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1. Lattice orderings

A quasi-ordering of a set X is a relation � on X which is transitive and re
exive.
If in addition � is antisymmetric then � is a partial order on X. A partial order
� of a set X is called a lattice order of X if each pair (x; y) of elements of X has a
least upper bound x _ y and greatest lower bound x ^ y in X. A lattice ordering is
distributive if the operations _ and ^ distribute over each other, and is complete

if each nonempty bounded subset has a greatest lower bound and least upper bound.
For more information and terminology on lattices, consult with any text on lattices,
for example [1].
Now, take any set S of subcontinua of the Hibert Cube and any setM of mappings

between members of S such that M is closed under composition and contains all
homeomorphisms between member of S. Then it is easy to see that the relation �
on S
de�ned by

X � Y () there is a map f : X ! Y with f in M

is a quasi-order of S.
Further, let � be the equivalence relation on S de�ned by

X � Y () X � Y and Y � X:

Then we see that the quotient set S= � is partially ordered by the relation [X] �
[Y ] () X � Y , where [X] denotes the �-equivalence class of X. The requirement
that M contain all homeomorphisms between members of S guarantees that the �-
equivalence classes are unions of homeomorphism classes, and so the relation X � Y
is topologically invariant. We will call this partial order the M partial-order of

S= �.
Usually, this partial order of S= � is not a lattice order, and we are delighted to

�nd cases when it is. One such case, demonstrated here, is that if S is the set of
Knaster subcontinua (see below) of the Hilbert cube and M is the set of open maps
between them, then the partial order is a lattice order. We will describe that lattice
order in some detail, and use it to motivate some questions about open maps on
Knaster continua.
Let P denote the set of primes f2; 3; 5; � � � g, and let ! denote the �rst in�nite ordinal

[0; 1; 2; � � � ;1]. A trivial function is a function � : P ! ! such that �(p) <1 for
all primes p and �(p) = 0 for all but �nitely many primes p.

1.1. Theorem The set !P of functions � : P ! !, is a complete distributive lattice

when ordered by the relation

� � � () �(p) � �(p) for all primes p:

The relation � on this lattice de�ned by

� � � () 9 a trivial function � such that � _ � = � _ �

is a lattice congruence on !P, and the quotient lattice !P= � is distributive and com-

plete.
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Proof: The order on !P is the product order. Since ! is well ordered, it is a
complete distributive lattice, so !P is a complete distributive lattice. Use the facts
that the set of trivial functions in !P is a sublattice and the distributivity, to see that
the relation � is a lattice congruence, and the quotient lattice !P= � is distributive
and complete.

2. Knaster Continua

Following the notation of Rogers in [5], for each positive integer n, let wn : I ! I
be de�ned by

wn(x) =

8><
>:

nx� i if i is even and 0 �
i

n
� x �

i + 1

n
� 1

i+ 1� nx if i is odd and 0 <
i

n
� x �

i+ 1

n
� 1

The map wn will be called the standard map of degree n.
If � is any sequence in P[f1g and K� denotes the inverse limit lim

 �

fIk; �
k+1
k
g, where

Ik = I and �k+1
k

= w�(k), then K� is an indecomposable continuum (a continuum is a
compact connected metric space) except in the case that �(i) = 1 for all but �nitely
many i (see Nadler [4]). We refer to the continua K� as Knaster continua, even
in this last case where the inverse limit is homeomorphic with I. Note that K� is a
subcontinuum of Q, the Hilbert cube.
In [2], D�ebski provides a classi�cation theorem for Knaster continua.

2.1. Theorem D�ebski's Classi�cation: Two Knaster continua K� and K� are home-

omorphic if and only if for all but �nitely many primes p, p occurs in the sequences �
and � the same number of times. In the exceptional cases, the number of occurences

of p in each sequence is �nite.

Every sequence � in P [ f1g has associated with it an occurence function occ�,
de�ned on the set P of primes by occ�(p) is the number of occurences of p in the
sequence.
Note that the occurence function of a sequence � with K� � I is a trivial function.
So the set K of homeomorphism classes of Knaster continua is in 1-1 correspondence

with lattice !P= � under the function [K�]! [occ�]. The next theorem shows that if
the Knaster continua are ordered with the open-map quasi-order, this correspondence
is an order isomorphism.
A map f : K� ! K� is said to be an induced map provided that there is an

increasing sequence of subscripts ik and maps fk : Iik ! Ik so that �kf = fk�ik for
each k = 1; 2; � � � . The sequence is called a de�ning sequence of coordinate maps
for f .
In [3], we proved (Theorem 4.7, p 143) that the open induced maps are dense in

the space of open maps from K� to K�.
We can use this to prove the following theorem.
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2.2. Theorem The open-map partial order on K is a lattice order which is order

isomorphic with the lattice !P= � under the function [K�]! [occ�].

