Taylor's Theorem

Taylor polynomials

 Suppose the nth derivative of   y = f(x)   is defined at x = a  .  Then  the nth Taylor polynomial     for f at   x = a   is defined as follows:

>    p[n](x) =  sum((D@@i)(f)(a)/i!*(x-a)^i,i=0..n);

p[n](x) = sum(`@@`(D,i)(f)(a)/i!*(x-a)^i,i = 0 .. n)

The Taylor remainder   function  is defined  as   R[n](x) = abs(f(x)-p[n](x))

There is a word, taylor , in the Maple vocabulary already which compute Taylor polynomials. Suppose we want the 11 th Taylor polynomial of  the sin function at x = 0.

>    p11 := taylor(sin(x),x=0,12);

p11 := series(1*x-1/6*x^3+1/120*x^5-1/5040*x^7+1/362880*x^9-1/39916800*x^11+O(x^12),x,12)

p11 is not actually a polynomial because of the term at the end which is used to signal which polynomial is represented (in case some of the coefficients are 0). We can convert to a polynomial.

>    p11 := convert(p11,polynom);

p11 := x-1/6*x^3+1/120*x^5-1/5040*x^7+1/362880*x^9-1/39916800*x^11

The Taylor polynomials are usually good approximations to the function near a.  Let's plot the first few polynomials for the sin function at x =0.  

>    sinplot := plot(sin,-Pi..2*Pi,thickness=2):

>    tays:= plots[display](sinplot):
for i from 1 by 2 to 11 do
tpl := convert(taylor(sin(x), x=0,i),polynom):
tays := tays,plots[display]([sinplot,plot(tpl,x=-Pi..2*Pi,y=-2..2,
color=black,title=convert(tpl,string))]) od:

>    plots[display]([tays],view=[-Pi..2*Pi,-2..2]);

[Maple Plot]

Just how close the polynomials are to the function is determined using Taylor's theorem below.

Taylor remainder theorem

Theorem: (Taylor's remainder theorem)  If the (n+1)st derivative of f is defined and bounded in absolute value by a number M in the interval from a to x,  then R[n](x) <= M/(n+1)!*abs(x-a)^(n+1)    

This theorem is essential when you are using Taylor polynomials to approximate functions, because it gives a way of deciding which polynomial to use.  Here's an example.

Problem  Find the 2nd Taylor polynomial p[2] of f(x) = ln(x)*sin(exp(x))+1  at x = 1 .  Plot both the polynomial and f on the interval [.5,1.5].  Determine the maximum error in using p[2] to approximate ln(x) in this interval.

Solution:

>    f := x -> ln(x)*sin(exp(x))+1;

f := proc (x) options operator, arrow; ln(x)*sin(exp(x))+1 end proc

>    fplot := plot(f,.5..1.5,thickness = 2):

>    p[2]  := x -> sum((D@@i)(f)(1.)/i!*(x-1.)^i,i=0..2);

p[2] := proc (x) options operator, arrow; sum(`@@`(D,i)(f)(1.)/i!*(x-1.)^i,i = 0 .. 2) end proc

>    p[2](x);

 

.5892187091+.4107812909*x-2.683740378*(x-1.)^2

>    t2 := unapply( convert(taylor(f(x),x=1,3),polynom),x);

t2 := proc (x) options operator, arrow; 1+sin(exp(1))*(x-1)+(cos(exp(1))*exp(1)-1/2*sin(exp(1)))*(x-1)^2 end proc

>    tplot := plot(t2,1..1.5,color=black):

>    plots[display]([fplot,tplot]);

[Maple Plot]

In order to use Taylor's remainder theorem, we need to find a bound M on the 3rd derivative of the function f.   In this case, we could just plot the third derivative and   eyeball      an appropriate value for M.

>     plot((D@@3)(f),.5..1.5) ;

[Maple Plot]

We could use M = 75.

>    M := 75;

M := 75

So the remainder R2 = abs(f(x)-p2(x))  is bounded by

>    M/3!*(1.5-1)^3;

1.562500001

>   

We can see from the plot of f and the polynomial that the actual error is never more than about .1 on the interval [.5,1.5].

Another example :

Which Taylor polynomial would you use to approximate the sin function on the interval from -Pi to Pi to within 1/10^6?

  Solution:  

Well, 1 is a bound on any derivative of the sin on any interval. So we need to solve the inequality  

>    ineq := 1/n!*Pi^n <= 1/10^6;

ineq := 1/n!*Pi^n <= 1/1000000

for n.  Solve will not be much help here because of the factorial, but we can find the smallest n by running through a loop.

>    n := 1: while evalf(1/n!*Pi^n) > 1/10^6   do n := n+1 od: print (`take n to be `,n);

`take n to be `, 17

>    (seq(evalf( 1/n!*Pi^n) ,n=15..20));

.2191535349e-4, .4303069596e-5, .7952054018e-6, .1387895250e-6, .2294842906e-7, .3604730807e-8

>    restart;

>    t17 := convert(taylor(sin(x),x=0,18),polynom);

t17 := x-1/6*x^3+1/120*x^5-1/5040*x^7+1/362880*x^9-1/39916800*x^11+1/6227020800*x^13-1/1307674368000*x^15+1/355687428096000*x^17
t17 := x-1/6*x^3+1/120*x^5-1/5040*x^7+1/362880*x^9-1/39916800*x^11+1/6227020800*x^13-1/1307674368000*x^15+1/355687428096000*x^17

>    plot(t17,x=-Pi..Pi);

[Maple Plot]

Looks pretty much like the sin function.

  Problems

Exercise:  Show that   cos(x)  is approximated to within 7 decimals by 1-x^2/2!+x^4/4!-x^6/6!+x^8/8!   for all x in [-Pi/4, Pi/4]  .

Exercise:  Use taylor and convert(..,polynom)     to compute and plot, on the interval specified, the first few taylor polynomials of the following functions.  Observe the convergence of the polynomials to the function and make comments.

  f(x) = ln(x)  at x=1, on the interval [-1,3].

f(x) = 1/(1-x)  at x =0 on the interval [-2,2]

f(x) = arctan(x)  at x = 0 on the interval  [-2..2]

Exercise: Write a procedure to compute sin(x) for any x by using p[5]. restricted to the interval [0,Pi/4].  

Outline of solution :   If x is negative, replace x with -x  and use the oddness sin(x) = -sin(-x)   property.  If x is greater than or equal to 2*Pi, then replace x with x-2*Pi and use the periodicity    sin(x) = sin(x-2*Pi)  .  Repeat this step until [0, 2*Pi ).  If   Pi/4 < x < Pi/2 , then use the trig indentity sin(x) = 1-sin(Pi/2-x)

and approximate sin(Pi/2-x)  by p[5](Pi/2-x) .  If   Pi/2 < x  and x < Pi , then sin(x) = sin(Pi-x) .  If Pi < x  and   x < 2*Pi , then sin(x) = -sin(x-Pi) .

>   

>   

Exercise: Find the smallest n such that the nth Taylor polynomial p[n](x) for y = exp(x) at x = 0   approximates exp(x) to within 10^(-12) for x in [0,1].  (You will want to set   Digits    equal to 15 in order to do this one.

>   

or so to do this problem.)

>   

>