM 5.4. Any irrational number P not equivalent to 
f = +(I - 4 5 )  has an infinity of rational approximations p/q 
which satisfy the inequality 

There is a chain of theorems similar to this one. For example, if P 
is not equivalent to either + ( 4 5  - 1) or 4 2 ,  then the number 4 8  in 
(5.9) can be replaced by any number less than or equal to 4221/5 .  
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Recently interest has been shown in "lop-sided" or unsymmetrical 
approximations to irrational numbers. For example, the following 
theorem was proved by B. Segre in 1946, and a very simple proof 
using Farey sequences was recently given by Ivan Niven.t 

THEOREM 5.5. For any real number r 2 0, an irrational number a 
can be approximated by infinitely many rational fractions p/q in 
such a way that 

When r = 1, this is Hurwitz's Theorem. For r # I,  notice that 
the lower bound is not just the negative of the upper bound, and the 
expression is unsymmetrical. 

Using continued fractions, R. hl. Robinson (1947) gave a proof 
of Segre's theorem, and also proved that given E > 0, the inequality 

has infinitely many ~olut~ions. This result is interesting since it shows 
that one side of Hurwitz's inequality can be strengthened without 
essentially weakening the other. 

5.4 Conclusion 
I 

Hurwitz's theorem is an example of a whole class of related theo- 
rems and problems studied under the general title of Diophantine 
approximations. The subject has a long history; yet there are still 
many challenging problems left to be solved. In recent years several 
new methods for solving problems in this field have been invented, 
but the study of continued fractions is, and probably will remain, 
the basic stepping stone for those wishing to explore this subject. 

The field of Diophantine approximations by no means exhausts the 
avenues of exploration open to the interested student; this mono- 
graph can serve as the point of departure for further study of a 
variety of topics. One could, of course, go into the subject of con- 
tinued fractions more deeply by reading such books as Perron [I l l .  

t On Asymmetrzc Diophantine Approximations, The Michigan Math. Journal, 
vol. 9, No. 2, 1962, pp. 121-123. 
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Alternatively, there is t h e  extension t o  analytic continued fractions 
(see Wall [14]), a subject initiated b y  Stieltjes a n d  others;  a n d  there 
is t h e  beautiful a n d  closely related subject of t h e  geometry of 
numbers, founded b y  Minkowski. F o r  a n  introduction t o  t h e  
geometry of numbers, see Hardy a n d  Wright [5], Chapters 3, 24. 

Problem Set  21 

1. Calculate the first six convergents to a = +(1 + 2/10) and show that 
of every three of these consecutive convergents beyond the first, a t  least 
one satisfies Hurwitz's inequality (5.6). 

2. Calculate the next row, F5, of the Farey sequences given on page 126. 

3. Locate a! = +(dz - 2) between two successive elements p/q, r/s of 
the Farey sequence Fz on page 126 and verify that  a t  least one of the 
numbers p /q ,  (p + r)/(q + s), r/s satisfies the inequality (5.6). 

4. If x = +(1 + 2/5), show that y = (-lox + 7)/(7x - 5) is equiva- 
lent to x. Expand both x and y into simple continued fractions and 
use these to give a numerical check on Theorem 5.3. 

5. Prove that the equivalence relation defined on page 127 is (i) reflexive, 
(ii) symmetric, and (iii) transitive. 

A P P E N D I X  I 

Proof That x2 - 3y2 = - 1 
Has No Integral Solutions 

To  show that the equation x2 - 3y2 = -1 is not solvable in integers 
x, y, we notice first that x and y cannot be both even or both odd. For, in 
the first case, if x = 2x1, y = 2yl are both even integers, then 

is even and so could not be equal to -1. Similarly, in the second case, if 
x = 2x1 + 1, y = 2yl + 1 are both odd integers, then 

is also even (twice an integer) and again could not equal -1. Hence, if 
x2 - 3y2 = -1 is to have integral solutions, then we must have x even, 

. y odd; or x odd, y even. 
Suppose that  x is even and y is odd, so that  x = 2x1, y = 2yl + 1. 

