
Bucket handles and Solenoids

Notes by Carl Eberhart, March 2004

1. Introduction

A continuum is a nonempty, compact, connected metric space. A nonempty compact
connected subspace of a continuum X is called a subcontinuum of X.
A useful theorem about subcontinua, which every first year topology student should prove
is:

1.1. Theorem. The intersection of a tower of subcontinua of X is a subcontinuum of X.

A continuum is indecomposable if it cannot be written as the union of two proper
subcontinua.
The composant of a point x in a continuum X is the union of all proper subcontinua of X
which contain x. Here is a nice theorem.

1.2. Theorem. The composants of a continuum are dense. The composants of an
indecomposable continuum are pairwise disjoint.

A classical example by contstructed by B. Knaster in the early 1920’s is still of interest.

1.1. The Bucket handle continuum. Let B0 be the set of all closed semicircles in the
upper half plane centered on c0 = .5 whose diameters have enpoints in the Cantor middle
third set. Let (B0) denote the reflection of B0 about the x-axis. For 1 ≤ n, let

Bn = cn − c0 + B0

3n , where cn = 2.5
3n . Then K2 = B0 ∪B1 ∪ B2 ∪ · · · is an indecomposable

continuum. The union of the semicircles whose endpoints are endpoints of the Cantor set is
called the visible composant.
In the figure below, a portion of the visible composant is shown. It is a union of a tower of
arcs all with (0,0) as one endpoint. (An arc is a continuum which is homeomorphic with
the unit interval I = [0,1].)
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It is possible to see the bucket handle as an intersection of a tower of 2-cells, each one
obtained from the preceeding one by digging a canal out of it.
Why is K2 indecomposable? Well, if you can convince yourself that K2 (1) has only arcs
for proper subcontinua, and (2) has no arcs with interior (in K2 ), then it is pretty easy to
argue that K2 is indecomposable, for otherwise it would be the union of two arcs A and B
and A - B would be a nonempty subset of the interior of K2.
On the other hand there is another way to construct indecomposable continua which makes
it possible to prove indecomposability rather easily.

2. The inverse limit construction

The inverse limit X∞ = lim
←−

(Xi, fi) of a sequence (Xi)
∞

1
of continua and surjective maps

fi : Xi+1 → Xi is defined as the intersection of the subsets
Qn = {(xi)

∞

1
|such that xi = fi(xi+1) for all i = 1, · · · , n} of the product Π∞

i=1Xi. The
spaces Xi are called the factor spaces of X∞; the maps fi are called the bonding maps

of the inverse limit. For each positive integer i, the map πi : X∞ → Xi given by
πi((xi)

∞

1
) = xi is called the ith projection map. It is continuous since it is the restriction

of the projection ρi : Π∞

n=1Xn → Xi to X∞.

2.1. Theorem. The inverse limit X∞ of continua is a continuum. Further if A is a
subcontinuum of X∞ then A = lim

←−
(Ai, gi), where Ai = πi(A) and gi = fi|Ai+1

.

Proof. X∞ =
⋂

∞

n=1
Qn is a continuum by 1.1, since for each n, Qn is homeomorphic with

Π∞

i=n. Further, (ai)
∞

1
∈ A if and only for each i, ai ∈ Ai and

gi+1(ai+1) = fi+1(ai+1) = ai. �

One easy way to decide if two inverse limits are homeomorphic is described in the next
theorem.

2.2. Theorem. Two inverse limits X∞ = lim
←−

(Xi, fi) and Y∞ = lim
←−

(Yi, gi) are
homeomorphic if there is a sequence of homeomorphisms hi : Xi → Yi such that
hifi(x) = gihi+1(x) for each i and all x ∈ Xi+1.

Proof. Define a function h∗ : X∞ → Y∞ by h∗((xi)
∞

i=1
) = (hi(xi))

∞

i=1
for each positive

integer i. h∗ is into Y∞ because gihi+1(xi+1) = hifi(xi+1) = hi(xi), for each i. h∗ is
continuous since πih

∗ = hiπi is continuous for each i. Call h∗ the map induced by the

commutative diagram.

