MA 214 Calculus IV (Spring 2016)

Section 2

Homework Assignment 11

Solutions

1. Boyce and DiPrima, Section 5.1, p. 253, Problem 24 and Problem 26.

Solution: Problem 24. It is easy to see that

$$
\begin{aligned}
\left(1-x^{2}\right) \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}-n(n-1) a_{n}\right] x^{n}
\end{aligned}
$$

Problem 27. By shifting indices at the second step, we obtain

$$
\begin{aligned}
\sum_{n=1}^{\infty} n a_{n} x^{n-1}+x \sum_{n=0}^{\infty} a_{n} x^{n} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1}+\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& =\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}+\sum_{n=1}^{\infty} a_{n-1} x^{n} \\
& =a_{1}+\sum_{n=1}^{\infty}\left[(n+1) n a_{n+1}+a_{n-1}\right] x^{n} .
\end{aligned}
$$

2. Boyce and DiPrima, Section 5.1, p. 254, Problem 28.

Solution: By shifting the index of the first summand, we obtain

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty}\left((n+1) a_{n+1}+2 a_{n}\right) x^{n}=0
$$

for each x. Hence we obtain the recurrence relation

$$
a_{n+1}=\frac{-2}{n+1} a_{n} \quad \text { for } n=0,1,2, \cdots
$$

which implies
$a_{1}=-2 a_{0}, \quad a_{2}=\frac{-2}{2} a_{1}=\frac{(-2)^{2}}{2} a_{0}, \quad a_{3}=\frac{-2}{3} a_{2}=\frac{(-2)^{3}}{3!} a_{0}, \quad a_{4}=\frac{-2}{4} a_{3}=\frac{(-2)^{4}}{4!} a_{0}$,
and

$$
a_{n}=\frac{(-2)^{n}}{n!} a_{0} \quad \text { for } n=0,1,2, \cdots .
$$

It follows that

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n} x^{n} & =a_{0}\left(1+(-2) x+\frac{(-2)^{2}}{2!} x^{2}+\frac{(-2)^{3}}{3!} x^{3}+\cdots+\frac{(-2)^{n}}{n!} x^{n}+\cdots\right) \\
& =a_{0}\left(1+(-2 x)+\frac{(-2 x)^{2}}{2!}+\frac{(-2 x)^{3}}{3!}+\cdots+\frac{(-2 x)^{n}}{n!}+\cdots\right) \\
& =a_{0} \exp (-2 x)
\end{aligned}
$$

3. Boyce and DiPrima, Section 5.2, p. 263, Problem 1.

Solution: Let $L(y)=y^{\prime \prime}-y$ and $y=\sum_{n=0}^{\infty} c_{n} x^{n}$. Then $y^{\prime}=\sum_{n=1}^{\infty} c_{n} n x^{n-1}$, and

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} c_{n} n(n-1) x^{n-2}=\sum_{n=0}^{\infty} c_{n+2}(n+2)(n+1) x^{n} .
$$

Hence we have

$$
L(y)=\sum_{n=0}^{\infty}\left(c_{n+2}(n+2)(n+1)-c_{n}\right) x^{n}=0 \quad \text { for each } x \in(-\infty, \infty)
$$

which implies the recurrence relation

$$
c_{n+2}(n+2)(n+1)-c_{n}=0 \quad \text { or } \quad c_{n+2}=\frac{1}{(n+2)(n+1)} c_{n}, \quad(n=0,1,2, \cdots)
$$

For solution y_{1}, we put $c_{0}=1$ and $c_{1}=0$. Then $c_{2 m+1}=0$ for each $m=0,1,2, \cdots$,

$$
c_{2}=\frac{1}{2 \cdot 1} c_{0}=\frac{1}{2!}, \quad c_{4}=\frac{1}{4 \cdot 3} c_{2}=\frac{1}{4!}, \quad c_{6}=\frac{1}{6 \cdot 5} c_{4}=\frac{1}{6!},
$$

and

$$
c_{2 m}=\frac{1}{2 m \cdot(2 m-1) \cdot \cdots \cdot 4 \cdot 3 \cdot 2 \cdot 1}=\frac{1}{(2 m)!} \quad \text { for } m=0,1,2, \cdots .
$$