, Then 

and since yl and yl + 1 are consecutive integers one of them must be even. 
So yl(yl + 1) is divisible by 2; hence 4yl(yl + 1) is divisible by 8, and, 
from (I), we conclude that y2 has the form 8n - 1, where n is an integer. 
Then 

x2 - 3ya = ( 2 ~ ~ ) ~  - 3(8n + 1) = 4xf - 24n - 3 

= 4(x: - 6n - 1) + 1 = 41 + 1, 
' 

where 1 = x: - 6n - 1 is an integer. But an  integer of the form 41 + 1 
cannot have the value -1; if i t  did, 41 = -2, and therefore I = -+ 
would not be an integer. We leave i t  to the reader to show that  if 
x2 - 3y2 = -1, then we cannot have x odd and y even. 
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Hence there do not exist integral solutions x, y of the equation 

In fact, whenever N is such that N - 3 is an integral multiple of 4, 
the equation x2 - Ny2 = -1 has no solutions. On the other hand, 
if N = p is a prime number of the form 4k + 1, then the equation 
x2 - py2 = - 1 always has solutions. 

This last equation is closely connected with a famous theorem stated by 
Fermat in 1640 and proved by Euler in 1754: 

THEOREM: Every prime p of the form 4k + 1 can be expressed as the sum 
of two squares, and this representation is unique. That is, there exists one and 
only one pair of integers P, Q such that p = P2 + Q2. 

Once this theorem became known it was natural for mathematicians to 
search for ways to calculate the numbers P and Q in terms of the given 
prime p. Constructions were given by Legendre (1808), Gauss (1825), 
Serret (1848), and others. Without entering the details of the proof, we 
shall present the essential idea of Legendre's construction. 

Legendre's method depends upon the fact that the periodic part of the 
continued fraction for 

6 = [al, az, aa, . . . , a,, 2all = [al, az, ar, a4, . . . , a4, as, a2, 2a11 

has a symmetrical part as, as, ad, . . . , a4, a,, a2  followed by 2al. We proved, 
however, in Section 4.8, that  if the symmetrical part has no central term 
(n odd), then the equation x2 - py2 = - 1 is soluble. The converse is also 
true, namely, if x2 - py2 = -1 is soluble then there is no central term in 
the symmetrical part of the period; hence the continued fraction for dp has 
the form 

1/p = [al, az, a3, . . . , a,, a,, . . . , a,, az, 2all. 

This we write in the equivalent form 

where, beginning a t  the middle of the symmetrical part, 

a m + ,  = [a,, a,-*, . . . , a3, a2, 2al, a2, a3, . . . , a,]. 
Now am+l is a purely periodic continued fraction and hence has the form 
(see Theorem 4.1) 

a m + l  = 
p + 1 / ; ,  

Q 

Moreover, the period in the expansion of am+l is symmetrical and hence the 
number 0, obtained from a,+, by reversing its period, is equal to a m + l .  
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But according to Theorem 4.1, the conjugate a;+1 of am+, is related to 0 
by 

so that 

a;+1. 0 = a;+1. a,+, = -1. 

This means that 

As an illustration, take p = 13 = 4 . 3 + 1. Expanding 1/13 we obtain 
-- 

1/13 = [a,, a ~ ,  at, ar, a2, 2all = [3, 1, 1, I ,  1, 61, 
so that 

am+l = a 3  = [I, 1, 6, 1, 11. 

Hence all we have to do is calculate a s .  Thus 

(113 = 2 + 6  - - p+1/;, 
3 Q 

SO that P = 2, Q = 3, giving 

p = 13 = 22 + 32. 

Problem Set 22 

1. Express p = 29 as the sum of two squares. 

2. Express p = 433 as the sum of two squares. 

3. There are two equal detachments of soldiers arranged in two squares, 
each containing b rows of b soldiers. Show that it is impossible to com- 
bine the two squares into a single square of soldiers. 

Show also that, if one soldier is added or taken away from one of the 
squares, the two detachments can sometimes be combined into a square. 
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Some Miscellaneous Expansions 

The following is a small collection of miscellaneous continued fractions, 
mainly of historical interest.t The list is not restricted to  simple continued 
fractions. 

1. Bombelli, 1572. In modern notation he knew essentially that 

2. Cataldi, 1613. He expressed the continued fraction expansion of 6 
in the form 

and also in the form 

t See D. E. Smith [13]. 
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3. Lord Brouncker, about 1658. 

This expansion is closely connected historically with the infinite product 

given by Wallis in 1655; both discoveries were important steps in the his- 
tory of r = 3.14159 . . . . 

4. Euler, 1737. He found the following expansions involving the number 

e = 2.7182818284590 . . . = lim (1 + iy , 
n-+ m 

I the base of the natural logarithms. 



C O N T I N U E D  F R A C T I O N S  

This last expansion affords a quick approximation to e. For example, the 
7th convergent to (e  - 1)/2 is 342762/398959, so that, approximately, 

This number differs from the value of e by one unit in the 12th decimal 
place. 

