Name:	Section:
MA 109	Spring 2014
Exam 2	March 12, 2014

Directions:

- Do not remove this page—you will turn in the entire exam. You have two hours to do this exam. No books or notes may be used. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is permitted. Absolutely no cell phone use during the exam is allowed.
- The exam consists of multiple choice and short answer questions. Record your answers on this page by filling in the appropriate selection, for example:

• The exam is out of 100 total points: 5 points for each of 20 questions. **Only** this front page will be graded and **no partial credit** will be awarded. It is recommended that you check your work!

1

Section:

Name:

Multiple Choice: Show your work in the space below and shade the correct answer on the front page for each of the following.

2. Which one of the inequalities has the following graph as its full set of solutions?

3. Find the equation of the line through the point (-2,1) with slope -3. $\times_{_{1}} \underbrace{\sim}_{_{3}}$

Choices:
(a)
$$y = 3x + 3$$

(b) $y = -3x + 1$
(c) $y = -3x - 5$
(d) $y = -2x - 3$
(e) $y = 2x + 3$
Point Slope form: $y - y_1 = m(x - x_1)$
 $y - 1 = -3(x - (-2))$ Simplify
 $y - 1 = -3(x + 2)$
 $y - 1 = -3x - 6$
 $y - 1 = -3x - 6$
 $y - 1 = -3x - 6$
Add 1
Simplify

	$rac{1}{2} x - z \leq x + 6$	Add 2 (Same)
4. Solve the inequality $5x - 2 \le x + 6$.	5x-2+2 = x+6+2	Simplify
Choices:	$5 \times = \times + 8$	Subtract x (same)
(a) $(-\infty, 2]$	$5 \times - \times \leq \times + 8 - \chi$	Simplify
(b) $(-\infty, 2)$	4 × 5 8	Divide by 4 (Same)
(c) $[-2,\infty)$		
(d) $[2,\infty)$	$\frac{1}{\sqrt{x}} < 8$	Simo I: C
(e) $[4,\infty)$	4 - 4	
	$\lambda \leq \lambda$	WWWWWA
		Z

5. Use a graphing calculator to approximate the real solutions to the equation below.

	$x^3 + 2x - 5 = 0$
Choices:	Using your graphing calculation plug into $y = x^3 + 2x - 5$ and calculate the zero
(a) $x \approx -2.0946$	
(b) $x \approx 1.3283$	
(c) $x \approx 1.2763$	
(d) $x \approx 1.4894$	
(e) $x \approx 1.7099$	

6. Deter	mine all solutio	ns to the system $\begin{cases} x+y = 3\\ x-y = -2 \end{cases}$		
Choi	ces:	Elimination Method:		
(a)	(1, 2)	backsubstitute	ſ	
(b)	(6,8)	$x + \zeta = 3$ $x = \frac{1}{2}$	$\frac{1}{2} + y = 3$	Subtract 1
(c)	(1, 3)	$\chi - \chi = \chi$		a nach a
(d)	$\left(\frac{1}{2},\frac{5}{2}\right)$	$a_{x} + 0 a_{z} = 1$	2 t <u>v</u> = 3 - 1	Simplify
(e)	$\left(\frac{3}{2},\frac{2}{5}\right)$	$\frac{2}{2} = \frac{1}{2}$	$\int = \frac{3}{1} \cdot \frac{3}{2} - \frac{3}{2}$	1 Simplify
	(2-3)	$x = \frac{1}{2}$	<u> </u>	$=\frac{6\cdot 1}{a}=\frac{5}{a}$

7. Use a graphing calculator to determine how many real solutions the equation $x^4 - x - 4 = 2x + 4$ has.

Choices:

8. If a student has exam scores of 88, 62, and 79 on his first three exams, what does he need on the fourth exam to have an average of 80. 2204 ± 32

~		Let x be the fourth exam arade 4 $\frac{\alpha \alpha 4 + x}{4} = 4.80$ Si	mplify
Choic	es:		
(a)	91	88+62+79+x = 80 Sin -10 $229+x = 320$ Su	atiact 229
(b)	85	$4 \qquad \sum m p (1+y) \qquad 2 2 q + y = 2 q $	
(c)	95	$229 \pm x$ $520 \pm 229 \pm x$	implify
(d)	100	$\frac{1}{4} = 80 \text{Multiplyby} X = 91$	
(e)	The	e student can not obtain an average of 80. Conclusion: The student will very	
		Carn a fourth exam score of	์ - รเ
	_	to have an average of 80	