Therefore the solution y_{1} is given by the formula

$$
y_{1}=1+\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}+\frac{1}{6!} x^{6}+\cdots=\sum_{m=0}^{\infty} \frac{1}{(2 m)!} x^{2 m} .
$$

For solution y_{2}, we put $c_{0}=0$ and $c_{1}=1$. Then $c_{2 m}=0$ for each $m=0,1,2, \cdots$,

$$
c_{3}=\frac{1}{3 \cdot 2} c_{1}=\frac{1}{3!}, \quad c_{5}=\frac{1}{5 \cdot 4} c_{3}=\frac{1}{5!}, \quad c_{7}=\frac{1}{7 \cdot 6} c_{5}=\frac{1}{7!},
$$

and

$$
c_{2 m+1}=\frac{1}{(2 m+1) \cdot 2 m \cdot \cdots \cdot, \cdot 3 \cdot 2 \cdot 1}=\frac{1}{(2 m+1)!} \quad \text { for } m=0,1,2, \cdots
$$

Therefore the solution y_{2} is given by the formula

$$
y_{2}=x+\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}+\frac{1}{7!} x^{7}+\cdots=\sum_{m=0}^{\infty} \frac{1}{(2 m+1)!} x^{2 m+1} .
$$

The general solution of the given equation is given by

$$
y=\alpha_{1} y_{1}+\alpha_{2} y_{2}, \quad \text { where } \alpha_{1} \text { and } \alpha_{2} \text { are arbitrary constants. }
$$

4. Boyce and DiPrima, Section 5.2, p. 263, Problem 7.

Solution: Let $L(y)=y^{\prime \prime}+x y^{\prime}+2 y$ and $y=\sum_{n=0}^{\infty} c_{n} x^{n}$. Then

$$
\begin{gathered}
y^{\prime}=\sum_{n=1}^{\infty} c_{n} n x^{n-1}, \quad x y^{\prime}=\sum_{n=1}^{\infty} c_{n} n x^{n}, \\
y^{\prime \prime}=\sum_{n=2}^{\infty} c_{n} n(n-1) x^{n-2}=\sum_{n=0}^{\infty} c_{n+2}(n+2)(n+1) x^{n} .
\end{gathered}
$$

Hence we have

$$
L(y)=\sum_{n=0}^{\infty}\left(c_{n+2}(n+2)(n+1) x^{n}+c_{n} n+2 c_{n}\right) x^{n}=0 \quad \text { for each } x \in(-\infty, \infty)
$$

which implies the recurrence relation

$$
c_{n+2}(n+2)(n+1)+c_{n}(n+2)=0 \quad \text { or } \quad c_{n+2}=\frac{-1}{n+1} c_{n}, \quad(n=0,1,2, \cdots)
$$

For solution y_{1}, we put $c_{0}=1$ and $c_{1}=0$. Then $c_{2 m+1}=0$ for each $m=0,1,2, \cdots$,

$$
c_{2}=\frac{-1}{1} c_{0}=-1, \quad c_{4}=\frac{-1}{3} c_{2}=\frac{(-1)^{2}}{3 \cdot 1}, \quad c_{6}=\frac{-1}{5} c_{4}=\frac{(-1)^{3}}{5 \cdot 3 \cdot 1}
$$

and

$$
\begin{aligned}
c_{2 m} & =\frac{(-1)^{m}}{(2 m-1) \cdot(2 m-3) \cdot \cdots \cdot 5 \cdot 3 \cdot 1} \\
& =\frac{(-1)^{m}}{(2 m-1) \cdot(2 m-3) \cdot \cdots \cdot 5 \cdot 3 \cdot 1} \cdot \frac{2 m \cdot(2 m-2) \cdot \cdots \cdot 4 \cdot 2}{2 m \cdot(2 m-2) \cdot \cdots \cdot 4 \cdot 2} \\
& =\frac{(-1)^{m}}{(2 m-1) \cdot(2 m-3) \cdot \cdots \cdot 5 \cdot 3 \cdot 1} \cdot \frac{2 m \cdot 2(m-1) \cdots \cdots \cdot 2(2) \cdot 2(1)}{2 m \cdot(2 m-2) \cdot \cdots \cdot 4 \cdot 2} \\
& =\frac{(-1)^{m} 2^{m} m!}{(2 m)!} \quad \text { for } m=0,1,2, \cdots .
\end{aligned}
$$