5. Lambert, 1766. 

1 
tan x = 

1 1 

Lambert used these expansions to conclude that 
a) If x is a rational number, not 0, then ez cannot be rational; 
b) If x is a rational number, not 0, then tan x cannot be rational. 

Thus, since tan (7r/4) = 1, neither ?r/4 nor 7r can be rational. 
Some weaknesses in Lambert's proof were remedied by Legendre in his 

Zldments de gdometrie (1794). 

6. Lambert, 1770. 
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Unlike the espansion of e, the simple continued fraction expansion of 
?r = 3.1415926536 . . . does not seem to  have any regularity. The conver- 
gents to  ?r are 

3 22 333 355 103993 104348 
- 9  - 1  - 9  - , - , - , . . . . 
1 7 106 113 33102 33215 

the fraction 

approximates 7r with an error of a t  most 3 units in the 7th decimal place. 

The convergents are f ,  ;;4, 8, $,;, . . . , both numerators and denominators 
being formed from the sequence of Fibonacci numbers 1, 1, 2, 3, 5, 8, 
13, . . .  . 

/ i 10. Stern, 1833. 
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x 
sin x = 

-2  

12. Larnbert, 1770. 

tan x = 
x2 

13. Gauss, 1812. 

x 
tanh x = 

1 + x2 
x2 

3+g+ 

14. Larnbert, 1770; Lagrange, 1776. 

x 
arctan x = 7 

1 + 1 . x2 

3 + 4 . x2 
9x2 

+ 16x2 71- 

15. Larnbert, 1770; Lagrange, 1776. 

x 
log (1 + x) = 7 1x1 < 1. 

. . 1 2s 
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16. Lagrange, 1813. 

l + x  - 22 
log - - 1 

1 - 2  1 . x2 
1 - - 4x2 

17. Lagrange, 1776. 

18. Laplace, 1805; Legendre, 1826. 

i 
I This is the probability integral used in the theory of probability and in 
1 statistics. 



Solutions 

Set 1,  page 13 

3.  ++. 
4.  = 3.1415929204 . . . , and ?r = 3.1415926536 . . . . 

6. I f  p > q > 0 ,  then 

P ? >  1 and - = [al ,  a2, . . . , a,,] = al  + 1 , 
9 q  1 

a3 +.. 1 
. + -  

an 

P 
where al  is an integer > 0 .  The reciprocal of - is 

Q 

= [0, a, ,  a2, . . .  ,anl .  

S O L U T I O N S  T O  P R O B L E M S  

q Conversely, if q < p,  then - is of the form 
P 

and its reciprocal is 

Set 2, page 19 

2. (a) 69, (b) 1, (c) 19, (d) 21. 

Set 3, page 25 

I .  (a) [5, 1, 3 ,  51, convergents 9, 9, -!-, !$+'-. 
(b) [3, 1, 1, 2,  1, I ,  1, 1, 21, convergents +, +,$, 9, y-, +%, +$, %+I-, 2$?. 

(c) [0, 1, 1, 1, 1, 5 ,  1, 81, convergents p, +, 4, $, $, $8, G, $$$. 
(d) [5, 2,  111, convergents 8, -121-, +&F. 

3. Even number of quotients: (a) p6/q6  = $$, p6/q5  = ++, 
hence P6q5 - P5q6 = 51 . 11 - 2 8 .  20 = 561 - 560 = 1, 
(b) 1,  (c) 1, ( 4  1. 

Odd number of quotients: (a) [2, 1 ,  1 ,  4 ,  21, p 5 / q S =  $$, 
p 4 / q ,  = >$, hence p5q4 - p4q5 = 51 . 9  - 23 20 = 459 - 460 = -1 ,  
(b) -1, (c) -1, (d) -1. 

5. p 5 / p 4  = 3A4- = [5, 1 ,  4; 1, 31; compare with original fraction. 
Similarly, qs/q4 = -38J- = [5, 1, 51 = 15, 1, 4 ,  11. 
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3 22 333 355 9208 9563, 76149, 314159 6. (a) - 1  - - t  - 1  -, - - - 1  ---- - ---. 
1 7 106 113 2931 3044 24239 100000 

7.  From pn = anp,-l + pn-2 we see that 

- -  1 Pn - a n + - ,  
pn-1 p,_l 

pn-z 

and from the fact that pn-I = an-lpn-z + pn-3 we see that 

pn-1 - 1 
= an-l + - 

Pn-2 - Pn-z 
Pn-3 

Similarly 

Pn-2 - - -  1 
an-z + --- 

pn-3 P23  
pn-4 

Pa 1 1 1  - = a 3 + - = a ~ + ~ + ~ .  
Pz - Pz 

PI 

The required result is then obtained from these equations by successive 
substitutions. The result for qn/qn-, is proved in a like manner. 

