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Abstract. It is well known that the automorphism group of the
Kneser graph KGn,k is the symmetric group on n letters. For
n ≥ 2k + 1, k ≥ 2, we prove that the automorphism group of the
stable Kneser graph SGn,k is the dihedral group of order 2n.

Let [n] := [1, 2, 3, . . . , n]. For each n ≥ 2k, n, k ∈ {1, 2, 3, . . .}, the
Kneser graph KGn,k has as vertices the k-subsets of [n] with edges de-
fined by disjoint pairs of k-subsets. For the same parameters, the stable
Kneser graph SGn,k is the subgraph of KGn,k induced by the stable k-
subsets of [n], i.e. those subsets that do not contain any 2-subset of
the form {i, i + 1} or {1, n}. The Kneser and stable Kneser graphs
are important graphs in algebraic and topological combinatorics. L.
Lovász proved in [3] via an ingenious use of the Borsuk-Ulam theorem
that χ(KGn,k) = n− 2k + 2, verifying a conjecture due to M. Kneser.
Shortly afterwards, A. Schrijver proved in [5], again using the Borsuk-
Ulam theorem, that χ(SGn,k) = n− 2k+ 2. Schrijver also proved that
the stable Kneser graphs are vertex critical, i.e. the chromatic num-
ber of any proper subgraph of SGn,k is strictly less than n − 2k + 2;
for this reason, the stable Kneser graphs are also known as the Schri-
jver graphs. These results sparked a series of dramatic applications of
algebraic topology in combinatorics that continues to this day.

Despite these general advances, there are many unanswered ques-
tions regarding Kneser and stable Kneser graphs. For example, it is
well known that for n ≥ 2k+ 1 the automorphism group of the Kneser
graph KGn,k is the symmetric group on n letters, with the action in-
duced by the permutation action on [n]; see [2] for a textbook account.
The proof of this relies on the Erdős-Ko-Rado theorem characterizing
maximal independent sets in KGn,k, where an independent set in a
graph is a collection of pairwise non-adjacent vertices. However, the
automorphism groups of the stable Kneser graphs are not determined;
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an exercise in [4] asks what can be said regarding the symmetries of
these graphs. The purpose of this note is to prove the following.

Theorem 1. For n ≥ 2k + 1 and k ≥ 2, the automorphism group of
SGn,k is isomorphic to the dihedral group of order 2n.

Our proof will have two cases: for n = 2k + 2, we will find a dis-
tinguished complete bipartite subgraph of SG2k+2,k and analyze the
action of Aut(SG2k+2,k) on it to obtain our result. For n 6= 2k + 2, we
will proceed in the same way as the standard proof for KGn,k, with
the role of the Erdős-Ko-Rado theorem played by the following. Let(

[n]
k

)
stab

denote the stable k-subsets of [n].

Theorem 2. (J. Talbot, [7]) For n ≥ 2k+ 1, n 6= 2k+ 2, the maximal

independent sets in SGn,k are all of the form
{
A ∈

(
[n]
k

)
stab

: i ∈ A
}

for

a fixed i ∈ [n].

Theorem 2 is a very useful tool for investigating SGn,k. For example,
it is noted in the introduction to [6] that the fractional chromatic num-
ber of SGn,k is easily obtained using this result. The case n = 2k+ 2 is
not covered by Theorem 2, hence our need for a separate proof in this
case.

Proof. Let D2n denote the dihedral group of order 2n. In our analysis,
we will need to recognize D2n as a subgroup of Sn, the symmetric
group on n letters, in particular as the subgroup generated by the
cycle (12 · · ·n) and the involution i 7→ n − i + 2 mod n. It is clear
that D2n injects into Aut(SGn,k), as D2n acts on SGn,k by acting on
[n]. Thus, Aut(SGn,k) contains at least a dihedral subgroup. We will
now show that this is the full automorphism group.

We first handle two cases that do not fall within our analysis be-
low. For the graphs SG6,2 and SG8,3, it can be checked using Brendan
McKay’s program nauty, [1], that the automorphism groups are of or-
der 12 and 16, respectively, and hence are dihedral.

When n 6= 2k + 2, given i ∈ [n], let Ai :=
{
A ∈

(
[n]
k

)
stab

: i ∈ A
}

.

Theorem 2 ensures that these are the maximal independent sets in
SGn,k. Any automorphism of SGn,k must permute these maximal in-
dependent sets, hence there exists a homomorphism Φ from Aut(SGn,k)
to Sn. Given a non-trivial element ρ ∈ Aut(SGn,k), there exists v ∈(

[n]
k

)
stab

such that ρ(v) 6= v, i.e. there exists j ∈ v such that j /∈ ρ(v). It
follows that v ∈ Aj, but v /∈ AΦ(ρ)(j), hence Φ(ρ) is non-trivial. We may
conclude that Φ is injective. Note that the image of D2n ⊆ Aut(SGn,k)
under Φ is generated as described above.
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We claim that if σ /∈ Φ(D2n), then there exist i, j ∈ [n] such that
|i− j| 6= 1 and |σ(i)−σ(j)| = 1. This is easily seen by considering σ(l)
for an arbitrary l ∈ [n]. Either one of σ(l)± 1 is the image of some m
with |m− l| 6= 1, in which case we are done, or σ injects the pair l− 1
and l + 1 to the pair σ(l) − 1 and σ(l) + 1. In the latter case, we are
done unless |σ(l− 2)− σ(l− 1)| = 1 and |σ(l + 2)− σ(l + 1)| = 1. We
may proceed with this line of reasoning until we either find i and j as
claimed or we find that σ is an element of Φ(D2n), contradicting our
assumption.

