MA 214 Calculus IV (Spring 2016)

Section 2

Homework Assignment 10

Solutions

In what follows the Heaviside function, written as $u_{c}(t)$ in the text of Boyce and Diprima, is denoted by $H(t-c)$.

In each of Problems 1 through 3, find the solution of the given initial-value problem.

1. $y^{\prime \prime}+y=H(t-\pi / 2)+3 \delta(t-3 \pi / 2)-H(t-2 \pi), \quad y(0)=0, \quad y^{\prime}(0)=0$.

Solution: Taking the Laplace transform of both sides of the given equation, and using the initial conditions, we obtain

$$
\left(s^{2}+1\right) Y(s)=\frac{e^{-\pi s / 2}}{s}+3 e^{-3 \pi s / 2}+\frac{e^{-2 \pi s}}{s}
$$

Hence we have

$$
Y(s)=\frac{e^{-\pi s / 2}}{s\left(s^{2}+1\right)}+3 \cdot \frac{e^{-3 \pi s / 2}}{s^{2}+1}+\frac{e^{-2 \pi s}}{s\left(s^{2}+1\right)}
$$

By partial fractions, we see that

$$
\frac{1}{s\left(s^{2}+1\right)}=\frac{1}{s}-\frac{s}{s^{2}+1} .
$$

Therefore

$$
Y(s)=e^{-\pi s / 2}\left(\frac{1}{s}-\frac{s}{s^{2}+1}\right)+e^{-2 \pi s}\left(\frac{1}{s}-\frac{s}{s^{2}+1}\right)+3 \cdot \frac{e^{-3 \pi s / 2}}{s^{2}+1}
$$

It follows that the solution of the given initial-value problem is:

$$
\begin{aligned}
y(t) & =\left(1-\cos \left(t-\frac{\pi}{2}\right)\right) H\left(t-\frac{\pi}{2}\right)+(1-\cos (t-2 \pi)) H(t-2 \pi)+3 \sin \left(t-\frac{3 \pi}{2}\right) H\left(t-\frac{3 \pi}{2}\right) \\
& =(1-\sin t) H\left(t-\frac{\pi}{2}\right)+(1-\cos t) H(t-2 \pi)+3 \cos t H\left(t-\frac{3 \pi}{2}\right)
\end{aligned}
$$

2. $2 y^{\prime \prime}+y^{\prime}+4 y=\delta(t-\pi / 6) \sin t, \quad y(0)=0, \quad y^{\prime}(0)=0$.

Solution: Taking the Laplace transform of both sides of the given equation, and using the initial conditions, we obtain

$$
\left(2 s^{2}+s+4\right) Y(s)=\int_{0}^{\infty} e^{-s t} \sin t \delta(t-\pi / 6) d t=e^{-\pi s / 6} \sin \frac{\pi}{6}=\frac{1}{2} e^{-\pi s / 6}
$$

Hence we have

$$
Y(s)=\frac{1}{2} \cdot \frac{e^{-\pi s / 6}}{2\left(s^{2}+\frac{s}{2}+2\right)}=\frac{1}{4} \cdot \frac{e^{-\pi s / 6}}{\left(s+\frac{1}{4}\right)^{2}+\frac{31}{16}}=\frac{1}{\sqrt{31}} \cdot e^{-\pi s / 6} \cdot \frac{\sqrt{31} / 4}{\left(s+\frac{1}{4}\right)^{2}+\left(\frac{\sqrt{31}}{4}\right)^{2}} .
$$

Therefore the solution of the given initial-value problem is:

$$
y(t)=\frac{1}{\sqrt{31}} H\left(t-\frac{\pi}{6}\right) e^{-\frac{1}{4}\left(t-\frac{\pi}{6}\right)} \sin \left(\frac{\sqrt{31}}{4}\left(t-\frac{\pi}{6}\right)\right)
$$

3. $y^{(4)}-y=\delta(t-1), \quad y(0)=0, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=0, \quad y^{(3)}(0)=0$.

Solution: Taking the Laplace transform of both sides of the given equation, and using the initial conditions, we obtain

$$
\left(s^{4}-1\right) Y(s)=e^{-s}
$$

Hence we have

$$
\begin{aligned}
Y(s) & =\frac{e^{-s}}{s^{4}-1} \\
& =e^{-s} \cdot \frac{1}{\left(s^{2}-1\right)\left(s^{2}+1\right)} \\
& =e^{-s} \cdot \frac{1}{2}\left(\frac{1}{s^{2}-1}-\frac{1}{s^{2}+1}\right) .
\end{aligned}
$$

Hence the solution of the given initial-value problem is:

$$
y(t)=\frac{1}{2} H(t-1)(\sinh (t-1)-\sin (t-1)) .
$$

4. Boyce and DiPrima, Section 6.6, p. 355, Problem 5 and Problem 10.

Solution: Problem 5. Since $f(t)=e^{-t} * \sin t$, we have

$$
\mathcal{L}[f(t)]=\frac{1}{s+1} \cdot \frac{1}{s^{2}+1}=\frac{1}{(s+1)\left(s^{2}+1\right)} .
$$

