Problems from polys

- We know by the remainder theorem that x³ 2x² 4x + 7 = q(x)(x 3) + r(x) for some polynomials q(x) (the quotient) and r(x) (the remainder), where r(x) = 0 or the degree of r(x) is less than the degree of x-3. Find the quotient and remainder. The quotient, q(x) = Circle correct answer:
 x² + x 1 x² + 2x 1 -x² + x 1 'none of the others' The remainder, r(x) = Circle correct answer:
 4 4 + x 2 'none of the above'
- 2. We know by the remainder theorem that x³ + 6x² + 4x 1 = q(x)(x + 5) + r(x) for some polynomials q(x) (the quotient) and r(x) (the remainder), where r(x) = 0 or the degree of r(x) is less than the degree of x+5. Find the quotient and remainder. The quotient, q(x) = Circle correct answer:
 x² + x 1 x² + 2x 1 -x² + x 1 'none of the others' The remainder, r(x) = Circle correct answer:
 - 4 4+x 2 'none of the above'
- 3. We know by the remainder theorem that x³ 3x² 5x + 9 = q(x)(x 4) + r(x) for some polynomials q(x) (the quotient) and r(x) (the remainder), where r(x) = 0 or the degree of r(x) is less than the degree of x-4. Find the quotient and remainder. The quotient, q(x) = Circle correct answer:
 x² + x 1 x² + 2x 1 -x² + x 1 'none of the others' The remainder, r(x) = Circle correct answer:
 - $5 \quad x+5 \quad 3$ 'none of the above'
- 4. We know by the remainder theorem that $6x^3 7x^2 5x + 7 = q(x)(2x 3) + r(x)$ for some polynomials q(x) (the quotient) and r(x) (the remainder), where r(x) = 0 or the degree of r(x) is less than the degree of 2^*x-3 . Find the quotient and remainder. The quotient, q(x) = 0

Circle correct answer: $3x^2 + x - 1$ $3x^2 + 2x - 1$ $x^2 + x - 1$ 'none of the others' The remainder, r(x) =Circle correct answer: 4 4 + x 2 'none of the above'

- 5. We know by the remainder theorem that $x^3 10x + 7 = q(x)(x-3) + r(x)$ for some polynomials q(x) (the quotient) and r(x) (the remainder), where r(x) = 0 or the degree of r(x) is less than the degree of x-3. Find the quotient and remainder. The quotient, q(x) =Circle correct answer: $x^2 + 3x - 1$ $x^2 + 4x - 1$ $-x^2 + 3x - 1$ 'none of the others' The remainder, r(x) =Circle correct answer: 4 + x + 2 'none of the above'
- 6. According to the remainder theorem, the remainder of the division $\frac{x^3+3x-2}{x-3}$ is _____
- 7. According to the remainder theorem, the remainder of the division $\frac{x^4+3x^2-2}{x-3}$ is _____
- 8. According to the remainder theorem, the remainder of the division $\frac{2x^3+3x^2-2}{x-3}$ is _____
- 9. According to the remainder theorem, the remainder of the division $\frac{x^3-3x^2-2}{x-3}$ is _____
- 10. According to the remainder theorem, the remainder of the division $\frac{x^3+3x+2}{x-3}$ is ______
- 11. The product $(2x+3)(x^2+x-1)$, when multiplied out, and like terms collected, has a term of degree 2, Ax^2 . A = ______
- 12. The product $(2x-3)(x^3+x-1)$, when multiplied out, and like terms collected, has a term of degree 1, Ax . A = _____

- 13. The product $(2x+3)(x^4-x+2)$, when multiplied out, and like terms collected, has a term of degree 1, Ax . A = ______
- 14. The product $(4x+3)(x^2+x-1)$, when multiplied out, and like terms collected, has a term of degree 3, Ax^3 . A = ______
- 15. The product $(2x^2 + 3x + 1)(3x^2 x 1)$, when multiplied out, and like terms collected, has a term of degree 2, Ax^2 . A = ______
- 16. The degree of the sum $(2x+3) + (x^2+x-1)$ is

Circle correct answer: $2 \quad 0 \quad 1 \quad 3 \quad 4$ 'none of the others'

17. The degree of the sum $(2x-3) + (x^3+x-1)$ is

Circle correct answer: $3 \quad 0 \quad 1 \quad 2 \quad 4$ 'none of the others'

18. The degree of the sum $(2x+3) + (x^2-x+2)$ is

Circle correct answer: $2 \quad 0 \quad 1 \quad 3 \quad 4$ 'none of the others'

