5 Systems of Equations Practice Problems

1. Solve each of the systems of equations below by the method of your choice. If there are infinitely many solutions, find 3 solutions. If there are more than one solution and not infinitely many, find all of them.
(a) $\begin{aligned} x-y & =2 \\ 2 x+3 y & =9\end{aligned}$

One solution: $(3,1)$
(b) $\begin{aligned} 2 x+y & =-1 \\ x-2 y & =-8\end{aligned}$

One solution: $(-2,3)$
(c) $\begin{aligned} x-5 y & =10 \\ y^{2}+3 y & =x-2\end{aligned}$

Two solutions: $(0,-2)$ and $(30,4)$
(d) $\begin{aligned} & 6 x+4 y=10 \\ & 9 x+6 y=15\end{aligned}$

Infinitely many solutions. Three solutions: $(1,1),(-1,4),(3,-2)$
(e) $\begin{aligned} 5 x+y & =-1 \\ x-5 y & =-4\end{aligned}$

One solution: $\left(\frac{-9}{26}, \frac{19}{26}\right)$
(f) $\begin{aligned} & 6 x+4 y=10 \\ & 3 x+2 y=-2\end{aligned}$ No Solutions.
(g) $\begin{aligned} y & =7 \\ 3 x-2 y & =11\end{aligned}$

One solution: $\left(\frac{25}{3}, 7\right)$
2. Suppose you have a system of equations where the graph of one equation is a circle and the graph of the other equation is a line. How many solutions are possible?
There could be 0,1 , or 2 solutions.
3. Suppose you have a system of equations where one equation is $y=|x|$ and the other equation is a line. How many solutions are possible?
There could be $0,1,2$, or infinitely many solutions.
4. Find the intersection points of the graphs of $x=1$ and $y=5$.

One intersection point: $(1,5)$
5. Find the intersection points of the graphs of $y=x^{2}$ and $y-2 x=1$.

Two intersection points: $(1+\sqrt{2}, 3+2 \sqrt{2})$ and $(1-\sqrt{2}, 3-2 \sqrt{2})$

