MA 214 Calculus IV (Spring 2016)

Section 2

Homework Assignment 1

Solutions

1. Boyce and DiPrima, p. 40, Problem 10 (c).

Solution: In standard form the given first-order linear ODE is:

$$
y^{\prime}-\frac{1}{t} y=t e^{-t}, \quad t>0
$$

An integrating factor is given by

$$
\mu=e^{-\int \frac{1}{t} d t}=e^{-\ln t}=\frac{1}{t}
$$

Multiplying both sides of the ODE by μ, we obtain

$$
\frac{d}{d t}\left(\frac{1}{t} y\right)=e^{-t}
$$

which has the general solution

$$
y(t)=-t e^{-t}+C t
$$

where C is a constant. As $t \rightarrow \infty$, we see that $y(t) \rightarrow \infty$ if $C>0, y(t) \rightarrow 0$ if $C=0$, and $y(t) \rightarrow-\infty$ if $C<0$.
2. Boyce and DiPrima, p. 40, Problem 18.

Solution: First we put the given linear first-order ODE in standard form:

$$
y^{\prime}+\frac{2}{t} y=\frac{\sin t}{t}, \quad t>0
$$

An integrating factor is given by

$$
\mu=e^{\int \frac{2}{t} d t}=e^{2 \ln t}=t^{2}
$$

Multiplying both sides of the ODE by μ, we obtain

$$
\frac{d}{d t}\left(t^{2} y\right)=t \sin t
$$

Integrating both sides of the preceding equation, we get

$$
\begin{aligned}
t^{2} y(t) & =\int t \sin t d t \\
& =\int t d(-\cos t)=-t \cos t+\int \cos t d t \\
& =-t \cos t+\sin t+C
\end{aligned}
$$

where C is a constant. From the initial condition $y(\pi / 2)=1$, we deduce that $C=$ $(\pi / 2)^{2}-1$. Hence the solution to the given initial-value problem is:

$$
y=\frac{1}{t^{2}}\left(\frac{\pi^{2}}{4}-1+\sin t-t \cos t\right)
$$

3. Boyce and DiPrima, p. 40, Problem 20.

Solution: In standard form the given equation reads:

$$
y^{\prime}+\left(1+\frac{1}{t}\right) y=1, \quad t>0 .
$$

An integrating factor is given by

$$
\mu=\exp \left(\int\left(1+\frac{1}{t}\right) d t\right)=e^{t+\ln t}=e^{t} \cdot e^{\ln t}=t e^{t}
$$

Multiplying both sides of the ODE by μ, we obtain

$$
\frac{d}{d t}\left(t e^{t} y\right)=t e^{t}
$$

Integrating both sides of the preceding equation with respect to t yields

$$
t e^{t} y=t e^{t}-e^{t}+C,
$$

or

$$
y=1-\frac{1}{t}+\frac{C e^{-t}}{t}
$$

where C is a constant to be determined by the initial condition. From the initial condition that $y(\ln 2)=1$, we obtain $C=2$. Hence the solution to the given initialvalue problem is:

$$
y=1-\frac{1}{t}+\frac{2 e^{-t}}{t} .
$$

4. Boyce and DiPrima, p. 40, Problem 28.

Solution: It is easy to solve the initial-value problem

$$
y^{\prime}+\frac{2}{3} y=1-\frac{1}{2} t, \quad y(0)=y_{o}
$$

to get the solution

$$
y(t)=\frac{21}{8}-\frac{3}{4} t+\left(y_{o}-\frac{21}{8}\right) e^{-2 t / 3}
$$

