An Introduction to Measure Theory

Lesson Plan

Cube Fellow: Chris Mattingly
Goal: To communicate the basic ideas of the field I am researching in to my students.
Grade and Course: $9^{\text {th }}$ grade - Algebra I
KY Standards:
Objectives: By the end of the lesson, students should understand what a measure does and why 1-, 2-, and 3-dimensional objects have their dimensions.

Resources / Materials needed: None
Description of the plan: We will go through a set of notes where the students first think about what they already know about dimension and measuring, and then discuss some of the basic properties. It will be a discussion format followed by a short lecture.

Lesson source: Original lesson
Instructional Mode: Discussion followed by lecture
Date Given:
Estimated Time: $30-50 \mathrm{mins}$
Date Submitted to Algebra 3 : $3 / 23 / 09$
\qquad

Warm-Up: Decide if each object is 1-dimensional, 2-dimensional or 3-dimensional.

Q: Why do we define dimension this way?

We usually consider 1-dimensional measure as length. We can measure this with a ruler.
Q: What happens if we try to measure a square with a ruler?

We usually consider 2-dimensional measure as area.
Q: What happens if we try to find the area of a line segment?

Q: What happens if we try to find the area of a cube?

We usually consider 3-dimensional measure to be volume.
Q: What happens if we try to find the volume of a line segment?

Q: What happens if we try to find the volume of a square?

Thus, we define the dimension of an object as the smallest number, n, where the n-dimensional measure is not infinite.

Basic properties of measures:
(Write the property illustrated beside each picture.)
1.

2.

3.

Are there any other ways to measure things?

- Lebesgue Measure: based off of squares (this is the one we are familiar with!)
- Hausdorff Measure: based off of circles
- Harmonic Measure: based off of functions (scary!)

Why would anyone care about measuring and dimension beyond what we already know?? (Rhetorical!)
Sierpenski Triangle:

Start with an equilateral triangle.

Split it into four equal triangles, and remove the "middle" one.
(It should look like the Tri-Force!)

Do the same with each triangle you are left with.

Repeat again.

If we continued this forever:

What is the area of the result?

What is the dimension of the result?

Other interesting examples:
Cantor set (dimension ≈ 0.6309)
Douday Rabbit (dimension ≈ 1.3934)

Hexaflake (dimension ≈ 1.7727)

Broccoli (dimension ≈ 2.66)