X1

f1

←−−− X2

f2

←−−− · · ·Xi
fi

←−−− · · ·X∞

h1





y

h2





y

hi





y
h∗





y

Y1

g1

←−−− Y2

g2

←−−− · · ·Yi
gi

←−−− · · ·Y∞

In the same way, using the inverse homeomorphisms h−1

i : Yi → Xi, we can define an
induced map from Y∞ to X∞ and show that it is the inverse of h∗. Thus a map induced by
homeomorphisms is a homeomorphis. �
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Here is the theorem describing the indecomposability of a continuum constructed as an
inverse limit.
A map f : X → Y is called indecomposable provided whenever X = A ∪ B, then
f(A) = Y or f(B) = Y . So a continuum is indecomposable if its identity map is
indecomposable.

2.3. Theorem. X∞ is indecomposable provided each of its bonding maps is indecomposable.

Proof. Suppose X∞ is the union of two proper subcontinua A and B. Then there is an n1

so that πn1
(A) 6= Xn1

, otherwise by 2.1, X∞ = A. Note also that for all n ≥ n1,
πn(A) 6= Xn. In the same way, there is an n2 so that πn2

(B) 6= Xn2
. So if we let n be the

maximum of n1 and n2, then πn(A) and πn(B) are proper subcontinua of Xn. However,
πn+1(X∞) = Xn+1 = πn+1(A) ∪ πn+1(B), fn(πn+1(A)) = πn(A), and fn(πn+1(B)) = πn(B),
a contradiction to the assumed property of the bonding maps fi. �

Another classical indecomposable continuum, studied somewhat later [2] than the bucket
handle is the dyadic solenoid S2 = lim

←−
(Xi, fi), where each factor space Xi is the unit

circle S1 and each bonding map fi is the squaring map z2.

2.4. Corollary. S2 is indecomposable.

Proof. The squaring map is indecomposable, so the theorem follows from 2.3. �

Note that any inverse limit of circles where the bonding maps are power maps zi, i ≥ 2 is
indecomposable by the same argument. Such continua are referred to as solenoids.
Solenoids are the only indecomposable continua which admit a group mulitiplication[2].
Another class of indecomposable continua are the Knaster continua, which are defined as
the continua obtained as inverse limits by using the unit interval I as the factor space and
standard maps wn, n > 1, defined by

wn(x) =

{

nx− i if i is even and 0 ≤ i
n ≤ x ≤ i + 1

n ≤ 1,

i + 1− nx if i is odd and 0 < i
n ≤ x ≤ i + 1

n ≤ 1

Clearly, the map wn : I → I is indecomposable when n > 1, and so one has the corollary.

2.5. Corollary. Any Knaster continuum is indecomposable.

2.6. Exercise. Show that the dyadic solenoid has the property that each proper
subcontinuum is an arc, and has a basis of neighborhoods consisting of sets homeomorphic
with the Cantor set crossed with an arc.

3. An embedding theorem

A homeomorphism of a space X onto a subspace of a space Y is called an embedding of
X into Y .

3.1. Theorem. (A version of the Anderson-Choquet embedding theorem) Suppose the
factor spaces Xi of X∞ are all embedded in a common continuum X (with metric d, say)
and the bonding maps fi satisfy the conditions: (1) There is a positive number K so that
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for each i and each x ∈ Xi+1, d(x, fi(x)) < K
2i , and (2) for each factor space Xi and each

positive δ, there is a positive δ′ so that if k > i and p, q ∈ Xk with d(fik(p), fik(q)) > δ then
d(p, q) > δ′. Then for each x = (xi)

∞

i ∈ X∞, the sequnce of coordinates xi converges to a
unique point h(x) ∈ X∞ and the function h : X∞ → X is an embedding.

Proof. Condition (1) suffices to guarantee that the sequence of coordinates of a point in
X∞ is Cauchy, and so converges. So the function h is well defined.