Indeed, $\mu=e^{2 t / 3}$ is an integrating factor. Multiplying both sides of the given equation by μ, we obtain

$$
\left(y e^{2 t / 3}\right)^{\prime}=e^{2 t / 3}-\frac{1}{2} t e^{2 t / 3}
$$

Integrating both sides of the preceding equation, we get

$$
\begin{aligned}
y e^{2 t / 3} & =\frac{3}{2} e^{2 t / 3}-\frac{1}{2} \int t e^{2 t / 3} d t \\
& =\frac{3}{2} e^{2 t / 3}-\frac{1}{2}\left(t \cdot \frac{3}{2} e^{2 t / 3}-\frac{9}{4} e^{2 t / 3}\right)+C,
\end{aligned}
$$

where we have used integration by parts. Using the initial condition to put C in terms of y_{o} leads to the solution given above.
If there is a $t=\tau$ at which the solution touches the t-axis but does not cross it, then at $t=\tau$ we have $y(\tau)=0$ and $y^{\prime}(\tau)=0$. From the given differential equation, we observe that $\tau=2$. It follows that

$$
y(2)=\frac{21}{8}-\frac{3}{2}+\left(y_{o}-\frac{21}{8}\right) e^{-4 / 3}=0
$$

from which we obtain

$$
y_{o}=\frac{21-9 e^{4 / 3}}{8}=-1.642876
$$

5. Boyce and DiPrima, p. 41, Problem 30.

Solution: Multiplying both sides of the ODE

$$
y^{\prime}-y=1+3 \sin t
$$

by the integrating factor $\mu=e^{-t}$, we obtain

$$
\left(e^{-t} y\right)^{\prime}=e^{-t}+3 e^{-t} \sin t
$$

Integrating both sides of the preceding equation, we get

$$
\begin{equation*}
e^{-t} y=-e^{-t}+3 \int e^{-t} \sin t d t=-e^{-t}+3 I \tag{1}
\end{equation*}
$$

where $I=\int e^{-t} \sin t d t$. Using integration by parts twice, we have

$$
\begin{aligned}
I & =\int e^{-t} d(-\cos t)=-e^{-t} \cos t-\int e^{-t} \cos t d t \\
& =-e^{-t} \cos t-\left(e^{-t} \sin t+\int e^{-t} \sin t d t\right)=-e^{-t}(\sin t+\cos t)-I+C_{1}
\end{aligned}
$$

Hence $I=-\frac{1}{2}\left(e^{-t}(\sin t+\cos t)+C_{1}\right)$. Substituting this expression of I into (1), we obtain the general solution of the given differential equation:

$$
y=-1-\frac{3}{2}\left(e^{-t}(\sin t+\cos t)\right)+C e^{t}
$$

where C is a constant. Imposing the initial condition $y(0)=y_{o}$ leads to the solution of the given initial-value problem:

$$
y(t)=-1-\frac{3}{2}(\sin t+\cos t)+\left(y_{o}+\frac{5}{2}\right) e^{t}
$$

For a bounded solution, we must have $y_{o}=-5 / 2$.
6. Boyce and DiPrima, p. 48, Problem 2.

Solution: From $y^{\prime}=\frac{x^{2}}{y\left(1+x^{3}\right)}$, we get

$$
y d y=\frac{x^{2}}{1+x^{3}} d x
$$

It follows that the general solution is:

$$
\frac{y^{2}}{2}=\frac{1}{3} \ln \left|1+x^{3}\right|+C .
$$

The given differential equation requires that $y \neq 0$ and $x \neq-1$.
7. Boyce and DiPrima, p. 48, Problem 16 (a), (c).

Solution: From $y^{\prime}=\frac{x\left(x^{2}+1\right)}{4 y^{3}}$, we get

$$
4 y^{3} d y=\left(x^{3}+x\right) d x
$$

which has the general solution

$$
y^{4}=\frac{x^{4}}{4}+\frac{x^{2}}{2}+C
$$

The initial condition $y(0)=-1 / \sqrt{2}$ dictates that $C=1 / 4$. Hence we have

$$
y^{4}=\frac{x^{4}+2 x^{2}+1}{4}=\frac{\left(x^{2}+1\right)^{2}}{4}
$$

It follows that the solution to the given initial-value problem is:

$$
y=-\sqrt{\frac{x^{2}+1}{2}} .
$$

The domain of the solution is clearly $(-\infty, \infty)$.
8. Boyce and DiPrima, p. 49, Problem 22.