8. In constructing our table of convergents, we used the fact that 
pn = np,-I + p , ~ .  In this relation let n have in turn the value 
n, n - 1, n - 2, . . . ,  3, 2, 1. This gives the following equations: 

S O L U T I O N S  T O  P R O B L E M S  

Adding the left and right sides of these equations, we obtain 

Leaving pn on the left and subtracting the terms pn-~,  p,-,, . . .  pz, p, 
from both sides of the equation, we obtain the required expression, 
namely 

Set  4, page 28 

1. p o ~ - i - P - ~ ~ o = l ~ l - O ~ O = l = ( - l ) O ,  p l q o - p o q l = 3 . 0 - 1 . 1 = ( - I ) ' ,  
pzqi - P1q2 = 4 . 1 - 3 . 1 = (-I)', etc. The second part of the 
problem is accomplished by simple calculations. 

Set 5 ,  page 35 

2 - 2y 
1. (a) Showthat x = -3y + t when t = Thus, y = 1 - 7t - u, 

15 
where u = t/2 or t = 2u. Hence 

I 
Required solution is 

i 

I For both z and y to be positive integers, u must be an integer such 
i that u < & and u > &. Clearly, no such integer exists; hence, 

there are no integral solutions with both x and y positive. Note 
that some solutions might have a different parametric form but 
still reproduce the same values of z: and y. 

(b) x = -2 + 7u, y = 9 - 31u, u = 0, f 1, f 2, . . . .  There 
are no positive integral solutions; for, no integer u can be simul- 
taneously less than and greater than +. 
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( c ) x = - 6 + 4 7 u ,  y = 2 - 1 5 u ,  u = 0 ,  f 1 ,  _ + 2 , . . .  . No 
positive solutions. 

(d) ~ = 3 4 - 2 1 w ,  y = 13w-7,  w = O ,  + I ,  f 2 ,  . . .  . For 
positive solutions w must be an integer less than+) and greater than 
&. Hence w = 1, and the only positive solution is (x, y) = (13, 6). 

2. The given equation has no integral solutions. By Euler's method you 
would arrive a t  other equations which cannot be solved in integers. For 
example x = 3 - 3y - u where u = +(I + 3y). But no integral 
value of y will make u an integer. Why? 

3. The straight line if carefully graphed should pass through the two 
points (x, y) = (2, 13) and (x, y) = (7, 5). 

4. Let x = number of horses and let y = number of cows. Then 
372 + 22y = 2370. The general solution is x = 22t + 4, y = 101 - 37t. 
For positive solutions t must be an integer between -A and ?+. Hence 
t = 0, 1, 2, and the positive solutions are (x, y) = (4, 101), (26, 641, 
(48, 27). 

5. x = 15u - 5, y = 17u - 6. Positive solutions require that  u > 4 
and u > A, hence u = 1, 2, 3, . . . . 

6. The solution of the equation 92 + 13y = u + o = 84 is x = 5 + 13t, 
y = 3 - 9t. Hence u = 9(5 + 13t), v = 13(3 - 9t), where t is any 
integer. 

7. The solution of the equation 22 - 3y = 1 is x = 3u - 1, 
y = 2u - 1. Hence N = 202 + 2 = 60u - 18, where u is any 
integer. For example, when u = - 1, 

N = -78 = -4(20j + 2 = -3(30) - 12. 

Set 6, page 42 

(In all cases t = 0, f 1, f 2 ,  +3, . . .) 

1. (a) ++ = [O, 1, 3, 41, n = 4, so = 93 = 4, yo = p3 = 3, hence 

x = xo + tb = 4 + 17t, y = yo + ta = 3 + 13t. 

(c) $-; = [ l ,  6, 4, 21, n = 4, xo = q3 = 25, yo = p3 = 29, hence 

x = 25 + 56t, y = 29 + 65t. 

(d) 8% = [ l ,  6,4,1,1],  n = 5, xo = q4 = 31, yo = pa = 36, hence 

x = 31 + 56t, y = 36 + 65t. 

(e) $+ = [O, 1, 6, 4, 1, 11, n = 6, xo = qs = 36, yo = ps = 31, hence 

x = 36 + 65t, y = 31 + 56t. 

S O L U T I O N S  T O  P R O B L E M S  

Set 7, page 44 

(In all cases t = 0, + I ,  +2, . . .) 