19. The degree of the sum $(4x+3) + (x^2+x-1)$ is

Circle correct answer: $2 \quad 0 \quad 1 \quad 3 \quad 4$ 'none of the others'

20. The degree of the sum $(2x+3x^3) + (3x^2-x-1)$ is

Circle correct answer: $3 \quad 0 \quad 1 \quad 2 \quad 4$ 'none of the others' The degree of the sum $(-(x+1)^2) + (x^2+2x+1)$ is 21.Circle correct answer: 'not defined' $0 \ 1 \ 2 \ 3 \ 4$ The degree of the sum $(-x+1-x^3) + (x^3+x-1)$ is 22.Circle correct answer: 'not defined' 0 1 2 3 4The degree of the sum $(-2 + x - x^2) + (x^2 - x + 2)$ is 23.Circle correct answer: 'not defined' 0 1 2 3 4The degree of the sum $(4x+3) + (x^2+x-1)$ is 24.Circle correct answer: $2 \quad 0 \quad 1 \quad 3 \quad 4$ 'not defined' The degree of the sum $(x+1-3x^2) + (3x^2-x-1)$ is 25.Circle correct answer: 'not defined' 0 1 2 3 4The degree of the product $(2x+3)(x^2+x-1)$ is 26.Circle correct answer: $3 \quad 0 \quad 1 \quad 2 \quad 4$ 'none of the others'

The degree of the product $(2x-3)(x^3+x-1)$ is

27.

4

Circle correct answer: $4 \quad 0 \quad 1 \quad 2 \quad 3$ 'none of the others'

28. The degree of the product $(2x+3)(x^2-x+2)$ is

Circle correct answer: $3 \quad 0 \quad 1 \quad 2 \quad 4$ 'none of the others'

29. The degree of the product $(4x+3)(x^2+x-1)$ is

Circle correct answer: $3 \quad 0 \quad 1 \quad 2 \quad 4$ 'none of the others'

30. The degree of the product $(2x+3x^3)(3x^2-x-1)$ is

Circle correct answer: 'none of the others' 0 1 2 3 4

- 31. Suppose that q(x) and r(x) are polynomials such that $\frac{-12+x^3+3x^2+x}{x^2-4} = q(x) + \frac{r(x)}{x^2-4}$ and r(x) = 0 or degree(r(x)) is less than 2. What is q(x)? q(x) =_____ What is r(x)? r(x) =_____
- 32. Suppose that q(x) and r(x) are polynomials such that $\frac{-1+x^5+x^4-x}{x^2-1} = q(x) + \frac{r(x)}{x^2-1}$ and r(x) = 0 or degree(r(x)) is less than 2. What is q(x)? q(x) =_____ What is r(x)? r(x) =_____
- 33. Suppose that q(x) and r(x) are polynomials such that $\frac{1-x^5+x^4-2x^3+2x^2-x}{x^2+1} = q(x) + \frac{r(x)}{x^2+1}$ and r(x) = 0 or degree(r(x)) is less than 2. What is q(x)? q(x) =______ What is r(x)? r(x) =______

34. Suppose that q(x) and r(x) are polynomials such that $\frac{-2+x^4-2x^2+x}{x^2-3} = q(x) + \frac{r(x)}{x^2-3}$ and r(x) = 0 or degree(r(x)) is less than 2. What is q(x)? q(x) =_____ What is r(x)? r(x) =_____

35. Suppose that q(x) and r(x) are polynomials such that $\frac{14+x^4+6x^2+x}{x^2+3} = q(x) + \frac{r(x)}{x^2+3}$ and r(x) = 0 or degree(r(x)) is less than 2. What is q(x)? q(x) =_____ What is r(x)? r(x) =_____