Suppose now that Φ(β) ∈ Φ(Aut(SGn,k)) \ D2n, and i, j are as in
the claim. Since |i − j| 6= 1 and n ≥ 2k + 1, it is easy to check
that Ai ∩ Aj 6= ∅. However, |Φ(β)(i) − Φ(β)(j)| = 1 implies that
AΦ(β)(i) ∩ AΦ(β)(j) = ∅. Thus, there exists v ∈ Ai ∩ Aj such that
β(v) ∈ AΦ(β)(i) ∩ AΦ(β)(j) = ∅, a contradiction, and we are done.

Next consider the case n = 2k+2, k > 3. There is a unique complete
bipartite subgraph Kk+1,k+1 contained in SG2k+2,k. Let F1 and F2

denote the partition of the vertex set for such a subgraph. Since our
ground set has size 2k+2 and each Fi has k+1 neighbors, the union of
the stable sets contained in each Vi must be of size k + 1. Further, F1

and F2 must be disjoint. Thus, without loss of generality, F1 contains
the stable k-subsets of {1, 3, 5, . . . , 2k+ 1} while F2 contains the stable
k-subsets of {2, 4, 6, . . . , 2k + 2}. As this is the only such possible
partition, Aut(SG2k+2,k) must preserve this unique Kk+1,k+1.

Given X ∈
(

[2k+2]
k

)
stab

, we may pair each element i ∈ X with i +
1 /∈ X, under cyclic addition. By so doing, we exhaust 2k of the
elements of [2k+ 2]. The remaining two elements in [2k+ 2] are either
consecutive, yielding a unique i ∈ X such that i + 4 ∈ X, or they are
non-consecutive, yielding unique i, j ∈ X such that i + 3, j + 3 ∈ X.
We may therefore uniquely identify each X of the first type by the
label X{i,i+1} and each X of the second type as X{i,j} for the indices
i < j determined above. Note that |i − j| is odd, as there is one gap
of length 3 between i and i+ 3 in the elements of X{i,j} and then pairs
{i+ 3, i+ 5}, {i+ 5, i+ 7}, etc, of elements of X{i,j} from i to j.

Let o{k + 1} be equal to k + 1 if k + 1 is odd and k if k + 1 is even.
The set V1 := F1 ∪ F2 contains all the X{i,i+1}; the remaining X{i,j}
may be partitioned into classes V3, V5, . . . , Vo{k+1} such that Vl contains
all X{i,j} such that |i − j| = l, where the absolute value denotes the
minimum distance from i to j cyclically.

We claim that for each 3 ≤ l ≤ o{k+ 1}− 2, each vertex X{i,j} in Vl
has exactly four neighbors in SG2k+2,k: X{i−1,j+1}, X{i+1,j−1}, X{i−1,j−1}
and X{i+1,j+1}. This is justified by noting that any neighbor X{m,n} of
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X{i,j} must be a disjoint stable k-subset and in order for the conditions
m,n /∈ X{i,j} and m+ 3, n+ 3 /∈ X{i,j} to simultaneously hold, it must
be that |m − i| = 1 = |n − j|. Further, X{i−1,j+1} and X{i+1,j−1} are
each contained in one of Vl+2 and Vl−2, while X{i−1,j−1} and X{i+1,j+1}
are contained in Vl. Thus, for each 3 ≤ l ≤ o{k + 1} − 2, Vl induces a
(2k + 2)-cycle as a subgraph of SG2k+2,k. Considering the case where
k+ 1 even, hence k = o{k+ 1}, Vk induces a (2k+ 2)-cycle where each
vertex X{i,j} has four neighbors, X{i−1,j−1}, X{i+1,j+1}, X{i−1,j+1} and
X{i+1,j−1}, three of them in Vk and one in Vk−2. If k + 1 is odd, then
Vk+1 induces a (k+1)-cycle where each vertex X{i,j} has four neighbors,
X{i−1,j−1}, X{i+1,j+1} ∈ Vk+1 and X{i−1,j+1}, X{i+1,j−1} ∈ Vk−1.

Finally, each vertex in V1 has a unique neighbor in V3 formed by the
edge

{
X{i,i+1}, X{i−1,i+2}

}
, thus any automorphism of SG2k+2,k pre-

serving the Kk+1,k+1 induced by V1 must also preserve V3. Hence, there
is a homomorphism from Aut(SG2k+2,k) onto the automorphism group
of the (2k + 2)-cycle induced by V3, i.e. the dihedral group of order
2(2k + 2). We will complete our proof by showing that this homomor-
phism is injective.

Suppose ρ ∈ Aut(SG2k+2,k) fixes V3; we will show that it fixes every
vertex of SG2k+2,k. Any automorphism that fixes V3 pointwise must
also fix all the elements of V1 since each element of V1 has a unique
neighbor in V3. Having assumed that ρ fixes V3 and having observed
that for 3 ≤ l ≤ o{k + 1} − 2 each vertex in Vl has unique neighbors
in Vl−2 and Vl+2, we may inductively proceed and derive that ρ must
fix all the vertices in Vl for 1 ≤ l ≤ o{k + 1} − 2. The only vertices
remaining to check are those in Vo{k+1}, which we handle in two cases.

For k + 1 even, we saw earlier that each vertex X{i,i+k} ∈ Vk has
exactly one neighbor X{i+1,i+k−1} ∈ Vk−2. Thus, Vk must also be fixed
pointwise by ρ. In the case k+1 odd, i.e. o{k+1} = k+1, Vk+1 induces
a (k + 1)-cycle, each of whose vertices are connected to a unique pair
of vertices in Vk−1. As the vertices in Vk−1 are fixed, we see Vk+1 must
also be fixed. Hence, ρ is trivial and our homomorphism is injective as
desired.
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