Name:	Section:	
MA 109	Spring 2014	
Exam 4	May 5, 2014	

Directions:

- Do not remove this page—you will turn in the entire exam. You have two hours to do this exam. No books or notes may be used. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is permitted. Absolutely no cell phone use during the exam is allowed.
- The exam consists of multiple choice and short answer questions. Record your answers on this page by filling in the appropriate selection, for example:

• The exam is out of 100 total points: 5 points for each of 25 multiple choice questions. There is a possibility for up to 125 points on the exam (but 25 of these count as extra credit). **Only** this front page will be graded and **no partial credit** will be awarded. It is recommended that you check your work!

For grading use:

Number Correct	Total Points Earned
(out of 25 questions)	(questions worth 5 points each)

Formula Sheet:

Compound Interest: If a principal P_0 is invested at an interest rate r for a period of t years, then the amount P(t) of the investment is given by:

$$P(t) = P_0 \left(1 + \frac{r}{n}\right)^{nt}$$
 (if compounded *n* times per year)

 $P(t) = P_0 e^{rt}$ (if compounded continuously).

Change of Base Formula:	Let a and b be two positive numbers with $a, b \neq 1$. If $x > 0$, then:	
	$\boxed{\log_a(x) = \frac{\log_b(x)}{\log_b(a)}}$	

 $\mathbf{2}$

Name: _

Section:

Multiple Choice: Show your work in the space below and shade the correct answer on the front page for each of the following.

1. Let

$$f(x) = \begin{cases} \overbrace{x^2 - 3}^{x^2 - 3} & \text{if } x \le -3 \\ x^2 - 3 & \text{if } -3 < x \le 2 \\ -2x + 5 & \text{if } x > 2 \end{cases}$$

 $\int (-4) = -4 + 1 = -3$

Find f(-4).

 Choices:

 (a)
 6

 (b)
 -2

 (c)
 -3

 (d)
 13

 (e)
 0

			-
2.	Solve	\mathbf{for}	z.

Solve f	for z.	$-2z^2 - 6z + 1 = 0$
Choic	ces:	$a^2 z^2 + b^2 z - 1 = 0$
(a)	$\frac{-6}{4} \pm \sqrt{11}$	$-(c + \sqrt{(c^2 - 4/2)(1)})$
(b)	$\frac{-3\pm\sqrt{11}}{2}$	$\frac{\varphi - \sqrt{6} - \sqrt{6} + \sqrt{2}(1 - 1)}{2(2)} = \frac{-6 - \sqrt{26} + \sqrt{26}}{4} = \frac{-6 - \sqrt{24}}{4}$
(c)	$\frac{-6\pm\sqrt{28}}{4}$	$= - \zeta \pm 2\sqrt{11} \qquad = - \zeta \pm 1\sqrt{11}$
(d)	$\frac{6\pm\sqrt{28}}{4}$	$\frac{1}{4} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{11} \right) = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{11}$
(e)	$\frac{-2\pm\sqrt{36}}{6}$	π_z

3. Solve for r.

$$(3r - 18)(r^2 - 9) = 0$$

Choic	ces:	30 18-0	\sim^7 \sim \rightarrow
(a)	The only real solutions are 6 and 3.		(
(b)	The only real solutions are 6 and ± 3 .	Sf = 19	$y^{2} = 9$
(c)	The only real solutions are 3 and 9.	$\frac{8}{2}$ = 1	r = t ⋜
(d)	The are no real solutions.	٢	
(e)	The only real solutions are ± 3 .	r = 6	

4. For which of the following equations is the number 2 a solution?

Choices:

5. Use the Intersect or Intercept Method to approximate all real solutions to the equation below using your calculator.

$$x^5 - x^2 + 3x = 3 + x^2$$

Choices:

(a)	$x \approx 1.822$
(b)	$x \approx -2.112$
(c)	$x \approx -0.632$
(d)	$x\approx 2.260$
(e)	$x\approx 1.175$

6. Let $f(x) = 3^x$. Which of the following is $f^{-1}(27)$?

Choices:

(a) 27	$f^{-1}(h) = x$ means (c)
(b) $\frac{1}{27}$	$\int -\frac{1}{\sqrt{2\pi}} x = 0$
(c) = 3	$\int (2+)=x \qquad \qquad$
(d) $\frac{1}{3}$	، ۲ <i>– ۲</i> ۶
(e) -1	$3^{k} = 3^{3}$
	$\chi = 3$