9. Which one of the following equations can not be solved algebraically and so must be solved graphically?

(a)
$$\frac{1}{x+1} - \frac{5}{x-3} = 10$$
 Multiply by $(x+1)(x-3)$ turns into a quadratic
(b) $x^2 - x + 1 = 0$ Quadratic
(c) $3x^5 - 1 = 0$ Power equation $x^n = c$
(d) $\sqrt{x-2} = 5x$ undo radical yields a quadratic
(e) $x^3 + x = x^2 - 1$

10. Which statement best describes the slope of a line?

Choices:

- The slope of a line changes from point to point. The slope is independent of the points The slopes of two perpendicular lines are the same. A vertical line has a clope of 0. (a)
- (b)
- (c)
- The slope of a line is calculated by the ratio $\frac{1}{100}$ over $\frac{1}{100}$. (d)
- (e) The slope of a line represents the rate of change of the line.
- 11. How many liters of a 10% solution of acid must be mixed with 20 liters of a 20% solution of acid to produce an 18% solution of acid? Xliters

produc		Tutton of actual	10%	20 liters - Cr. I's a - r
Choic	es:	Need to solve		
(a)	$\frac{7}{3}$ liters.	for x	18%	X + 20 = 4
(b)	The final s	colution can not be obtained.	4 liter	$m_{4}/4$ h
(c)	$\frac{5}{2}$ liters.	8×-	3-6 18.	18
(d)	5 liters.	-10×+	$\frac{4}{4} = .18 q$	
(0)	50 11015.	-0.05× .	+0,4 = 0	
		ā	0.4 = 0.08×	$\chi = \frac{4}{0.08} = 5$ liters

12. Find the slope of the line 2x + 4y = 10.

Choices:
All
$$\frac{-1}{2}$$

(a) $\frac{-1}{2}$
(b) 2
(c) $\frac{1}{2}$
(d) -1
(e) -2
 $d_{y} = -2x + 10$
 $d_{y} = -2x + 10$

15. Given a system of two equations where the graph of one equation is a line and the other graph is a circle, what are the possible number of solutions to the system?

- (a) Always two solutions.
- (b) One or two solutions only.
- (c) One, two, or no solutions.
- (d) Any number of solutions depending on the graphs.
- (e) Two solutions or no solution only.

16. Given the two lines y = 2x + 3 and y = -2x + 1, which one of the following statements is true?

0

Ч

	0	
	m = 2	$\mathcal{F}_{app} = -\mathcal{D}$
Choice	es: $\prod_{m=2}^{m=2}$	A A
X (a)	The lines are parallel.	So Not porallel or perpendicular
× (b)	The lines are perpendicular	r. also different lines
<u></u> × (с)	The two lines are the same	
(d)	The two lines intersect at e	exactly one point.
(e)	The two lines intersect at r	nore than one point.
()		P
		Territoria de la construcción de la
		Two lines connot infersect in more than one
		Point.
7. Solve th	he inequality	
		(x-3)(x+5) < 0.
		Critical Numbers are x = 3 and x=-5
Choice	es:	- 6 ⁰ 4
(a)	$(-\infty,3] \cup [5,\infty)$	
(b)	$(-\infty -3) \sqcup [5 \infty)$	-5 3
	$(\infty, 5) \in [0, \infty)$	Test V 2 1 1
(c)	(-5,3)	Points ^-3 ×+5 sign
(d)	[-5,3]	$ +$ \times

+

+

+

+

 \checkmark

 ${\mathcal{X}}$

(e)

 $(5,\infty)$

18. Suppose you are given a system of equations whose graphs are shown in the picture below. Determine an approximate solution to this system.

Choices:

(a)	(-1, 2)
(b)	$(-\infty, -1]$
(c)	$(2,\infty)$
(d)	(-2, 1)
(e)	(1, 2)

19. If the graph of $y^2 + 3x - 2 = 0$ is to be displayed on a calculator, which of the following statements best describes the procedure?

$$y'' = -3x + z$$

- (a) Solve for y and enter it into the calculator as a single equation.
- (b) Solve for x and enter it into the calculator as a single equation.
- (c) Solve for y and enter it in the calculator as two separate equations.
- (d) Enter the equation directly into the calculator.
- (e) The graph of the equation can not be displayed on a graphing calculator.