1. (a) xo = 4, yo = 3, c = 5, x = cxo + bt = 20 + 17t, 
y = cyo + at = 15 + 13t. Check: 13(20 + 17t) - 17(15 + 13t) = 5. 

(b) xo = 25, yo = 29, c = 7, x = cxo + bt = 175 + 56t, 
y = cyo + at = 203 + 65t. 

(c) xo = 29, yo = 25, is a particular solution of 562 - 65y = -1; 
hence c = 3, x = cxo + bt = 87 + 65t, y = cyo + at = 75 + 56t. 

Set 8, page 48 

1. (a) The g.c.d. of 183(= 3 . 61) and 174(= 2 - 3 . 29) is 3, and since 3 
divides 9 the equation is solvable. Divide both sides of the given 
equation by 3 and solve the resulting equation 612 + 58y = 3. 
We first solve the equation 612 - 58y = 1 for which the expansion 

= [I, 19, 2, 11 shows that  xo = = 39, yo = p,...~ = 41. 
Hence the solution of the given equation, according to equation 
(2.28), is 

(b) In this case we must solve the equation 61.x - 58y = 3, from 
which the solution of the given equation according to  (2.23) is 

(c) An unsolvable equation since 77 = 7 . 11 and 63 = 3 2 .  7 so the 
g.c.d. of 77 and 63 is 7 and does not divide 40(= 2 3 .  5). 

(d) Since 34( = 2 . 17) and 49( = 7 9  are relatively prime, we have 
only to solve the given equation by the methods of Section 2.4. The 
required solution is x = 65 + 49t, y = 45 + 34t. 

(e) x = 65 - 49t, y = 34t - 45. 
(f) The g.c.d. of 56(= Z3 . 7) and 20(= 22 . 5) is 4 and does not divide 

11. The given equation has no integral solutions. 

2. The solution of the equation l l x  + 7y = 68 is x = 136 - 7t, 
y = l l t  - 204. The only solution with both z and y positive is 
x = 3, y = 5 given by t = 19. 

3. From the hint we find that  72 + 9y = 90. The general solution of this 
equation is x = 360 - 9t, y = 7t - 270. For positive values of a and 
b it is sufficient to require that  x 2 0, y 2 0, or that  t be an integer 
< 360/9 and > 270/7. Thus we can take t = 39 and t = 40. - 
When t = 39, x = 9, y = 3 and a = 68, b = 32. 
When t = 40, x = 0, y = 10 and a = 5, b = 95. 

4. The general solution is 2: = 1200 - 17t, y = 13t - 900. The value 
t = 70 leads to the only positive solution, x = 10, y = 10. 
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Set 9, page 59 

1. Expansions are given in the problems. The first five convergents are: 

2 3 5 8 , 3 7  
(b) 7 '  i '  2 '  3 - 

14 

- 1 Hence 2 . ( a ) L e t  x = [ 2 , 2 , 4 ] = 2 + - 7  y = 2 + -  - '  

Y 4 + y  

2 + d 6  and x = 2 + ( 4 6  - 2) = d 6 .  
Y = - 3 - - = c 2  

1 Then (b) Let x = 5 + - ,  y = l f  - 
Y i + i + l o + Y '  

42 
see Figure 3, note that  in triangle AOD, 3. To show that AH = --- 

72 + 82 ' 
72 + 82 

(AD)* = - . From the similar triangles AGF and AOD we see that 
g2 

and, since AF = k, 

On the other hand from the similar triangles AHF and AGD we see 
that AF/A  D = AH/ AG. But we know already that  AF/A D = -4G/l. 
Hence, by division, 

6. In the nth year, the total number of branches, F,, consists of the number 
of branches 0, that are a t  least one year old and the number of branches 

S O L U T I O N S  T O  P R O B L E M S  

Figure 12 

Y ,  that are less than one year old. In symbols, F, = 0, + Y,. During 
the next year, there are 

branches. Since the number of at-least-one-year-old branches constitutes 
the total number of branches of the previous year, 0, = F,-,. Thus 

Fn+, = Fn + FnP1 for n = 2 3 - . . 
J 9 

and FI = 1 (because only the trunk was present during the first year) 

i yield the recursion formula for these Fibonacci numbers. 
I 8. First solution: Construct the square ABCD of side x = AB;  see Figure 

I 13a. Construct the point E such that AE = ED and draw 
EB = & 4 5 2 .  With E as center and radius EB describe the arc BF. 