Proof: As we have observed above, the function [K�]! [occ�] is a 1-1 correspon-
dence between the sets K and !P= �. We will show that the function and its inverse
are order-preserving. Suppose that [occ�] � [occ�]. Then we construct an open in-
duced map f from K� to K� as follows: Let n be the product of the �nite number of
occurences of primes that occur in � that do not occur in �, and let f1 = wn : I1 ! I1.
If �(1) divides n, let f2 = wn�(1)=�(1) : I2 ! I2; otherwise choose k2 so that �(k2 � 1)

is the �rst occurence of �(1) in the sequence �, and let f2 = wn�
k2�1
1 . From the de�-

nition of [occ�] � [occ�], we are guaranteed that we can continue to de�ne f3; f4; � � �
so that the induced map is open. Hence K� � K�.
Conversely, suppose that K� � K�. Then there is an open map f : K� ! K�.

Then by Theorem 4.7 in [3], there is an open induced map g : K� ! K�. By the
structure theorem for induced open maps (Theorem 3.16, p. 136, in [3]), g = hwu,
where h and u are homeomorphisms and w : K� ! K� is an induced map whose
coordinate maps wni

: Iki ! Ii are all standard open maps.
Consider the �rst coordinate map wn1

of w. Suppose that p is a prime that occurs at
least r+s times (s > 0) in the sequence � and only r times in the sequence �. Choose
N so large that p occurs r + s times from �1 to �N�1. Then ps divides M where
wM = w�1

� � �w�N
wnN

. Since w is induced, w�1
� � �w�N

wnN
= wn1

w�k1+1
� � �w�kN�1

,

and so ps divides n1 the subscript of the �rst coordinate map wn1
of w. From this we

conclude that no prime occurs in�nitely often in the sequence � but not in � and only
�nitely many primes can occur more often in � than they do in �. Hence occ� � occ�,
and we have shown that the correspondence [K�] ! [occ�] is an order isomorphism.

3. The structure of the lattice

If for all but �nitely many p 2 P, occ�(p) is either 0 or 1, then occ� is said to be
full. If 1 is not a value of occ�, then occ� is said to be sparse.
An occurrence function occ� always decomposes into the join

occ� = full� _ sps�

of a full occurrence function full�, and a sparse one sps�, given by

full�(p) = 0 if occ�(p) <1; full�(p) = occ�(p) otherwise,

sps�(p) = 0 if occ�(p) =1; sps�(p) = occ�(p) otherwise.

So, by the lattice isomorphism, [K�] ! [occ�], A Knaster continuum K� always
decomposes into the join according to how occ� decomposes. We will say K� is
full (sparse) if occ� is full (sparse). So, for example if � = 2; 3; 2; 5; 2; 7; � � � is
the sequence whose odd terms are all 2 and whose even terms are the odd primes,



4 The Lattice of Knaster Continua

then K� = K2 _K�, where K2 is the bucket-handle (a full Knaster continuum) and
� = 3; 5; � � � ;, the sequence of odd primes (so K� is a sparse Knaster continuum).
De�ne K F and K S to be the set of full (resp. sparse) homeomorphism classes of

Knaster continua.
De�ne a function �: K ! 2P, the lattice of subsets of P by

�([K�]) = fp 2 Pjocc�(p) =1g

We see that the function � is a lattice homomorphism.

3.1. Theorem The set of full Knaster continua K F is a sublattice of K , isomorphic

with the lattice of subsets of the prime numbers. Hence K F is a complete distributive

lattice.

Proof: It is easily veri�ed that � takes K F isomorphically onto 2P.

The bottom element of K is K1, which is homeomorphic with the unit interval
I. Let 
 be the sequence of primes 2; 3; 2; 3;5; 2; 3; 5; 7; � � � , where occ�(p) = 1 for
each prime p. It is natural to call K
 the universal Knaster continuum, because by
Theorem 2.2 K
 maps openly onto any Knaster continuum. It is the largest element
of the lattice of Knaster continua.
The full Knaster continua K� for which occ�1

�
(1) is �nite is a sublattice (in fact a

^-ideal) of K F isomorphic with the lattice of �nite subsets of P. We call this sublattice
FI. At the other end of the lattice K F are the full Knaster continua K� for which
P n occ�1

�
(1) is �nite, that is the Knaster continua in which all but �nitely many

primes occur in�nitely many times. These form a sublattice (in fact, a _-ideal of K F

which we call IF. The remaining continua do not form a sublattice; we call this set
II. (See the diagram below for the position of these three sets in K .)
The set of sparse Knaster continua forms a lattice also. However, it is very di�erent

from the lattice of full Knaster continua.