To see that h is continuous, let ε > 0 be given. Choose N so large that
∑

∞

i=N
K
2i < ε/4 and

and hence by (1) d(xN , h(x)) ≤ d(xN , xN+1) + d(xN+1, h(x)) ≤ K/2N + d(xN+1, h(x)) < ε/4
for all x ∈ X∞. Hence if x ∈ X∞ and U is an open set in XN about xN of diameter less
than ε/4. Then π−1

N (U) is a basic open set in X∞. Further, if y = (yi)
∞

i ∈ π−1

N (U), then
yN ∈ U , and so d(h(x), h(y) ≤ d(h(x), xN ) + d(xN , yN) + d(yN , h(y)) < ε. This shows h is
continuous.
To see that h is 1-1, suppose x 6= y where x and y are in X∞. Since x 6= y, there is an i0 so

that xi0 6= yi0. Let δ = d(xi0 , yi0)/2, and use (2) to get a δ\prime > 0 so that for k > i0 and
p, q ∈ Xk, if d(fi0k(p), fi0k(q)) > δ, then d(p, q) > δ′ . Hence for k > i0, d(xk, yk) > δ′, and
so d(h(x), h(y)) ≥ δ′. This shows h is an embedding. �

3.2. Theorem. K2 is homeomorphic with an inverse limit of arcs with indecomposable
bonding maps.

Proof. To apply 3.1 to K2, for each positive integer i, let ai = ( 1
3i

5
6 ,− 1

3i
1
6), the bottom of

the (i + 1)st set of semicircles Bi counting from the right, and let Ai be the subarc of the
visible composant with endpoints a0 and ai. These arcs are the factor spaces. The bonding
map ri : Ai+1 → Ai is the retraction which projects a point on the first quarter circle
starting at ai+1 horizontally to the right onto the matching point on the end quartercircle
of Ai, and otherwise projects a point radially onto the nearest point of Ai, except near ai+1.
There the last quarter circle of Ai+1 is mapped homemorphically onto the circular arc from
a0 to (.5 + cos((1− 2(1/2)i)π), .5 + sin((1− 2(1/2)i)π)), and the circular arc from
(1− (1/2)i)π to π on the last semicircle of Ai+1 is mapped homeomorphically onto the
circular arc from (.5 + cos((1− 2(1/2)i)π), .5 + sin((1− 2(1/2)i)π)) to
(.5 + cos((1− (1/2)i)π), .5 + \sin((1− (1/2)i)π)). It is easy to see that ri is
indecomposable. Note that d(x, r1(x)) < 1/3, d(x, r2(x)) < 1/32, and in general
d(x, ri(x)) < 1/3i, so condition (1) of 2.3 is satisfied with K = 1. So the function

h : X∞ → K2 is well-defined and continuous. Since K2 =
⋃

∞

i=1
Ai, the continuity of h

guarantees that h is onto. We verify that h is 1-1 directly. Suppose h(x) = h(y). Then for
some n, xn and yn lie in the same circular arc of An. Then from then on the coordinates
xn+i and yn+i lie along the outer third of the radii drawn from the center of that circular
arc. But since h(x) = h(y), for some m > n, xi and yi lie in the same radius for all i > m.
But then xi = ri(xi+1) = ri(yi+1) = yi for all i > m. So x = y, and h is 1-1. �

So we have realized K2 as the inverse limit lim
←−

(Ai, ri) of arcs with indecomposable bonding
maps. Now we want to prove the

3.3. Theorem. K2 is homeomorphic with the Knaster continuum lim
←−

(I, w2).
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Proof. Let g1 be any homeomorphism from A1 to I such that g1(a0) = 0 and g1(a1) = 1.
Then define g2 : A2 → I by

g2(x) =







g1(x)
2 if x ∈ A1

1−
g1(r1(x))

2 if x ∈ A2 − A1

The function g2 is a homeomorphism such that g1r1 = w2g2. Using the same method, we
successively define homeomorphisms gi : Ai → I so that gi−1ri−1 = w2gi. This sequence
induces a homeomorphism g∗ : lim

←−
(Ai, ri)→ lim

←−
(I, w2).