I 

Figure 13a 
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Then 

where r = + ( d 5  + 1). With A as a center and radius AF draw the 
arc FG. Clearly AG = X/T and so 

Consequently, 

Second solution: Construct the right triangle BAC such that AB = x, 
AC = +x; see Figure 13b. With C as center and radius BC = 45 x 
construct point D. Then AC + CD = rx, where T = +(1 + d 5 ) .  
Construct point E such that DE = AB = x. Draw BE, and GD 
parallel to BE. Then 

AG AD 7% 
.- - -  - = - =  7, and AG = r(GB). 
GB DE x 

Figure 13b 

9. For the regular pentagon ABCDE whose sides have length 1, first prove 
that AD is parallel to BC and that  BE is parallel to CD. Hence 
BG = CD. Similarly, prove that H I  is parallel to BE, and that  BH 
is parallel to FZ, and so BF = H I .  Using similar triangles, we see that 
AD/AI = CD/HI. But CD = BG = AI,  and H I  = BF = I D ,  
hence AD/AI  = AZIID, or (AD)(ZD) = (AI)2. Now B C =  1 - AI,  
and if we let AD = X, then I D  = x - I ,  and x(x - 1) = 1, or 

x 2 - x - 1 = 0  , so that ~ = 7 = 6 ( 1 + 4 5 ) .  

S O L U T I O N S  T O  P R O B L E M S  

Figure 14 

A line segment of length 7 can be constructed using the results of 
Problem 4. Hence to construct a regular pentagon, draw line CD = 1;  
and with C and D as centers and radius AC = CD = 7, construct 
point A. Points B and E can then be constructed since AB = BC 
= A E = D E = l .  

Set 10, page 63 

1. The odd convergents to d 2  = [ l ,  21 are f ,  i, &, . . . and all are less 
than 4 5  = 1.414 . . . . The even convergents are +, 39, Gg, . . . and are 
all greater than a. Moreover + < < +, etc. 

Set 11, page 76 

1. Eg = [2 ,5 ,2 ,1 ,4 ,5 ,1 ,2 ]  and C I  =+, cz = -1:-, cl = 94, c4 =+$, 
c5 = IT$%, C 6  = $%, . . . . A calculation shows that 

hence the required approximation is I&+. In this problem i t  would have 
sufficed to use l/q: in place of l/q6q6 since < 0.0005. 
- 

2. d l 9  = 4.358899 . . . = [4, 2, 1, 3, 1, 2, 81. The convergents are +, 9, 
9-, 96, f:, I-$$, >&\'-, . . . . The convergent C 1  =.I-+g+- gives 
l/q; = 1/3262 < 0.00005, hence c7 is the required approximation. 

3. The first five convergents to T are +, _z?-, +$$, +%, &&3+&3-. Calculate, 
in turn, 

1 1 
- 1  - 9  

1 
1 7 7 106 113.33102 

1 
For example, - - - 0.00134 . . . ; hence the error in using in 7 .  106 
place of ?r is a t  most 0.00134 . . . . 
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Set 12, page 79 
- 

1. a = +(1/5  - 1) = [O, 1, 1, 1, . . .]. Plot the points 

(2, Y )  = (qn, pn) = (11 01, (1, I ) ,  (2, I), (3, 21, (51 31, (8, 5) ,  (131 811 ' ' ' 

Also carefully plot the line y = ax where a = 0.62, the approximate 
value of +(2/5 - 1). 

Set 13, page 80 

1. (a) x = 6.3 + 1/13) = 3.30277 . . . . The values of the first few 
convergents are: 

(b) x = +(5 + 6) = 5.19258 . . . . The values of the first few con- 
vergent~ are : 

2. Write 

1 (ab + 1 ) s  + 6 . x = b + ---- = 
1 a x + 1  ' 

a + ;  

then ax2 - abx - ac = 0 since b = ac, and x also satisfies the 
equivalent equation zZ - bx - c = 0. 

- 
3. For example, let a = 1, b = 2, then z = [O, 1, 2, 1, 2, . . . ]  = [O, 1, 21. 

The first few convergents are +, +, :, $, FT, . . . . Let 

S O L U T I O N S  T O  P R O B L E M S  

Set 14, page 96 

Set 15, page 100 

for if A; - B;D = 0, then D would be a perfect square. 

I on the other hand 

f 
3. A + B d% = -C 4%; therefore 2AB d% = CZN - A2 - B2M.  

