MA 214 Calculus IV (Spring 2016)

Section 2

Homework Assignment 10

Solutions

In what follows the Heaviside function, written as u.(t) in the text of Boyce and Diprima,
is denoted by H(t — ¢).

In each of Problems 1 through 3, find the solution of the given initial-value problem.
1.y +y=H({t—m/2)+30(t —3r/2) — H(t — 2m), y(0) =0, ¢(0)=0.

Solution: Taking the Laplace transform of both sides of the given equation, and using
the initial conditions, we obtain
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Hence we have
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By partial fractions, we see that
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Therefore
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It follows that the solution of the given initial-value problem is:

y(t) = (1= cos(t — D)) H(t — 2) + (1 — cos(t — 2m)) H(t — 27) + 3sin(t — %”)H(t _ 37”)
= (1—sint)H(t — g) + (1 —cost)H(t —2m) + 3cost H(t — 3%)

2. 2y +y' +4y =6(t — 7/6)sint, y(0) =0, ¢(0)=0.



Solution: Taking the Laplace transform of both sides of the given equation, and using
the initial conditions, we obtain
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Hence we have
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Therefore the solution of the given initial-value problem is:
y(t) =

Solution: Taking the Laplace transform of both sides of the given equation, and using
the initial conditions, we obtain

(s* = 1)Y(s) = e .

Hence we have

(2= 1)(s2+ 1)
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Hence the solution of the given initial-value problem is:

y(t) = %H(t — 1) (sinh(t — 1) —sin(t — 1)).

. Boyce and DiPrima, Section 6.6, p. 355, Problem 5 and Problem 10.

Solution: Problem 5. Since f(t) = e ! x sint, we have
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Problem 10. Using the formula L7'[F(s)G(s)] = f(t) * g(t), we obtain

B [(s+1)21(32+4)] =L {(wil)? ' 5214}

1 1
=te ' x 5 sin 2t = 5/ (t —7)e~ ") sin 27 dr.
0
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5. Boyce and DiPrima, Section 6.6, p. 355, Problem 17.

Solution: Taking the Laplace transform of both sides of the given equation, and using
the initial conditions, we obtain

(s +4s +4)Y(s) = 25 + 5+ G(s).

Hence we have
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where we have used the partial-fraction decomposition
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The solution of the given initial-value problem is
y(t) =2e 2 +te ? +te % g(t)

t
=2 2 te M 4 / (t — T)e’Q(t’T)g(T)dT.
0

6. Boyce and DiPrima, Section 6.6, p. 355, Problem 19.

Solution: Taking the Laplace transform of both sides of the given equation, and using
the initial conditions, we obtain

(s* = 1)Y(s) = G(s).

Hence we have
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and the solution of the given initial-value problem is
1
y(t) = 5 (sinht — sint) * g(¢)
1 t
-3 / (sinh(t — 7) — sin(t — 7)) g(7)dr.
0
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7. Boyce and DiPrima, Section 6.6, p. 356, Problem 25(a).
Solution: The given integral equation is
B(t) +2cost x p(t) = e ",

Let ®(s) = L[¢(t)]. Taking the Laplace transform of both sides of the given equation,
we obtain
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P T o
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By partial fractions, we find
1 2 2

P(s) =
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Hence the solution of the given integral equation is:

y(t) =e ' —2te "+t = (1 —t)%e .
8. Boyce and DiPrima, Section 6.6, p. 356, Problem 27(a).
Solution: The given equation is
1
'~ %= —t.
&=t o

Let ®(s) = L[¢(t)]. Taking the Laplace transform of both sides of the given equation,
and using the initial condition ¢(0) = 1, we obtain

or

which, after some algebraic manipulations, gives
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Hence the solution of the given initial-value problem is ¢(t) = cost.