- 36. Consider the following equation, where q(x) and r(x) are polynomials with r(x) = 0 or $\operatorname{degree}(r(x))$; 1: $\frac{-7+x^2-x}{x-4} = q(x) + \frac{r(x)}{x-4}$ What is q(x)? q(x) =_____ What is r(x)? r(x) =_____
- 37. Consider the following equation, where q(x) and r(x) are polynomials with r(x) = 0 or degree(r(x)); 1: $\frac{-1+x^4}{x-1} = q(x) + \frac{r(x)}{x-1}$ What is q(x)? q(x) = _____ What is r(x)? r(x) = _____
- 38. Consider the following equation, where q(x) and r(x) are polynomials with r(x) = 0 or $\operatorname{degree}(r(x))$; 1: $\frac{1-x^4}{x+1} = q(x) + \frac{r(x)}{x+1}$ What is q(x)? q(x) =_____ What is r(x)? r(x) =_____
- 39. Consider the following equation, where q(x) and r(x) are polynomials with r(x) = 0 or degree(r(x)); 1: $\frac{1+x^3-3x^2+x}{x-3} = q(x) + \frac{r(x)}{x-3}$ What is q(x)? q(x) = ______ What is r(x)? r(x) = ______
- 40. Consider the following equation, where q(x) and r(x) are polynomials with r(x) = 0 or degree(r(x)); 1: $\frac{-7+x^3-4x^2+3x}{x-4} = q(x) + \frac{r(x)}{x-4}$ What is q(x)? q(x) = ______ What is r(x)? r(x) = ______
- 41. i) x a divides a polynomial p(x) if and only if p(a) = 0.
 Circle correct answer: True False
 ii) Given that 1 and 2 are roots of p(x) = x³ - 6x² + 11x - 6 find the other one. Remaining root = _______
- 42. i) x 2 divides a polynomial q(x) if and only if q(x-2) = 0.
 Circle correct answer: True False
 ii) Given that 1 and -2 are roots of p(x) = x³ - 2x² - 5x + 6 find the other one. Remaining root = _______
- 43. i) X A divides a polynomial p(X) if and only if p(A) = 0.
 Circle correct answer: True False
 ii) Given that 3 and 1 are roots of p(X) = X³ - 2X² - 5X + 6 find the other one. Remaining root =
- 44. i) If p(x) is polynomial, then a is a root of p(x) if and only if x a divides p(x)Circle correct answer:

True False

ii) Given that 4 and 2 are roots of $p(x) = x^3 - 7x^2 + 14x - 8$ find the other one. Remaining root = _____

- 45. i) If p(x) is polynomial, then a is a root of p(x) if and only if x a divides p(x)
 Circle correct answer:
 True False
 ii) Given that 5 and -2 are roots of p(x) = x³ 6x² x + 30 find the other one. Remaining root = ______
- 46. Find the product $(2x + 3) (x^2 + x 1)$ Circle correct answer: $2x^3 + 5x^2 + x - 3$ $2x^3 + 5x^2 - 3$ $2x^3 + 4x^2 + x - 3$ 'none of the others'
- 47. Find the product $(2x 3)(x^3 + x 1)$ Circle correct answer: $2x^4 + 2x^2 - 5x - 3x^3 + 3$ $2x^4 + 2x^2 - 6x - 3x^3 + 3$ $2x^4 + x^2 - 5x - 3x^3 + 3$ 'none of the o
- 48. Find the product $(2x+3)(x^2-x+2)$ Circle correct answer: $2x^3 + x^2 + x + 6$ $2x^3 + x^2 + 6$ $2x^3 + x + 6$ 'none of the others'
- 49. Find the product $(4x + 3) (x^2 + x 1)$ Circle correct answer: $4x^3 + 7x^2 - x - 3$ $4x^3 + 7x^2 - 2x - 3$ $4x^3 + 6x^2 - x - 3$ 'none of the others'
- 50. Find the product $(2x + 3) (3x^2 x 1)$ Circle correct answer: $6x^3 + 7x^2 - 5x - 3$ $6x^3 + 7x^2 - 6x - 3$ $6x^3 + 6x^2 - 5x - 3$ 'none of the others'
- 51. Given that a is a number such that $\frac{a}{x+1} + (x+3)^{-1} = \frac{3x+7}{(x+1)(x+3)}$ for all x such that both sides of the equation are defined, what is the value of a?
- 52. Given that a is a number such that $\frac{a}{2x-3} + (x-2)^{-1} = \frac{5x-9}{(2x-3)(x-2)}$ for all x such that both sides of the equation are defined, what is the value of a?

- 53. Given that a is a number such that $\frac{a}{2x+3} + (-x+1)^{-1} = \frac{3x-8}{(2x+3)(x-1)}$ for all x such that both sides of the equation are defined, what is the value of a?
- 54. Given that a is a number such that $\frac{a}{4x+3} + (3x-1)^{-1} = \frac{16x-1}{(4x+3)(3x-1)}$ for all x such that both sides of the equation are defined, what is the value of a?
- 55. Given that a is a number such that $\frac{a}{2x+3} + (x-1)^{-1} = \frac{8x-3}{(2x+3)(x-1)}$ for all x such that both sides of the equation are defined, what is the value of a?