Problem 10. Using the formula $\mathcal{L}^{-1}[F(s) G(s)]=f(t) * g(t)$, we obtain

$$
\begin{aligned}
\mathcal{L}^{-1}\left[\frac{1}{(s+1)^{2}\left(s^{2}+4\right)}\right] & =\mathcal{L}^{-1}\left[\frac{1}{(s+1)^{2}} \cdot \frac{1}{s^{2}+4}\right] \\
& =t e^{-t} * \frac{1}{2} \sin 2 t=\frac{1}{2} \int_{0}^{t}(t-\tau) e^{-(t-\tau)} \sin 2 \tau d \tau
\end{aligned}
$$

5. Boyce and DiPrima, Section 6.6, p. 355, Problem 17.

Solution: Taking the Laplace transform of both sides of the given equation, and using the initial conditions, we obtain

$$
\left(s^{2}+4 s+4\right) Y(s)=2 s+5+G(s)
$$

Hence we have

$$
\begin{aligned}
Y(s) & =\frac{2 s+5}{(s+2)^{2}}+\frac{G(s)}{(s+2)^{2}} \\
& =\frac{2}{s+2}+\frac{1}{(s+2)^{2}}+G(s) \cdot \frac{1}{(s+2)^{2}}
\end{aligned}
$$

where we have used the partial-fraction decomposition

$$
\frac{2 s+5}{(s+2)^{2}}=\frac{2}{s+2}+\frac{1}{(s+2)^{2}}
$$

The solution of the given initial-value problem is

$$
\begin{aligned}
y(t) & =2 e^{-2 t}+t e^{-2 t}+t e^{-2 t} * g(t) \\
& =2 e^{-2 t}+t e^{-2 t}+\int_{0}^{t}(t-\tau) e^{-2(t-\tau)} g(\tau) d \tau
\end{aligned}
$$

6. Boyce and DiPrima, Section 6.6, p. 355, Problem 19.

Solution: Taking the Laplace transform of both sides of the given equation, and using the initial conditions, we obtain

$$
\left(s^{4}-1\right) Y(s)=G(s)
$$

Hence we have

$$
\begin{aligned}
Y(s) & =\frac{G(s)}{s^{4}-1} \\
& =G(s) \cdot \frac{1}{\left(s^{2}-1\right)\left(s^{2}+1\right)} \\
& =G(s) \cdot \frac{1}{2}\left(\frac{1}{s^{2}-1}-\frac{1}{s^{2}+1}\right)
\end{aligned}
$$

and the solution of the given initial-value problem is

$$
\begin{aligned}
y(t) & =\frac{1}{2}(\sinh t-\sin t) * g(t) \\
& =\frac{1}{2} \int_{0}^{t}(\sinh (t-\tau)-\sin (t-\tau)) g(\tau) d \tau
\end{aligned}
$$

7. Boyce and DiPrima, Section 6.6, p. 356, Problem 25(a).

Solution: The given integral equation is

$$
\phi(t)+2 \cos t * \phi(t)=e^{-t} .
$$

Let $\Phi(s)=\mathcal{L}[\phi(t)]$. Taking the Laplace transform of both sides of the given equation, we obtain

$$
\Phi+2 \cdot \frac{s}{s^{2}+1} \cdot \Phi=\frac{1}{s+1}
$$

which implies

$$
\Phi(s)=\frac{s^{2}+1}{(s+1)^{3}}
$$

By partial fractions, we find

$$
\Phi(s)=\frac{1}{s+1}-\frac{2}{(s+1)^{2}}+\frac{2}{(s+1)^{3}} .
$$

Hence the solution of the given integral equation is:

$$
y(t)=e^{-t}-2 t e^{-t}+t^{2} e^{-t}=(1-t)^{2} e^{-t}
$$

8. Boyce and DiPrima, Section 6.6, p. 356, Problem 27(a).

Solution: The given equation is

$$
\phi^{\prime}-\frac{1}{2} t^{2} * \phi=-t .
$$

Let $\Phi(s)=\mathcal{L}[\phi(t)]$. Taking the Laplace transform of both sides of the given equation, and using the initial condition $\phi(0)=1$, we obtain

$$
s \Phi(s)-1-\frac{1}{2} \cdot \frac{2}{s^{3}} \cdot \Phi(s)=-\frac{1}{s^{2}},
$$

or

$$
\Phi(s)\left(s-\frac{1}{s^{3}}\right)=1-\frac{1}{s^{2}}
$$

which, after some algebraic manipulations, gives

$$
\Phi(s)=\frac{s}{s^{2}+1} .
$$

Hence the solution of the given initial-value problem is $\phi(t)=\cos t$.