		<i>,</i>	- 	ion Method	
20. Deterr	nine all solutions to the system	$\begin{cases} x^2 + y = 3 \\ y - 2x = 0 \end{cases}$			
Choic	es:	(^y ² ^x = ⁰ solu for	e <u>y</u> -z. Subs	x stitute into e	quation one
(a)	The system has no solution.	<u> </u>		7	+
(b)	(-3, -6) only.		*		If x=1 then
(c)	(1,1) only.		X ² .	+2x - 3 = 0	(= 2 (I) = 2
(d)	(1,2) and $(-1,-1)$.		× ² + 3	x-1x-3=0	so (12) is a so lution
(e)	(-3, -6) and $(1, 2)$.		(x+3)	-1(x+3)=0	T(x, y) = 0
·			(x-1)	(x+3)=0	$\perp f \chi = -3$ then
			$\begin{array}{c} \chi_{-1=0} \\ \chi_{-1} \end{array}$	×+3=0 ×=-3	$50 \left(-3,-6\right)$ is a solution

Bonus Multiple Choice: Show your work in the space below and shade the correct answer on the front page for each of the follow

21. Solve the following equation for **x**.

Solve	the following equation for x.	$5x^2 - 3x = 1$	q = 5		
		$5x^2 - 3x - 1 = 0$	b = -3		
Choic	ces:		C = - I		
(a)	$\frac{3\pm\sqrt{29}}{10}$	$x = \frac{-b \pm \sqrt{b^2}}{2}$	4qc =	$-(-3) \pm \sqrt{(-3)^2}$	4(5)(-1)
(b)	The equation has no real solution	n. 🖉 🤉		2(5	.)
(c)	$\frac{\pm\sqrt{2}}{5}$		=	3+ 19+20 =	3± V29
(d)	$\frac{6\pm\sqrt{11}}{10}$			10	10
(e)	$\frac{1 \pm \sqrt{29}}{5}$				

22. Find the distance in the plane between the points $\begin{pmatrix} 2,1 \\ \chi \\ g_1 \end{pmatrix}$ and $\begin{pmatrix} 3,-1 \end{pmatrix}$.

(a)	5	
(b)	$\sqrt{5}$	$ \text{Distance Formula} = \sqrt{(x_{z} - x_{1})^{2} + (y_{z} - y_{1})^{2}} = \sqrt{(3 - 2)^{2} + (-1 - 1)^{2}} $
(c)	1	
(d)	$\pm\sqrt{5}$	$= \bigvee ^2 + (-2)^2$
(e)	$\sqrt{27}$	= \/ + 4
		$=\sqrt{5}$

23. Find the equation of the circle with center (-1,3) such that the point (5,3) is on the circle.

Choic	es:	Circle center (h, k) with radius r	Redius of circle is the distance
(a)	$(x+1)^2 + (y-3)^2 = 36$	$(x-h)^{2} + (y-k) = r^{2}$	from Center (-1,3) to any point
(b) (c)	$(x-1)^{2} + (y+3)^{2} = 36$ $(x-5)^{2} + (y-3)^{2} = 6$	So we have	$\int = \sqrt{\left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(\sum_{j=1$
(d)	$(x-5)^2 + (y-3)^2 = 4$	$(x - (-1))^{2} + (y - 3)^{2} = r^{2}$	$= \sqrt{\langle (3^{-1})^2, z^2 \rangle}$
(e)	$(x+1)^2 + (y-3)^2 = 16$	$(\times + 1)^2 + (y-3)^2 = (\sqrt{3L})^2$	$= \sqrt{\frac{2}{2}}$
		$(x+1)^{2} + (y-3)^{2} = 36$	$=\sqrt{3c}$

24. Solve the following equation for x.

Choices:
(x-1)² = -2x+2
(a)
$$x = \pm 1$$
 (x-1)(x-1) = -2x+2
(b) The equation has no real solutions.
(c) $x = 2$ only.
(d) $x = 1$ only.
(e) $x = \pm 3$ $x^{2} - x - x + 1 = -2x + 2$ $x = -1$
(for $x = 1 = 0$ or $x + 1 = 0$
 $x^{2} - x - x + 1 = -2x + 2$ $x = -1$
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$))
(heck $x = 1$ (heck $x = -1$)
(heck $x = 1$ (heck $x = -1$))
(heck $x = 1$ (heck $x = -1$))
(heck

25. Which one of the following points is on the graph of the equation

 $x^2 - 3xy = -5?$

$$\begin{array}{c|cccc} X & (a) & (1,3/2) & | & ^{2}-3(1)\left(\frac{3}{2}\right) = 1 - \frac{9}{2} = \frac{2}{2} - \frac{9}{2} = \frac{7}{2} \neq -5 \\ \hline X & (b) & (0,4) & 0^{2} - 3(0)(4) = 0 - 0 = 0 \neq -5 \\ \hline \hline (c) & (1,2) & | & |^{2}-3(1)(2) = 1 - 6 = -5 \\ \hline X & (d) & (2,1) & 2^{2}-3(2)(1) = 4 - 6 = -5 \\ \hline X & (e) & (-1,2/3) \\ & & & (-1)^{2}-3(-1)\left(\frac{2}{3}\right) = 1 + 2 = 3 \neq -5 \end{array}$$