56. Given that a and b are numbers such that $\frac{a}{x+1} + \frac{b}{x+3} = \frac{5x+9}{(x+1)(x+3)}$ for all x such that both sides of the equation are defined, what are the values of a and b? a =______, b =______

- 57. Given that a and b are numbers such that $\frac{a}{2x-3} + \frac{b}{x-2} = \frac{7x-12}{(2x-3)(x-2)}$ for all x such that both sides of the equation are defined, what are the values of a and b? a =______, b =______
- 58. Given that c and a are numbers such that $\frac{c}{2x+3} + \frac{a}{-x+1} = -5 \frac{x+4}{(2x+3)(x-1)}$ for all x such that both sides of the equation are defined, what are the values of c and a? c = _______, a = ______
- 59. Given that r and d are numbers such that $\frac{r}{4x+3} + \frac{d}{3x-1} = \frac{40x+17}{(4x+3)(3x-1)}$ for all x such that both sides of the equation are defined, what are the values of r and d? r = ______, d = ______
- 60. Given that k and p are numbers such that $\frac{k}{2x+3} + \frac{p}{x-1} = \frac{8x-3}{(2x+3)(x-1)}$ for all x such that both sides of the equation are defined, what are the values of k and p?

k =______, p =______

- 61. Find the sum $(x + 1)^{-1} + (x + 3)^{-1}$ Circle correct answer: $2 \frac{x+2}{(x+1)(x+3)} \frac{2x+4+x^2}{(x+1)(x+3)} \frac{3x+4}{(x+1)(x+3)}$ 'none of the others'
- 62. Find the sum $(2x-3)^{-1} + (x-1)^{-1}$ Circle correct answer:

$$\frac{3x-4}{(2x-3)(x-1)} \quad \frac{3x-4+x^2}{(2x-3)(x-1)} \quad \frac{4x-4}{(2x-3)(x-1)} \quad \text{`none of the others'}$$

- 63. Find the sum $(2x+3)^{-1} + (-x+2)^{-1}$ Circle correct answer: $-\frac{x+5}{(2x+3)(x-2)} - \frac{-x-5+x^2}{(2x+3)(x-2)} - 5\frac{1}{(2x+3)(x-2)}$ 'none of the others'
- 64. Find the sum $(4x+3)^{-1} + (2x-1)^{-1}$ Circle correct answer: $2\frac{3x+1}{(4x+3)(2x-1)} \frac{6x+2+x^2}{(4x+3)(2x-1)} \frac{7x+2}{(4x+3)(2x-1)}$ 'none of the others'
- 65. Find the sum $(2x+3)^{-1} + (-x-1)^{-1}$ Circle correct answer: $-\frac{x+2}{(2x+3)(x+1)} \quad \frac{-x-2+x^2}{(2x+3)(x+1)} - 2\frac{1}{(2x+3)(x+1)}$ 'none of the others'

Answer Key for polys

1. \diamond $x^2 + x - 1 \diamond$ 4 2. $\diamond x^2 + x - 1 \diamond 4$ 3. $\diamond x^2 + x - 1 \diamond 5$ 4. \diamond $3x^2 + x - 1 \diamond$ 4 5. \diamond $x^2 + 3x - 1 \diamond$ 4 $6. \quad \diamond \quad 34$ $7. \quad \diamond \quad 106$ 8. \diamond 79 9. \diamond -2 10. \diamond 3811. \diamond 5 12. \diamond -5 13. \diamond 1 14. \diamond 4 15. \diamond -216. \diamond 2 $17. \diamond 3$ $18. \diamond 2$ $19. \quad \diamond \quad 2$ $20. \quad \diamond \quad 3$ 21. \diamond 'not defined' 22. \diamond 'not defined' 23. \diamond 'not defined' 24. \diamond 225. \diamond 'not defined' $26. \quad \diamond \quad 3$ $27. \diamond 4$

28. \diamond 3 $29. \quad \diamond \quad 3$ 30. \diamond 'none of the others' 31. $\diamond x + 3 \diamond 5x$ 32. \diamond 1 + x + x² + x³ \diamond 0 33. \diamond $1-x+x^2-x^3 \diamond$ 0 34. $\diamond x^2 + 1 \diamond x + 1$ $35. \quad \diamond \quad x^2 + 3 \quad \diamond \quad x + 5$ 36. $\diamond x + 3 \diamond 5$ $37. \quad \diamond \quad 1 + x + x^2 + x^3 \quad \diamond \quad 0$ $38. \quad \diamond \quad 1 - x + x^2 - x^3 \quad \diamond \quad 0$ $39. \quad \diamond \quad x^2 + 1 \quad \diamond \quad 4$ 40. \diamond $x^2 + 3 \diamond$ 5 41. \diamond True \diamond 3 42. \diamond True \diamond 3 43. \diamond True \diamond -244. \diamond True \diamond 1 45. \diamond True \diamond 3 46. $\diamond 2x^3 + 5x^2 + x - 3$ 47. $\diamond 2x^4 + 2x^2 - 5x - 3x^3 + 3$ 48. \diamond 2 $x^3 + x^2 + x + 6$ 49. $\diamond 4x^3 + 7x^2 - x - 3$ 50. $\diamond \quad 6x^3 + 7x^2 - 5x - 3$ 51. \diamond 2 52. \diamond 3 53. \diamond 5 54. ◇ 4 55. \diamond 6