<-5
1<-5
> -3
-

8. Find an equation for the line through the points (-4, 1) and (5, 10).

Choices:

 $\begin{array}{c|c}\hline(a) & y-1 = (x+4) & m = \frac{10-1}{5-(-4)} = \frac{9}{9} = 1\\ \hline(b) & y-4 = -9(x-1) & & \\\hline(c) & y+5 = -9(x-10) & & \\\hline(d) & y+4 = \frac{1}{9}(x-5) & & \\\hline(e) & y-5 = -\frac{9}{5}(x-5) & & \\\hline\end{array}$

9. Solve the following system of equations. $\begin{cases} 4x + 2y = 7 \\ 2x + 2y = 8 \end{cases} \xrightarrow{\begin{array}{c} \zeta \\ \chi + 2y = 7 \\ -2x - 2y = -7 \\ \hline 2x \\ -2x \\ -2 \\ \hline 2x \\ -2 \\ -7 \\ \hline 2x \\ -7 \\$

- (a) The system has no solution.
- $\chi = \frac{1}{2}$ The system has infinitely many solutions one of which is $(\frac{1}{2}, \frac{9}{2})$ (b)
- (c) Every point is a solution to the system.
- (d) The only solution is $\left(-\frac{1}{2}, \frac{9}{2}\right)$.
- (e) The only solution is $\left(-\frac{1}{2},3\right)$.
- 10. The number of bacteria in a culture is modeled by the function $n(t) = 100e^{0.5t}$ where t is measured in hours. When will the number of bacteria reach 2500? Round your answer to the nearest tenth of an hour.

 $\begin{aligned} &\mathcal{A} \times + \mathcal{A} \mathcal{Y} = \mathcal{B} \longrightarrow \quad \times + \mathcal{Y} = \mathcal{A} \\ &\mathcal{Y} = \mathcal{A} - \mathcal{X} \\ &\mathcal{Y} = \mathcal{A} - \left(\frac{1}{2}\right) = \mathcal{A} + \frac{1}{2} = \frac{9}{2} \end{aligned}$

Choices:

Choices:	2500 - 10000.5t	
(a) About 13.2 hours	$\frac{1}{100} = \frac{1000}{100}$	$E = \frac{10(23)}{2} = 6.437$
(b) About 5.9 hours	τφφ (00	0.5
(c) About 6.4 hours	$25 = e^{0.5t}$	
(d) About 2.8 hours		
(e) About 3.7 hours	$\ln(as) = \ln(e^{-s})$	
	$\ln(25) = 0.5+$	
	(x+h) - f(x)	

11. Let
$$f(x) = 3x^2 - x - 1$$
. Find $\frac{f(x+h) - f(x)}{h}$ and simplify. (Assume $h \neq 0$.)

(a) 1
(b) 3h
(c)
$$\frac{6xh+3h^2-1}{h}$$

(d) $18x+9h$
(e) $6x+3h-1$
(f) $\frac{3(x+h)^2-(x+h)-1}{h} = \frac{3(x^2+x+h)^2-x-h-1-3x^2+x+h}{h}$

$$= \frac{3x^{2}+6xh+3h^{2}-x-h-2-3x^{2}+x+2}{h} = \frac{6xh+3h^{2}-h}{h}$$
$$= \frac{1}{2} \frac{1}{6x+3h-1} = \frac{6x+3h-1}{4}$$

12. Find the quotient Q(x) and the remainder R(x) when $P(x) = 3x^3 - 2x^2 - x + 1$ is divided by x - 2.

Choice (a) (b) (c) (d) (e)	Set $Q(x) = 3x^{2} - 8x + 15, R(x) = -29 \qquad \qquad$
13. Determ	ine the end behavior of the graph of $y = -x_5^{5} + 2x - 6$.
(a) (b) √(c) (d) (e)	es: $y \to \infty \text{ as } x \to \infty \text{ and } y \to \infty \text{ as } x \to -\infty$ $y \to \infty \text{ as } x \to \infty \text{ and } y \to -\infty \text{ as } x \to -\infty$ $y \to -\infty \text{ as } x \to \infty \text{ and } y \to \infty \text{ as } x \to -\infty$ $y \to -\infty \text{ as } x \to \infty \text{ and } y \to -\infty \text{ as } x \to -\infty$ None of the above.
14. What is	s the average rate of change of $f(x) = -5x - 3$ with respect to x from $x = -4$ to $x = -1$?
(a) (b) (c) (d) (e)	$\begin{array}{cccc} a & 5 & 5 \\ 5 & f(b) - f(a) \\ \hline -3 & b & -a \end{array} = \begin{array}{c} f(-1) - f(-4) \\ \hline -1 - (-4) & -1 + 4 \end{array} = \begin{array}{c} -1 - 5 \\ \hline -1 + 4 & -3 \\ \hline -1 + 4 \\ $