A1

r1←−−− A2

r2←−−− · · ·Ai
ri←−−− · · · lim

←−
(Ai, ri)

g1





y

g2





y

gi





y

g∗





y

I
w2←−−− I

w2←−−− · · · I
w2←−−− · · · lim

←−
(I, w2)

�

4. Where is (xi)
∞

i=1?

It is an interesting exercise to ask where a given point in lim
←−

(I, w2) goes under the

homeomorphism h(h∗)−1 : lim
←−

(I, w2)→ K2 constructed previously.
For example, it is easy to see what point goes to a0 = (0, 0): the point (0, 0, · · · ).
Where does the point x = (1, 1/2, 1/4, · · · )go? First find its image y = (h∗)−1(x) in
lim
←−

(Ai, ri), then push that on to h(y) in K2. By the way h∗ was constructed, we can
compute that y = (a1, a1, a1, · · · ). Then h(y) = a1.
Every inverse limit with one factor space and one bonding map has a shift

homeomorphism, s, defined by s((x1, x2, x3, · · · )) = (x2, x3, · · · ). So the bucket handle
K2 has a ’shift homeomorphism’, s = h(h∗)−1sh∗h−1 : K2 → K2. Where does the shift
homeomorphism take the point a0? It is pretty easy to see that this point is fixed under
the shift. What about s(a1)? First push a1 to (1, 1/2, 1/4, · · · ), then shift it to
(1/2, 1/4, · · · ), then pull it back to (h−1

1 (1/2), h−1

1 (1/2), h 1−1(1/2), · · · ) in lim
←−

(Ai, ri) then

push to h−1

1 (1/2) under h. Note that the shift homeomorphism on K2 depends on the
homemorphism h1 of I to A1. However, the fixed point a0 of s does not depend on h1.

4.1. Exercise: There is another fixed point of the shift s defined above. Where does it
come from in lim

←−
(I, w2) and where is it at in K2? Does its location in K2 depend on h1?

5. Mapping the dyadic solenoid lightly onto the bucket handle

David Bellamy [1] was the first to see this, I think.
First you have to think of the group S1 as the quotient space I/{0 = 1} of I with the
operation of addition mod 1. In this setting, the squaring map on S1 becomes the doubling

mod 1 map on I. dbl(t) =

{

2t if 0 ≤ t ≤ 1/2

2t− 1 if 1/2 ≤ t ≤ 1
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Note that this is continuous on I/{0 = 1}, and commutes with w2. Hence, there is an
induced map w∗

2 of the solenoid onto the bucket handle.

I/{0 = 1}
dbl
←−−− I/{0 = 1}

dbl
←−−− · · ·S2

w2





y

w2





y
· · ·w∗

2





y

I
w2←−−− I

w2←−−− · · · lim
←−

(I, w2)

5.1. Exercise. Use the diagram above to show that S2/{x = −x} = K2.

6. The hyperspaces of subcontinua of K2 and S2

If X is any continuum with metric d say, and A and B are subcontinua of X, the
Hausdorff distance between A and B, Hd(A, B) is defined by

Hd(A, B) = inf{\epsilon|each point of either set is within ε of some point of the other.}

The set of all subcontinua of X is denoted by C(X).

6.1. Theorem. Hd is a metric on C(X), and C(X) topologized by this metric is a
continuum.

C(X), topologized with the Hausdorff metric, is called the hyperspace of subcontinua

of X

6.2. Theorem. C(S2) is homeomorphic with the cone over S2. C(K2) is homeomorphic
with the cone over K2.

References

[1] David Bellamy, A tree-like continuum without the fixed point property, Houston Math. J. 6 (1979),
1-13.

[2] Anthonie van Heemert, Topologische Gruppen und unzerlegbar Kontinua, Compositio Math. 5 (1937),
319-326.

[3] Sam B. Nadler, Jr. Continuum Theory. Marcel Dekker, 1992.
[4] K. Kuratowski, Topology, vol. 1, Amsterdam, 1968.