If AB Z 0, the left side of this equation is irrational, the right side 
rational; this is impossible. If AB = 0, then A = 0 or B = 0. If 
A = 0, B Z 0, then from A + B TM + C 2 / N  = 0 we see that  
2/@/.\/N = -C/B, contrary to hypothesis. Hence if A = 0,  then 
B = 0, and hence C = 0. If  B = 0,  -4 + C fi = 0, hence 
A = O ,  C = 0 .  
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Set 16, page 104 

1. The largest integer less than +(5 + 1/37) is 3. If 

1 5 + 4 3 7 = 3 + - ,  1 -4 + 4 3 7 ,  a = - then - - 
3 ff 1 a1 3 

and 
,- 

On the other hand, a: = 3(4 - 1/37) is approximately -+, so 
- 1 < a: < 0. Hence al is reduced. 

2. From 0 < P < 4% and 1/s - P < Q < 1/% + P, see (4.23), 
it follows that 

Since Q > 0 and P - 1/5 < 0, 

Also, ds - P < Q implies that (4% - P) /Q < 1 so that 

3. The totality of expressions of the form @ where P and Q are 
Q 

integers satisfying condition (4.23) are obtained as follows: If P = 1, 
1/43 - 1 < Q < 2/43 + 1, i.e. 6 5 Q 5 7 ;  this yields 

If  P = 2, 5 5 Q < 8 ;  this yields 

If P = 3,  4 5 Q 5 9 ;  this yields 

S O L U T I O N S  T O  P R O B L E M S  

By the same procedure, for P = 4, 5, 6, we find 

v 43 
4 + -  with k = 3, 4,  . . . 

k 

and 
6 + d Z  

with m = 1, 2, . 
m 

Set 17, page 110 

1. a = 1 4 - 4 2 >  1, a'= 1 - fi = 1 - 1.414. . .  lies between -1 
1 

and 0. Also 1 + 42 = 2 + -, al = 1 + 1 / 2  = a, hence 
a 1 

a = [2, 2, 2, . . . ]  = [Z]. 

2. a = l/ir > 1 ,  a' = - d8 does not lie between -1 and 0. 
fi = [2, 61. 

Set 18, page 112 

a5 = az, where a2 is a reduced quadratic irrational. Hence 
,- 

Notice that a and al are not reduced, but that 
.- .- 

hence as is reduced and the continued fraction is periodic from then on. 

Set 19, page 118 

1. 1/? = [2, 1, I ,  1 ,  41. The convergents are 2/1, 3/1, 5/2, 8/3 = p4/p4 
so p4 = X I  = 8, q, = yl = 3, and 
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2. 1/13 = [3, 1, 1, 1, 1, 61. The first five convergents are 3/1, 4/1, 
7/2, 11/3, 18/5 = p5/q5, so p s  = XI = 18, q5 = y1 = 5 gives a 
solution of x2 - 13y2 = -1. Proceeding to the tenth convergent we 
find plo/q1o = 649/180. Thus x2 = 649, yz = 180 is a solution of 
x2 - 13y2 = 1. 

Set 20, page 121 

1. According to Theorem 4.4, the next two solutions, (22, y2) and (53, y3), 
are obtained from x2 + y2 418 = (XI + yl v % ) ~  and 

x, + y3 1/18 = (XI + y11/18)3. 

The first relation yields x2 + y2 1/18 = x: + 18y: + 2xlyl 418. 
Since A + B 1/D = C + E l / E  if and only if A = C and B = El 
and since XI = 17, yl = 4, we have 

y2 = 2xly1 = 2 .  17 . 4 = 136, 
and 

xi - 18y; = (577)2 - 18(136)2 = 1. 

From the relation for $3, we have 

2 3  + y, 1/18 = x! + 3x?yl 1/18 + 3x&8 + y;18 1/18 
= x! + 54xly: + (3x:yl + 18y:) 1/18 

so that  

If 17 is substituted for xl and 4 for yl, the relation xi - 1 8 ~ :  = 1 
may be verified. 

2. According to  Theorem 4.5, the next solution of x2 - 13y2 = -1 is 
obtained from 

x1 = 18, yl = 5 is the minimal solution which determines the next 
solution 2 3  = xf + 39xly:, ya = 3x;yl + 13~:. Solutions (x2, y2) and 
(x4, y,) of the equation x2 - 13y2 = 1 are obtained from 

x2 + y2 6 = ($1 + yl 4 1 3 ) ~  and 2 4  + y4 fi = (XI + yl 1/13)4. 

The computations are left to the diligent reader. 