Therefore the solution y_{1} is given by the formula

$$
y_{1}=1-x^{2}+\frac{1}{3 \cdot 1} x^{4}-\frac{1}{5 \cdot 3 \cdot 1} x^{6}+\cdots=\sum_{m=0}^{\infty} \frac{(-1)^{m} 2^{m} m!}{(2 m)!} x^{2 m} .
$$

For solution y_{2}, we put $c_{0}=0$ and $c_{1}=1$. Then $c_{2 m}=0$ for each $m=0,1,2, \cdots$,

$$
c_{3}=\frac{-1}{2} c_{1}=\frac{-1}{2}, \quad c_{5}=\frac{-1}{4} c_{3}=\frac{(-1)^{2}}{4 \cdot 2}, \quad c_{7}=\frac{-1}{6} c_{5}=\frac{(-1)^{3}}{6 \cdot 4 \cdot 2}
$$

and

$$
\begin{aligned}
c_{2 m+1} & =\frac{(-1)^{m}}{2 m \cdot(2 m-2) \cdot \cdots \cdot 6 \cdot 4 \cdot 2} \\
& =\frac{(-1)^{m}}{2 m \cdot 2(m-1) \cdot \cdots \cdot 2(3) \cdot 2(2) \cdot 2(1)} \\
& =\frac{(-1)^{m}}{2^{m} m!} \quad \text { for } m=0,1,2, \cdots .
\end{aligned}
$$

Therefore the solution y_{2} is given by the formula

$$
y_{1}=x-\frac{1}{2} x^{2}+\frac{1}{4 \cdot 2} x^{4}-\frac{1}{6 \cdot 4 \cdot 2} x^{6}+\cdots=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{2^{m} m!} x^{2 m+1}
$$

where $0!:=1$. The general solution of the given equation is given by

$$
y=\alpha_{1} y_{1}+\alpha_{2} y_{2}, \quad \text { where } \alpha_{1} \text { and } \alpha_{2} \text { are arbitrary constants. }
$$

5. Boyce and DiPrima, Section 5.2, p. 263, Problem 8.

Solution: To find a power series solution of the form $\sum_{n=0}^{\infty} c_{n}(x-1)^{n}$, we put $t=x-1$.
Then $x=t+1$ and, with t as the independent variable, the given equation becomes

$$
(t+1) \frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+(t+1) y=0
$$

Let $\dot{y}=d y / d t, \ddot{y}=d^{2} y / d t^{2}$, and $L(y)=(t+1) \ddot{y}+\dot{y}+(t+1) y$. Substituting $y=\sum_{n=0}^{\infty} c_{n} t^{n}$ into the equation $L(y)=0$, we have

$$
\begin{aligned}
L(y) & =(t+1) \sum_{n=2}^{\infty} c_{n} n(n-1) t^{n-2}+\sum_{n=1}^{\infty} c_{n} n t^{n-1}+(t+1) \sum_{n=0}^{\infty} c_{n} t^{n} \\
& =\sum_{n=2}^{\infty} c_{n} n(n-1) t^{n-1}+\sum_{n=2}^{\infty} c_{n} n(n-1) t^{n-2}+\sum_{n=1}^{\infty} c_{n} n t^{n-1}+\sum_{n=0}^{\infty} c_{n} t^{n+1}+\sum_{n=0}^{\infty} c_{n} t^{n} \\
& =\sum_{n=1}^{\infty} c_{n+1}(n+1) n t^{n}+\sum_{n=0}^{\infty} c_{n+2}(n+2)(n+1) t^{n}+\sum_{n=0}^{\infty} c_{n+1}(n+1) t^{n}+\sum_{n=1}^{\infty} c_{n-1} t^{n}+\sum_{n=0}^{\infty} c_{n} t^{n} \\
& =\sum_{n=1}^{\infty}\left(c_{n+2}(n+2)(n+1)+c_{n+1}(n+1)^{2}+c_{n}+c_{n-1}\right)+2 c_{2}+c_{1}-c_{0} \\
& =0 \quad \text { for each } t \in(-1,1) .
\end{aligned}
$$