3.2. Theorem The set of sparse Knaster continua K S is a ^-ideal of K , that is, if

K� 2 K and K� 2 K S , then K� ^K� 2 K S . Also K S is not a complete lattice.

Proof: Clearly, K S = ��1(;), and hence is a ^-ideal. The fact that it is far from
complete can be seen as follows: Let K� be any sparse Knaster continuum, other than
K1. For each positive integer n, de�ne Kn� to be the continuum where occn�(p) = np
for each prime p.
Clearly, we have

K� < K2� < � � � < Kn� � � �

in the lattice order on K . In K , the least upper bound of this chain is K
 and the,
which is not sparse, so K S is not complete.

3.3. Theorem For each K� 2 K there are K� 2 K F and K� 2 K S such that

K� = K� _ K�. This decomposition is unique in the sense that if K�0 2 K F and

K�0 2 K S such that K� = K�0 _K�0, then K� = K�0 and K� � K�0 . Furthermore if

K� 2 FI, then K� = K�0.
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Proof: Choosing K� and K� to be any Knaster continua with occ� = full� and
occ� = sps� satis�es the �rst sentence. Clearly, there is no leeway in the choice
full�; however, if occ�(p) =1 for in�nitely many primes p then we can augment � by
throwing in an in�nite subset of those primes with arbitrarily chosen �nite occurence
values, thus creating a sequence �0 greater than �. If full�1

�
(1) is �nite, we cannot

augment in this manner, so K� is unique.

Here is a diagram that we can use to visualize the lattice of Knaster Continua.

Figure 1. The lattice of Knaster continua

r

r

r

�
�
�
�
�
�
�
�
�
�
�
�
�
�

K1

FI

II

IF

K F

K S

K


K� = K� _K� = K� _K� _ (K� ^ K S )
r

K�
r

r
K�

In the same paper where he classi�es the Knaster continua, D�ebski also shows that
there is an uncountable set of Knaster continua, no one of which is the open image
of the other. His example is in fact a collection of sparse Knaster continua. By
modifying his example, it is not hard to prove that there are many such collections
of incomparable Knaster continua.

3.4. Theorem There exist an uncountable set of full Knaster continua no one of

which is the open image the other. For each full Knaster continuum K� such that

occ�1
�
(0) is in�nite, there is an uncountable set of incomparable Knaster continua with

full part K�.

4. Some questions motivated by the lattice structure

One of the uses of lattices in topology is to organize information about spaces.
This in turn exposes gaps in the information and may prompt questions about those
spaces. The following questions about open maps on Knaster continua arose in this
way. (That is not to say they might not have arisen in some other way.)
In [3], p. 138, we showed that all the the induced open maps f : K� ! K� are at

most n to 1, for some positive integer n.

4.1. Question Must an open map between homeomorphic Knaster continua be at

most n to 1, for some positive integer n?
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By contrast, we can show the following

4.2. Theorem If K� and K� are not homeomorphic, then each open induced map

f : K� ! K� is uncountable to 1.

Proof: Let f be an induced open map from K� to K�. Then by the structure
theorem for open induced maps ([3], page 136), f = hwu where h and u are homeo-
morphisms and w : K� ! K� is an induced map whose coordinate maps are standard
open maps. Since K� and K� are not homeomorphic, either some prime p occurs
in�nitely often in the sequence � and only �nitely often in the sequence �, or there
are in�nitely many primes p which occur in the sequence � but occur less often in
the sequence �. Hence in�nitely many of the standard open maps wn in the de�ning
sequence of w have subscripts arbitrarily large. This is enough to show that given a
point x in K�, w

�1(x) contains a Cantor set.

4.3. Question Must an open map between nonhomeomorphic Knaster continua be

uncountable to one?

In [3], p. 133, we showed that the induced open maps f : K
 ! K
, the largest
Knaster continuum, are all homeomorphisms. In light of the fact that the induced
open maps are dense, it is natural to ask:

4.4. Question Is there an open map f : K
 ! K
 which is not a homeomorphism?

We have investigated the set of solenoids (= inverse limits of the circle whose
bonding maps are power maps) and found that they have the same lattice structure
under the open-map quasi-ordering. It would be interesting to have some answers to
the following question.

4.5. Question For what other sets S of spaces and maps M between them is the

M partial-order of S= � a lattice ordering?
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