3. Table 2 indicates that  ul = 1, vl = 1 is the minimal solution of 
u2 - 2vZ = -1. This yields ul = 1, v l  = nl = 1, ml = 2, xl = 4, 

S O L U T I O N S  T O  P R O B L E M S  

Other solutions of u2 + 2v2 = f 1 are obtained from 

~k + v k  1/i = (u1+ 01 d 2 ) k  = (1 + d i ) k  for k = 2 , 3 ,  . . . . 
- 

Thus, for k = 2, uz + vz 1/2 = 3 + 2 1/2, and us = 3, vn = n2 = 2, 
m2 = 5, xz = 20, = 21, zz = 29; 

For k = 3, US + v3 4 2  = (1 + 1/2)3 = 7 + 5 1 / 2 ,  and u3 = 7, 
va = na = 5, ma = 12, x3 = 120, y3 = 119, 23 = 169; 

4. As explained in the statement of Problem 3, Set 20, page 121, the lengt,hs 
of the sides may be written 

where m and n arc positive integers, m > n.  heref fore 

If we could find sequences of integers nl, nt, . . . and ml,  m2, . . . such 
I that  the ratios nl/ml, n2/m2, . . . approach 1 / 4 3 ,  then 0/2 would 

approach 30" and 0 would approach 60". To find these sequences, we 
convert 43 into the continued fraction 

and let m, and n, be the numerator and denominator, respectively, of 
the convergent ci. We find 

mi: 2, 5, 7, 19, 26, 71, . . . 

n,: 1, 3, 4, 11, 15, 41, . . . 

and corresponding triangles with sides (3, 4, 5), (16, 30, 34), . . . . The 
sixth triangle has sides (3360, 5822, 6722) and its angle B is between 
60" and 61°, but much closer to  60". 
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Set 21,  page 130 
- 

1. The  first six convergents t o  a! = + ( I  + d 1 0 )  = 1.3874 . . . are +, g, 
Q, :, ++, +$, and the convergent + satisfies the inequalities (5.6);  
note tha t  + also satisfies (5.6). 

3. In  F2, a = .387 . . . lies between 9 and +. O f  the numbers 

0 O + l  1 
- 1  - = - 1  

1 
and - 9 

1 1 + 2  3 2 

the first satisfies (5.6). T h e  other two  come close but  do  not make i t .  

4. x ,- y because ( - l o ) ( - 5 )  - (7 ) (7)  = 1. 

x = [i] and y = [-2,  1, 1, 4 ,  i] = 
-169 - d5 

118 

Ox + 
7 with a = 1, b = 0 ,  c = 0 ,  d = I, we have 5. ( i )  Since x = - 

cx + d 
ad - bc = 1 - 0 = 1. Hence x -  x. 

(ii) I f  x = -  + and ad - bc = f 1, then 
cy + d 

- d x + b  A x + B  
2 / = -  - - - 1  

c x - a  C x +  D 

where A D  - BC = ad - bc = f 1 .  Hence y - x .  

(iii) Since x y and y N Z,  we can write 

a'z + b' and ?I=-------I x = -  
cy + d c'z + d' 

where, respectively, ad - bc = + 1 and a'd' - b'c' = f 1. T h e n  

(aa' + bct)z + ab' + bd' Az  + B 
- - I  - 

(cat + dc')z + cb' + dd' Cz + D 

S O L U T I O N S  T O  P R O B L E M S  

and 

A D  - BC = (aa' + bc') (cb' + dd') - (ab' + bdt)(ca' + dc') 

= aa'dd' + bb'cc' - a'bcd' - ab'c'd 

= a'dt(ad - bc) - b'cl(ad - bc) 

= (ad - bc)(a'dl - b'c') 

= + I .  

Set 22 ,  page 133 

2 + 6 ,  1. fi = [5, 2, 1, 1, 2, 101, so we must  ca!culate a3: a3 = 
5 

hence P = 2, Q = 5, and 29 = 22 + .!i2. 

so we must  calculate all: 

a11 = l 2  + d433 , hence P = 12, Q = 17 and 433 = 122 + 172. 
17 

3. Since 42 is irrational i t  is  impossible t o  find two  integers a and b such 
that  

d2 = a 7 or such that  a2 = 2b2 = b2 + 62. 
b 

On the other hand 

and the convergents t o  this continued fraction are 

1 3 7 17 41 99 
- -  iD . . . .  
1 '  2 '  5 '  1 2 '  2 9 '  7 0 '  I '  

q 

we always have 

p2 - 2q2 = + 1 or p2 f 1 = 2q2 = qZ + q2. 

Hence the second part o f  the problem can be solved b y  values o f  p and 
q such tha t  p2 + 1 = 2q2, or p2 - 1 = 2q2. 
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