Thus we obtain the recurrence relation

$$
c_{n+2}=-\left(\frac{c_{n+1}(n+1)^{2}+c_{n}+c_{n-1}}{(n+2)(n+1)}\right) \quad \text { for } n=1,2, \cdots,
$$

and the requirement

$$
2 c_{2}+c_{1}+c_{0}=0
$$

For solution y_{1}, we put $c_{0}=1$ and $c_{1}=0$. Then

$$
c_{2}=-\frac{1}{2}, \quad c_{3}=-\frac{4 c_{2}+c_{0}}{3 \cdot 2}=\frac{1}{6}, \quad c_{4}=-\frac{9 c_{3}+c_{2}}{4 \cdot 3}=-\frac{1}{12},
$$

and we have

$$
y_{1}=1-\frac{1}{2}(x-1)^{2}+\frac{1}{6}(x-1)^{3}-\frac{1}{12}(x-1)^{4}+\cdots .
$$

For solution y_{2}, we put $c_{0}=0$ and $c_{1}=1$. Then

$$
c_{2}=-\frac{1}{2}, \quad c_{3}=-\frac{4 c_{2}+c_{1}}{3 \cdot 2}=\frac{1}{6}, \quad c_{4}=-\frac{9 c_{3}+c_{2}+c_{1}}{4 \cdot 3}=-\frac{1}{6},
$$

and we have

$$
y_{2}=x-\frac{1}{2}(x-1)^{2}+\frac{1}{6}(x-1)^{3}-\frac{1}{6}(x-1)^{4}+\cdots .
$$

The general solution of the given equation is given by

$$
y=\alpha_{1} y_{1}+\alpha_{2} y_{2}, \quad \text { where } \alpha_{1} \text { and } \alpha_{2} \text { are arbitrary constants. }
$$

6. Boyce and DiPrima, Section 5.2, p. 263, Problem 9.

Solution: Let $L(y)=\left(1+x^{2}\right) y^{\prime \prime}-4 x y^{\prime}+6 y$. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the equation $L(y)=0$, we have

$$
\begin{aligned}
& \left(1+x^{2}\right) \sum_{n=2}^{\infty} c_{n} n(n-1) x^{n-2}-4 x \sum_{n=1}^{\infty} c_{n} n x^{n-1}+6 \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =\sum_{n=2}^{\infty} c_{n} n(n-1) x^{n-2}+\sum_{n=2}^{\infty} c_{n} n(n-1) x^{n}-\sum_{n=1}^{\infty} 4 c_{n} n x^{n}+6 \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =\sum_{n=0}^{\infty} c_{n+2}(n+2)(n+1) x^{n}+\sum_{n=0}^{\infty} c_{n} n(n-1) x^{n}-\sum_{n=0}^{\infty} 4 c_{n} n x^{n}+6 \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left(c_{n+2}(n+2)(n+1)+c_{n}(n(n-1)-4 n+6)\right) x^{n} \\
& =\sum_{n=0}^{\infty}\left(c_{n+2}(n+2)(n+1)+c_{n}(n-2)(n-3)\right) x^{n} \\
& =0 \quad \text { for each } x \in(-1,1) .
\end{aligned}
$$

Thus we obtain the recurrence relation

$$
c_{n+2}=-\frac{(n-2)(n-3)}{(n+2)(n+1)} c_{n} \quad \text { for } n=0,1,2, \cdots
$$