Solution: The given equation $y^{\prime}=3 x^{2} /\left(3 y^{2}-4\right)$ is separable. Separating the variables and integrating both sides of the equation, we get

$$
\int\left(3 y^{2}-4\right) d y=\int 3 x^{2} d x+C
$$

or

$$
y^{3}-4 y=x^{3}+C
$$

where C is a constant to be determined from the initial condition. From the initial condition $y(1)=0$, we obtain $C=-1$. Hence the required solution is given implicitly by the equation

$$
y^{3}-4 y=x^{3}-1
$$

A glance at the given differential equation reveals that $y^{\prime} \rightarrow \pm \infty$ as $y \rightarrow \pm 2 / \sqrt{3}$. When $y=2 / \sqrt{3}, x=[1-16 /(3 \sqrt{3})]^{1 / 3} \approx-1.276$; when $y=-2 / \sqrt{3}, x=[1+$ $16 /(3 \sqrt{3})]^{1 / 3} \approx 1.598$. Hence the approximate interval on which the solution is defined is $(-1.276,1.598)$, which contains the point $x=1$.
9. Boyce and DiPrima, p. 49, Problem 24.

Solution: It is easy to solve the initial-value problem

$$
y^{\prime}=\frac{2-e^{x}}{3+2 y}, \quad y(0)=0
$$

The solution is

$$
3 y+y^{2}=2 x-e^{x}+1
$$

or in explicit form

$$
y=-\frac{3}{2}+\sqrt{\frac{13}{4}+2 x-e^{x}}
$$

The solution y assumes its maximum value when the function $f(x)=13 / 4+2 x-e^{x}$ is at its absolute maximum. Note that $f^{\prime}(x)=0$ implies $2=e^{x}$ or $x=\ln 2$, and $f^{\prime \prime}(\ln 2)=-2<0$. Hence f has only one local maximum, which is located at $x=\ln 2$. Since $f(\ln 2)=13 / 4+2(\ln 2-1)>f(0)=9 / 4, f$ attains its maximum value at $x=\ln 2$.
10. Boyce and DiPrima, p. 51, Problem 38.

Solution: (a) The given differential equation can be put in the form

$$
\frac{d y}{d x}=f(y / x), \quad \text { where } f(y / x)=\frac{3(y / x)^{2}-1}{2(y / x)}
$$

Hence the given differential equation is homogeneous.
(b) The substitution $y=v x$ reduces the given differential equation to the form

$$
v^{\prime} x+v=\frac{3}{2} v-\frac{1}{2 v}
$$

which is equivalent to

$$
x \frac{d v}{d x}=\frac{1}{2}\left(v-\frac{1}{v}\right)=\frac{1}{2} \cdot \frac{v^{2}-1}{v} .
$$

It is easy to see that $v=1$ and $v=-1$ are special solutions of the preceding differential equation. To seek other solutions (i.e., $v \neq \pm 1$), we put the separable equation in the form

$$
\frac{2 v}{v^{2}-1} d v=\frac{d x}{x}
$$

The general solution to the preceding equation is:

$$
\ln \left|v^{2}-1\right|=\ln |x|+C_{1} \quad \text { or } \quad \ln \left|\frac{y^{2}-x^{2}}{x^{3}}\right|=C_{1}
$$

which can be put in the form

$$
\left|\frac{y^{2}-x^{2}}{x^{3}}\right|=C, \quad \text { where } C=e^{C_{1}} \text { is a positive constant. }
$$

Note that if we put $C=0$, then we get $y= \pm x$, which are none other than the special solutions $v= \pm 1$. Thus the formula $\left|y^{2}-x^{2}\right|=C\left|x^{3}\right|$, where the constant $C \geq 0$, includes all solutions of the given differential equation.

