Using Fractions to Represent M\&M Colors

Lesson Plan

Cube Fellow: Stuart Traxel

Teacher Mentor: Tara Barnett

Goal: Introduce the students to the concept of fractions and a tangible application.
Grade and Course: $9{ }^{\text {th }}$ grade Pre-Algebra
KY Standards: MA-HS-1.4.1
Objectives: The student will be able to:

1) Understand one application for the use of fractions.
a) How fractions can be used to comprise a whole.
2) Relate fractions to one another.
3) Define the numerator and the denominator.

Resources/materials needed: M\&Ms and the worksheet below

Description of Plan:

Introduce fractions if this has not already been done. The accompanying excel spreadsheet's pie chart was used to visually show how varying amounts of the M\&M colors are distributed. Show how changing both the denominator (total amount of M\&Ms) and the numerator (amount of M\&Ms in the particular color) changes that color’s area in the pie chart.

A point of emphasis in the lesson is getting the students to try to understand how fractions relate to one another. If a student has twice as many M\&Ms in one color as another, there will be a factor of 2 between the fractions representing these colors. Showing in the Excel
pie chart how one color's area is twice as big as another's is intended to give the students a visual aid.

Lesson Source: The first half (1/2) of the worksheet is from
http://score.kings.k12.ca.us/lessons/mandm/mmws3.html
Instructional Mode: Lecture and application using worksheet
Date Given: 10-31-2007 Estimated Time: 1 class period (45 minutes)
Date Submitted to Algebra ${ }^{3}$: 10-31-2007
\qquad

"M\&M's"® Candies Worksheet 3

1) Make a bar graph for the colors of "M\&M's"® Candies in your bag. Shade in a block for each M\&M you have of that color. If you just have one red M\&M, then shade in one block. For the "total", add up all the M\&Ms you have and shade in that many blocks.

Red Orange Yellow Green Blue Brown Total						

2) Number of:

Total number of "M\&M's"® Candies = \qquad
3) Using the information above, convert each color into a fraction.

Red $=$	Orange $=$	Yellow $=$
Green $=$	Blue $=$	Brown $=$

4) Look at the fraction you wrote for your red M\&Ms.

What is the numerator in this number? \qquad
What is the denominator? \qquad
5) Eat one M\&M.

How many M\&Ms do you have remaining of the color you just ate? \qquad
How many total M\&Ms do you have remaining? \qquad
Write this as a fraction \qquad
6) Repeat number 5 until you don't have any M\&Ms left. After you eat each M\&M fill in a row in the table below.

color eaten	M\&Ms remaining of this color	Total M\&Ms remaining	Fraction (color/total)

	Red	Orange		Yellow	Green	Blue	Brown		Total
M\&Ms	1	1	1	1	1	1	6		
Fraction	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	1		

