MA 330 ASSIGNMENT \# 11

Solutions to problems may be handwritten.

Problem 1:

We know that

$$
e=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots
$$

and thus e is an infinite sum of reciprocals of integers. In this problem, we will prove that e is irrational by using this series expansion.

Supposing that $e=\frac{m}{n}$ for some non-zero integers m and n, derive a contradiction by proceeding through the following steps.
(1) Explain why, if e is a fraction as written above, $n!e$ is an integer.
(2) On the other hand, explain why (using the series expansion above)

$$
n!e=\text { some integer }+\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)(n+3)}+\cdots
$$

(3) Explain why

$$
\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)(n+3)}+\cdots<\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots=1 .
$$

(4) Explain why this gives a contradiction, and conclude that e is irrational.

Problem 2:

On page 216 of Journey Through Genius, it is shown that

$$
\frac{\sin (x)}{x}=\left[1-\frac{x^{2}}{\pi^{2}}\right]\left[1-\frac{x^{2}}{4 \pi^{2}}\right]\left[1-\frac{x^{2}}{9 \pi^{2}}\right]\left[1-\frac{x^{2}}{16 \pi^{2}}\right] \cdots
$$

By evaluating this at $x=\frac{\pi}{2}$, derive the following infinite product representation for $\frac{2}{\pi}$:

$$
\frac{2}{\pi}=\frac{1 \cdot 3}{2 \cdot 2} \cdot \frac{3 \cdot 5}{4 \cdot 4} \cdot \frac{5 \cdot 7}{6 \cdot 6} \cdot \frac{7 \cdot 9}{8 \cdot 8} \cdots
$$

NOTE: This expression was first discovered by Wallis in 1655. You can find a "Calculus I" level proof of this using integration of powers of $\sin (x)$ on the wikipedia page for Wallis product.

