MA 330 ASSIGNMENT QUADRATURE DUE WEDNESDAY, SEPT 10

Answers to problems may be handwritten.

Problem 1: In *Journey Through Genius* we are told that $\sqrt{2}$ is irrational. Prove that this is true through the following.

- (1) If k is a positive integer, explain why each prime in the factorization of k^2 must occur an even number of times.
- (2) Now suppose $\sqrt{2}$ is rational, i.e., $\sqrt{2} = \frac{a}{b}$ for two integers a and b.
- (3) Cross-multiply and square to conclude that $a^2 = 2b^2$. Explain why this gives a contradiction, making the expression $\sqrt{2} = \frac{a}{b}$ impossible as stated.
- (4) Is there anything special about the number 2 in this argument? For which numbers m does this argument generalize to show that \sqrt{m} is irrational? For which numbers m does this argument fail? Justify your response.

Problem 2: Here is an algebraic version of the quadrature of the lune. Begin with a square of side length 2r. Upon each side, construct a semicircle. Circumscribe a circle about the original square.

- (1) What is the *algebraic* relationship between the area of the original square and the combined areas of the four lunes bounded by the semicircles and the circumscribed circle?
- (2) From this, can you conclude that the lune is quadrable? Why or why not?
- (3) Is your answer related to Hippocrates' method of quadrature? If so, how? If not, why not?