For solution y_{1}, we put $c_{0}=1$ and $c_{1}=0$. Then $c_{2 m+1}=0$ for each $m=0,1,2, \cdots$,

$$
c_{2}=-\frac{(-2)(-3)}{2} c_{0}=-3, \quad c_{4}=0
$$

which implies $c_{2 m}=0$ for $m \geq 2$. Therefore the power-series of y_{1} terminates at $n=2$, and we have

$$
y_{1}=1-3 x^{2} .
$$

For solution y_{2}, we put $c_{0}=0$ and $c_{1}=1$. Then $c_{2 m}=0$ for each $m=0,1,2, \cdots$,

$$
c_{3}=-\frac{(-1)(-2)}{3 \cdot 2} c_{1}=-\frac{1}{3}, \quad c_{5}=0
$$

which implies $c_{2 m+1}=0$ for $m \geq 2$. Therefore the power-series of y_{2} terminates at $n=3$, and we have

$$
y_{2}=x-\frac{1}{3} x^{3}
$$

The general solution of the given equation is given by

$$
y=\alpha_{1} y_{1}+\alpha_{2} y_{2}, \quad \text { where } \alpha_{1} \text { and } \alpha_{2} \text { are arbitrary constants. }
$$

7. Boyce and DiPrima, Section 5.2, p. 263, Problem 10.

Solution: Let $L(y)=\left(4-x^{2}\right) y^{\prime \prime}+2 y$. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the equation $L(y)=0$, we have

$$
\begin{aligned}
& \left(4-x^{2}\right) \sum_{n=2}^{\infty} c_{n} n(n-1) x^{n-2}+2 \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =\sum_{n=2}^{\infty} 4 c_{n} n(n-1) x^{n-2}-\sum_{n=2}^{\infty} c_{n} n(n-1) x^{n}+\sum_{n=0}^{\infty} 2 c_{n} x^{n} \\
& =\sum_{n=0}^{\infty} 4 c_{n+2}(n+2)(n+1) x^{n}-\sum_{n=0}^{\infty} c_{n} n(n-1) x^{n}+\sum_{n=0}^{\infty} 2 c_{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left(4 c_{n+2}(n+2)(n+1)-c_{n}(n(n-1)-2)\right) x^{n} \\
& =\sum_{n=0}^{\infty}\left(4 c_{n+2}(n+2)(n+1)-c_{n}(n+1)(n-2)\right) x^{n}=0 \quad \text { for } x \in(-2,2)
\end{aligned}
$$

Thus we obtain the recurrence relation

$$
c_{n+2}=\frac{(n-2)}{4(n+2)} c_{n} \quad \text { for } n=0,1,2, \cdots .
$$

For solution y_{1}, we put $c_{0}=1$ and $c_{1}=0$. Then $c_{2 m+1}=0$ for each $m=0,1,2, \cdots$,

$$
c_{2}=\frac{-2}{8} c_{0}=-\frac{1}{4}, \quad c_{4}=0
$$

which implies $c_{2 m}=0$ for $m \geq 2$. Therefore the power-series of y_{1} terminates at $n=2$, and we have

$$
y_{1}=1-\frac{1}{4} x^{2}
$$

For solution y_{2}, we put $c_{0}=0$ and $c_{1}=1$. Then $c_{2 m}=0$ for each $m=0,1,2, \cdots$,

$$
c_{3}=\frac{-1}{4 \cdot 3} c_{1}=-\frac{1}{4 \cdot 3}, \quad c_{5}=\frac{1}{4 \cdot 5} c_{3}=-\frac{1}{4^{2} \cdot 5 \cdot 3}, \quad c_{7}=\frac{3}{4 \cdot 7} c_{5}=-\frac{1}{4^{3} \cdot 7 \cdot 5},
$$

and

$$
c_{2 m+1}=-\frac{1}{4^{m}(2 m+1)(2 m-1)} \quad \text { for } m=0,1,2, \cdots
$$

Therefore the solution y_{2} is given by the formula

$$
y_{2}=x-\frac{1}{4 \cdot 3} x^{3}-\frac{1}{4^{2} \cdot 5 \cdot 3} x^{5}-\frac{1}{4^{3} \cdot 7 \cdot 5} x^{7}+\cdots=-\sum_{m=0}^{\infty} \frac{1}{4^{m}(2 m+1)(2 m-1)} x^{2 m+1}
$$

The general solution of the given equation is given by

$$
y=\alpha_{1} y_{1}+\alpha_{2} y_{2}, \quad \text { where } \alpha_{1} \text { and } \alpha_{2} \text { are arbitrary constants. }
$$

