MA 330 ASSIGNMENT \# 2

Answers to problems may be handwritten.
Problem 1: In Journey Through Genius we are told that $\sqrt{2}$ is irrational. Prove that this is true through the following.
(1) If k is a positive integer, explain why each prime in the factorization of k^{2} must occur an even number of times.
(2) Now make the assumption that $\sqrt{2}$ is rational, i.e., $\sqrt{2}=\frac{a}{b}$ for two integers a and b. Crossmultiply and square to conclude that $a^{2}=2 b^{2}$. Explain why this gives a contradiction to your assumption, implying that $\sqrt{2}$ cannot be written as a fraction $\frac{a}{b}$.

Problem 2: Is there anything special about the number 2 in your answer to Problem 1? For which numbers m does this argument extend to show that \sqrt{m} is irrational? For which numbers m does this argument fail? Justify your response.

