SYMMETRIES OF THE STABLE KNESER GRAPHS
BENJAMIN BRAUN

ABSTRACT. It is well known that the automorphism group of the
Kneser graph KG,, ; is the symmetric group on n letters. For
n > 2k + 1, k > 2, we prove that the automorphism group of the
stable Kneser graph SG,, \ is the dihedral group of order 2n.

Let [n] :=[1,2,3,...,n]. For each n > 2k, n,k € {1,2,3,...}, the
Kneser graph KG,,\ has as vertices the k-subsets of [n] with edges de-
fined by disjoint pairs of k-subsets. For the same parameters, the stable
Kneser graph SG,,, is the subgraph of K G, ; induced by the stable k-
subsets of [n], i.e. those subsets that do not contain any 2-subset of
the form {i,i + 1} or {1,n}. The Kneser and stable Kneser graphs
are important graphs in algebraic and topological combinatorics. L.
Lovész proved in [3] via an ingenious use of the Borsuk-Ulam theorem
that x(KGpx) = n — 2k + 2, verifying a conjecture due to M. Kneser.
Shortly afterwards, A. Schrijver proved in [5], again using the Borsuk-
Ulam theorem, that x(SG,.x) = n — 2k + 2. Schrijver also proved that
the stable Kneser graphs are vertex critical, i.e. the chromatic num-
ber of any proper subgraph of SG,, j is strictly less than n — 2k + 2;
for this reason, the stable Kneser graphs are also known as the Schri-
jver graphs. These results sparked a series of dramatic applications of
algebraic topology in combinatorics that continues to this day.

Despite these general advances, there are many unanswered ques-
tions regarding Kneser and stable Kneser graphs. For example, it is
well known that for n > 2k + 1 the automorphism group of the Kneser
graph K G, is the symmetric group on n letters, with the action in-
duced by the permutation action on [n]; see [2] for a textbook account.
The proof of this relies on the Erdos-Ko-Rado theorem characterizing
maximal independent sets in K, ;, where an independent set in a
graph is a collection of pairwise non-adjacent vertices. However, the
automorphism groups of the stable Kneser graphs are not determined;
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an exercise in [4] asks what can be said regarding the symmetries of
these graphs. The purpose of this note is to prove the following.

Theorem 1. Forn > 2k + 1 and k > 2, the automorphism group of
SG, i, 1s 1somorphic to the dihedral group of order 2n.

Our proof will have two cases: for n = 2k + 2, we will find a dis-
tinguished complete bipartite subgraph of SGaki2x and analyze the
action of Aut(SGayi2k) on it to obtain our result. For n # 2k + 2, we
will proceed in the same way as the standard proof for KG,, j, with
the role of the Erdos-Ko-Rado theorem played by the following. Let
([Z])Stab denote the stable k-subsets of [n].

Theorem 2. (J. Talbot, [7]) Forn > 2k+1, n # 2k + 2, the mazimal
independent sets in SG,,  are all of the form {A € ([Z])Smb 11 € A} for
a fized i € [n).

Theorem 2 is a very useful tool for investigating SG, . For example,
it is noted in the introduction to [6] that the fractional chromatic num-
ber of SG,, , is easily obtained using this result. The case n = 2k +2 is
not covered by Theorem 2, hence our need for a separate proof in this
case.

Proof. Let D,, denote the dihedral group of order 2n. In our analysis,
we will need to recognize D,, as a subgroup of S,, the symmetric
group on n letters, in particular as the subgroup generated by the
cycle (12---n) and the involution i — n —i + 2 mod n. It is clear
that Dy, injects into Aut(SG, ), as Da, acts on SG, by acting on
[n]. Thus, Aut(SG,, ;) contains at least a dihedral subgroup. We will
now show that this is the full automorphism group.

We first handle two cases that do not fall within our analysis be-
low. For the graphs SGg 2 and SGg 3, it can be checked using Brendan
McKay’s program nauty, [1], that the automorphism groups are of or-
der 12 and 16, respectively, and hence are dihedral.

When n # 2k + 2, given i € [n], let A; = {A € ([Z})smb i€ A}.
Theorem 2 ensures that these are the maximal independent sets in
SG, . Any automorphism of SG,, ; must permute these maximal in-
dependent sets, hence there exists a homomorphism ® from Aut(SG,, x)
to S,. Given a non-trivial element p € Aut(SG, ), there exists v €
([Z])stab such that p(v) # v, i.e. there exists j € v such that j ¢ p(v). It
follows that v € A;, but v & Ag(,)(j), hence ®(p) is non-trivial. We may
conclude that @ is injective. Note that the image of Dy, C Aut(SG,,x)
under @ is generated as described above.
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We claim that if 0 ¢ ®(Dy,), then there exist i,j € [n] such that
li—j| # 1 and |o(i) — o ()| = 1. This is easily seen by considering ()
for an arbitrary [ € [n]. Either one of o(l) £ 1 is the image of some m
with |m —[| # 1, in which case we are done, or ¢ injects the pair [ — 1
and [ + 1 to the pair o(l) — 1 and o(l) + 1. In the latter case, we are
done unless |[o(l —2) —o(l—1)|=1and |[oc(I+2) —o(l+ 1) =1. We
may proceed with this line of reasoning until we either find 7 and j as
claimed or we find that o is an element of ®(Dsy,), contradicting our
assumption.

