MA 330 ASSIGNMENT \# 10

Solutions to problems may be handwritten.

Problem 1:

Sylvester's sequence is defined by the recursive formula $s_{0}=2$ and $s_{j+1}=1+s_{0} s_{1} \cdots s_{j}$. This should remind you of Fermat numbers, which in an earlier homework problem you proved satisfy a similar recursion with a " 2 " instead of a " 1 " added on.

Prove that

$$
\sum_{j=0}^{\infty} \frac{1}{s_{j}}=1
$$

NOTE: You may freely use http://planetmath.org/sumofreciprocalsofsylvesterssequence and http://en.wikipedia.org/wiki/Sylvester\'s_sequence to get ideas, but if you use any ideas from these pages you must cite them and explain in your solution how they were used.

Problem 2:

The Fibonacci numbers are the sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots=0,1,1,2, \ldots$ defined by the recurrence $F_{n}=F_{n-1}+F_{n-2}$ with the initial values given above.

- Use the defining recurrence for F_{n} to show that

$$
\left(1-x-x^{2}\right)\left(\sum_{n=0}^{\infty} F_{n} x^{n}\right)=x
$$

and hence conclude that

$$
\sum_{n=0}^{\infty} F_{n} x^{n}=\frac{x}{1-x-x^{2}}
$$

- Use the equation you just found to prove that

$$
\sum_{n=0}^{\infty} \frac{F_{n}}{2^{n+1}}=1
$$

REMARK: You might find it interesting to compare these two different ways that you can obtain 1 as an infinite series.