15. Let $g(x) = \sqrt{x-4}$. Find the domain of g(x).

Choices:

16. Suppose the graph of y = f(x) is a parabola with vertex (-1,3) and goes through the points (0,0)and (-4, -24). Which of the following is an formula for f(x)?

Choices:	$y = a(x-h)^{2}+k$ $y = -3(x+1)^{2}+3$
(a) $f(x) = (x-1)^2 + 3$	$u = a(x+1)^{2} + 3 \frac{check}{that} - 3(-4+1)^{2} + 3$
(b) $f(x) = x^2 + 3x$ (c) $f(x) = 2x^2 + 4x + 5$	$Q = C \left((0 + 1)^{2} (-2)^{2} (-4)^{2} - 3 (-3)^{2} + 3 \right)$
(c) $f(x) = 2x^{2} + 4x + 3$ (d) $f(x) = (x+1)(x+4)$	r = -3(9) + 3
(e) $f(x) = -3(x+1)^2 + 3$	$U = \alpha(1) + 3 \qquad on the - 27 + 3$
	$\frac{0=a+3}{a=-3}$

17. Solve for x.

		$\frac{6\log_4\left(x+5\right)}{\zeta_{\rm e}} = \frac{12}{\zeta_{\rm e}}$
Choices:		60(x+5) - 7
(a)	x = 11	J4 · · ·) - 2
(b)	x = -4.5	$u^2 - v_{\mu} = v_{\mu}$
(c)	$x = \sqrt[6]{12}$	$\neg - x + S$
(d)	x = 0	$ 6 = x + 5^{-1}$
(e)	$x = \frac{12}{6\log(4)}$	-5 -5
		$\times = $

18. Write $2\log(x) + 3\log(y) - 4\log(z)$ as a single logarithm.

Choices:
(a)
$$\frac{\log(x^2y^3)}{\log(z^4)}$$

(b) $\log(x^2+y^3-z^4)$
(c) $\log(xyz)$
(d) $\log\left(\frac{2x3y}{4z}\right)$
(e) $\log\left(\frac{x^2y^3}{z^4}\right)$
(b) $\log\left(\frac{x^2y^3}{z^4}\right)$
(c) $\log\left(\frac{x^2y^3}{z^4}\right)$
(c) $\log\left(\frac{x^2y^3}{z^4}\right)$
(c) $\log\left(\frac{x^2y^3}{z^4}\right)$
(c) $\log\left(\frac{x^2y^3}{z^4}\right)$

19. Explain how the graph of $g(x) = (x+5)^2 - 8$ is obtained from the graph of $f(x) = x^2$. **Choices:**

- (a) Shift the graph of f right 5 units and shift up 8 units to obtain the graph of g.
- (b) Shift the graph of f left 8 units and shift down 5 units to obtain the graph of g.
- (c) Shift the graph of f left 5 units and shift down 8 units to obtain the graph of g.
- (d) Shift the graph of f right 5 units and shift down 8 units to obtain the graph of g.
- (e) Shift the graph of f right 8 units and shift up 5 units to obtain the graph of g.
- 20. If \$2,500 is deposited in a bank account with a yearly interest rate of 4% compounded monthly, how long until the account has doubled? Round answer to the nearest tenth. 4

Choices:
(a) 10.5 years.
(b) 32.8 years.
(c) 17.4 years.
(d) 2.1 years.
(e) 21.0 years.

$$\begin{aligned}
\mathcal{A} = (1.00333...)^{12t} \\
\mathcal{A} = (1.00333...)^{12t} \\
\mathcal{A} = \frac{\ln(2)}{\ln(1.0033...)} \\
\mathcal$$

9/9