Suppose now that ®(3) € ®(Aut(SGpx)) \ Doy, and 4,5 are as in
the claim. Since |i — j| # 1 and n > 2k + 1, it is easy to check
that A; N A; # 0. However, |®(5)(i) — ®(3)(j)| = 1 implies that
Aoy N As@yy) = 0. Thus, there exists v € A; N A; such that
B(v) € Aoz N Asg)j) = 0, a contradiction, and we are done.

Next consider the case n = 2k+2, k > 3. There is a unique complete
bipartite subgraph K141 contained in SGogyop. Let Fy and F,
denote the partition of the vertex set for such a subgraph. Since our
ground set has size 2k + 2 and each F; has k+ 1 neighbors, the union of
the stable sets contained in each V; must be of size k 4+ 1. Further, F}
and F5 must be disjoint. Thus, without loss of generality, F; contains
the stable k-subsets of {1,3,5,...,2k+ 1} while F; contains the stable
k-subsets of {2,4,6,...,2k + 2}. As this is the only such possible
partition, Aut(SGagy2) must preserve this unique Ky 1.

Given X € ([2’“;2])Stab, we may pair each element ¢ € X with 7 +
1 ¢ X, under cyclic addition. By so doing, we exhaust 2k of the
elements of [2k + 2]. The remaining two elements in [2k + 2] are either
consecutive, yielding a unique ¢ € X such that i +4 € X, or they are
non-consecutive, yielding unique 7,7 € X such that ¢ + 3,7 +3 € X.
We may therefore uniquely identify each X of the first type by the
label X, ;113 and each X of the second type as Xy; ;; for the indices
i < j determined above. Note that |i — j| is odd, as there is one gap
of length 3 between 4 and 4 + 3 in the elements of X{; ;; and then pairs
{i+3,i+5}, {i + 5,7+ 7}, etc, of elements of X, ;; from i to j.

Let o{k + 1} be equal to k+ 1 if k+ 1 is odd and k if k£ + 1 is even.
The set V) := Fy U F; contains all the Xy;;,1y; the remaining Xy;
may be partitioned into classes V3, Vs, ..., Vo413 such that V; contains
all Xy, ;3 such that |i — j| = [, where the absolute value denotes the
minimum distance from ¢ to j cyclically.

We claim that for each 3 <1 < o{k+ 1} —2, each vertex Xy, j; in V
has exactly four neighbors in SGogyor: Xgic1j41} Xgit1,-1}s X{i=1,j-1}
and Xy j41). This is justified by noting that any neighbor Xy, ,,; of
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X1ijy must be a disjoint stable k-subset and in order for the conditions
m,n ¢ Xy and m+3,n+ 3 ¢ Xy; ;1 to simultaneously hold, it must
be that [m —i| = 1 = |n — j|. Further, X111y and X441y are
each contained in one of Vi and V;_,, while X1 ;13 and Xy 1)
are contained in V;. Thus, for each 3 <1 < o{k + 1} — 2, V] induces a
(2k + 2)-cycle as a subgraph of SGari2. Considering the case where
k+ 1 even, hence k = of{k + 1}, V}, induces a (2k + 2)-cycle where each
vertex Xy; ;3 has four neighbors, X1 1y, X{ip1j413, Xgi-1,j+13 and
X{it1,-1}, three of them in V} and one in V;_,. If &+ 1 is odd, then
Vie41 induces a (k+1)-cycle where each vertex Xy; ;3 has four neighbors,
Xiic1j-1) Xgir1,j+1) € Vegr and X g 511y, Xpir1,5-1) € Va1

Finally, each vertex in V; has a unique neighbor in V3 formed by the
edge {X{i’iH},X{i_LHQ}}, thus any automorphism of SGayiay pre-
serving the Kj1 x+1 induced by Vi must also preserve V3. Hence, there
is a homomorphism from Aut(SGayy2x) onto the automorphism group
of the (2k + 2)-cycle induced by V3, i.e. the dihedral group of order
2(2k + 2). We will complete our proof by showing that this homomor-
phism is injective.

Suppose p € Aut(SGapyok) fixes Vs; we will show that it fixes every
vertex of SGagt2,. Any automorphism that fixes Vi pointwise must
also fix all the elements of V; since each element of V; has a unique
neighbor in V3. Having assumed that p fixes V5 and having observed
that for 3 <[ < ofk + 1} — 2 each vertex in V} has unique neighbors
in V;_5 and V49, we may inductively proceed and derive that p must
fix all the vertices in V} for 1 <1 < ofk + 1} — 2. The only vertices
remaining to check are those in V, 41y, which we handle in two cases.

For k + 1 even, we saw earlier that each vertex Xy;;1 1y € Vi has
exactly one neighbor X111} € Vi—z. Thus, V;, must also be fixed
pointwise by p. In the case k+1 odd, i.e. o{k+1} = k+1, Vi, induces
a (k + 1)-cycle, each of whose vertices are connected to a unique pair
of vertices in V;_;. As the vertices in Vj,_; are fixed, we see V1 must
also be fixed. Hence, p is trivial and our homomorphism is injective as
desired.
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