MA 330 ASSIGNMENT # 2

Answers to problems may be handwritten.

Problem 1: In *Journey Through Genius* we are told that $\sqrt{2}$ is irrational. Prove that this is true through the following.

- (1) If k is a positive integer, explain why each prime in the factorization of k^2 must occur an even number of times.
- (2) Now make the assumption that $\sqrt{2}$ is rational, i.e., $\sqrt{2} = \frac{a}{b}$ for two integers a and b. Crossmultiply and square to conclude that $a^2 = 2b^2$. Explain why this gives a contradiction to your assumption, implying that $\sqrt{2}$ cannot be written as a fraction $\frac{a}{b}$.

Problem 2: Is there anything special about the number 2 in your answer to Problem 1? For which numbers m does this argument extend to show that \sqrt{m} is irrational? For which numbers m does this argument fail? Justify your response.