56.	\diamond	2	\diamond	3
57.	\diamond	3	\diamond	2
58.	\diamond	5	\diamond	5
59.	\diamond	4	\diamond	7
60.	\diamond	6	\diamond	1
61.	\diamond	$2\frac{1}{(}$	$\frac{x}{x+1}$	+2 + 3)(x+3)
62.	\diamond	$\frac{3x-4}{(2x-3)(x-1)}$		
63.	\diamond	_	(2x+)	x+5 - 3)(x-2)
64.	\diamond	$2{(}$	$\frac{3}{4x+}$	$\frac{x+1}{3)(2x-1)}$
65.	\diamond	_	(2x+)	$\frac{x+2}{\cdot 3)(x+1)}$

Problems from polys

- 1. According to the remainder theorem, the remainder of the division $\frac{x^3-3x^2-2}{x-3}$ is _____
- 2. The product $(2x+3)(x^2+x-1)$, when multiplied out, and like terms collected, has a term of degree 2, Ax^2 . A = ______
- 3. The degree of the sum $(2x+3x^3) + (3x^2-x-1)$ is

Circle correct answer: $3 \quad 0 \quad 1 \quad 2 \quad 4$ 'none of the others'

4. The degree of the sum $(x+1-3x^2) + (3x^2-x-1)$ is

Circle correct answer: 'not defined' 0 1 2 3 4

5. The degree of the product $(2x+3)(x^2-x+2)$ is

Circle correct answer: $3 \quad 0 \quad 1 \quad 2 \quad 4$ 'none of the others'

- 6. Suppose that q(x) and r(x) are polynomials such that $\frac{-1+x^5+x^4-x}{x^2-1} = q(x) + \frac{r(x)}{x^2-1}$ and r(x) = 0 or degree(r(x)) is less than 2. What is q(x)? q(x) =_____ What is r(x)? r(x) =_____
- 7. Consider the following equation, where q(x) and r(x) are polynomials with r(x) = 0 or degree(r(x)) ; 1: $\frac{-7+x^3-4x^2+3x}{x-4} = q(x) + \frac{r(x)}{x-4}$ What is q(x)? q(x) = ______ What is r(x)? r(x) = ______
- 8. i) x 2 divides a polynomial q(x) if and only if q(x-2) = 0. Circle correct answer: True False
 ii) Given that 1 and -2 are roots of p(x) = x³ - 2x² - 5x + 6 find the other one. Remaining root = ______

- 9. Find the product $(2x + 3)(3x^2 x 1)$ Circle correct answer: $6x^3 + 7x^2 - 5x - 3$ $6x^3 + 7x^2 - 6x - 3$ $6x^3 + 6x^2 - 5x - 3$ 'none of the others'
- 10. Given that a is a number such that $\frac{a}{2x+3} + (x-1)^{-1} = \frac{8x-3}{(2x+3)(x-1)}$ for all x such that both sides of the equation are defined, what is the value of a?
- 11. Given that r and d are numbers such that $\frac{r}{4x+3} + \frac{d}{3x-1} = \frac{40x+17}{(4x+3)(3x-1)}$ for all x such that both sides of the equation are defined, what are the values of r and d? r = ______, d = ______
- 12. Find the sum $(2x+3)^{-1} + (-x+2)^{-1}$ Circle correct answer: $-\frac{x+5}{(2x+3)(x-2)} \quad \frac{-x-5+x^2}{(2x+3)(x-2)} \quad -5\frac{1}{(2x+3)(x-2)}$ 'none of the others'

Answer Key for polys

1. \diamond -2 2. \diamond 3. \diamond 4. \diamond 'not defined' 5. \diamond 6. \diamond 1 + x + x² + x³ \diamond 7. \diamond x² + 3 \diamond 8. \diamond True \diamond 9. \diamond 6x³ + 7x² - 5x - 3 10. \diamond 11. \diamond 4 \diamond 12. \diamond - $\frac{x+5}{(2x+3)(x-2)}$