# Ostobee Zorn Chapter 9 # # 9.1 #7 The hint is not needed. # > with(student); Warning, new definition for D [D, Diff, Doubleint, Int, Limit, Lineint, Product, Sum, Tripleint, changevar, combine, completesquare, distance, equate, extrema, integrand, intercept, intparts, isolate, leftbox, leftsum, makeproc, maximize, middlebox, middlesum, midpoint, minimize, powsubs, rightbox, rightsum, showtangent, simpson, slope, trapezoid, value] > F := Int(x*cos(x)^2,x); / | 2 F := | x cos(x) dx | / > F = intparts(F,x); / | 2 | x cos(x) dx = | / / | x (1/2 sin(x) cos(x) + 1/2 x) - | 1/2 sin(x) cos(x) + 1/2 x dx | / # Now we can integrate by inspection. > F = x*(1/2*sin(x)+1/2*x)-1/2*(1/2*sin(x)^2 + 1/2*x^2) + C; / | 2 2 2 | x cos(x) dx = x (1/2 sin(x) + 1/2 x) - 1/4 sin(x) - 1/4 x + C | / # checking, > int(x*cos(x)^2,x); 2 2 x (1/2 sin(x) cos(x) + 1/2 x) + 1/4 cos(x) - 1/4 x # explain the difference. # # #12 > F:=Int(x*ln(x),x ); / | F := | x ln(x) dx | / > intparts(F,ln(x)); / 2 | 1/2 ln(x) x - | 1/2 x dx | / # So, now we can write an antiderivative for xln(x) > F := x -> 1/2*ln(x)*x^2 - 1/4*x^2; 2 2 F := x -> 1/2 ln(x) x - 1/4 x # So the definite integral evaluated by the fundamental thm is > F(exp(1))-F(1); 2 1/4 exp(1) + 1/4 # Checking this directly. > Int(x*ln(x),x=1..exp(1))=int(x*ln(x),x=1..exp(1)); exp(1) / | | x ln(x) dx = 1/4 exp(2) + 1/4 | / 1 > # # 9.2 # # # 5 # > f := (x^2-1)/(x*(x^2+4)); 2 -1 + x f := ---------- 2 x (x + 4) > convert(f,parfrac,x); x - 1/4 1/x + 5/4 ------ 2 x + 4 # We can integrate each part by inspection. > F := -1/4*ln(x) + 5/4* 1/2*ln(x^2+4) +C; 2 F := - 1/4 ln(x) + 5/8 ln(x + 4) + C # Checking this > Int((x^2-1)/(x*(x^2+4)),x)=int((x^2-1)/(x*(x^2+4)),x); / 2 | -1 + x 2 | ---------- dx = - 1/4 ln(x) + 5/8 ln(x + 4) | 2 / x (x + 4) # #17 This is the one we did in class on Monday. > restart: with(student):f := x^2/((x^2+1) *(x+1)^2); 2 x f := ----------------- 2 2 (x + 1) (x + 1) # The form for the partial fraction decomposition of f is > g := (a*x+b)/(x^2+1) + c/(x+1) + d/(x+1)^2; a x + b c d g := ------- + ----- + -------- 2 x + 1 2 x + 1 (x + 1) > collect(simplify(g),x); 3 2 (a + c) x + (d + b + 2 a + c) x + (2 b + a + c) x + b + d + c --------------------------------------------------------------- 2 2 (x + 1) (x + 1) > solve({a+c=0,d+b+2*a+c=1,2*b+a+c=0,b+d+c=0},{a,b,c,d}); {d = 1/2, a = 1/2, c = -1/2, b = 0} > assign("); > g; x 1 1 1/2 ------ - 1/2 ----- + 1/2 -------- 2 x + 1 2 x + 1 (x + 1) > f := convert(f,parfrac,x); 1 1 x f := 1/2 -------- - 1/2 ----- + 1/2 ------ 2 x + 1 2 (x + 1) x + 1 # We can integrate the parts by inspection. > F := -1/2*1/(x+1)-1/2*ln(x+1) + 1/4*ln(x^2+1)+C; 1 2 F := - 1/2 ----- - 1/2 ln(x + 1) + 1/4 ln(x + 1) + C x + 1 # Checking with Maple, > int(f,x); 1 2 - 1/2 ----- - 1/2 ln(x + 1) + 1/4 ln(x + 1) x + 1 > f := x->x*exp(-x); f := x -> x exp(-x) > int(f(x),x=0..infinity); 1 > plot(f,0..7); > fsolve(int(f(x),x=0..z)=1/2,z); 1.678346990 >