MA 214 Calculus IV (Spring 2016)

Section 2

Homework Assignment 3

Solutions

1. Boyce and DiPrima, p. 75, Problems 3 and 6.

Solution: Problem 3. Note that the interval which contains π and on which $p(t)=$ $\tan t$ is continuous is $(\pi / 2,3 \pi / 2)$, and $g(t)=\sin t$ is continuous on $(-\infty, \infty)$. By Theorem 2.4.1, there exists a unique solution of the given initial-value problem on $(\pi / 2,3 \pi / 2)$.

Problem 6. First we put the given ODE in standard form: For $t>0$ and $t \neq 1$,

$$
y^{\prime}+\frac{1}{\ln t} y=\frac{\cot t}{\ln t}
$$

The interval which contains 2 and on which $p(t)=1 / \ln t$ and $g(t)=\cot t / \ln t$ are continuous is $(1, \infty) \cap(0, \pi)$. Hence by Theorem 2.4.1, the given initial-value problem has a unique solution on $(1, \pi)$.
2. Boyce and DiPrima, p. 76, Problems 9 and 10.

Solution: Problem 9. Let $f(t, y)=\frac{\ln |t y|}{1-t^{2}+y^{2}}$. Then

$$
\frac{\partial f}{\partial y}=\frac{\left(1-t^{2}+y^{2}\right)-2 y^{2} \ln |t y|}{y\left(1-t^{2}+y^{2}\right)^{2}}
$$

Both f and $\partial f / \partial y$ are continuous on the open region

$$
\Omega=\left\{(t, y) \in \mathbb{R}^{2}: t \neq 0, y \neq 0,1-t^{2}+y^{2} \neq 0\right\}
$$

which is the region where the hypotheses of Theorem 2.4.2 are satisfied.
Problem 10. Let $f(t, y)=\left(t^{2}+y^{2}\right)^{3 / 2}$. Then $\partial f / \partial y=3 y\left(t^{2}+y^{2}\right)^{1 / 2}$. Both f and $\partial f / \partial y$ are continuous on the entire $t y$-plane. Hence the hypotheses of Theorem 2.4.2 are satisfied everywhere in the $t y$-plane.
3. Boyce and DiPrima, p. 76, Problem 14.

Solution: For $y_{o}=0$, clearly $y=0$, which is defined on $(-\infty, \infty)$, is the unique solution of the initial-value problem in question.

For $y_{o} \neq 0$, by the uniqueness theorem the solution curve will never meet the line $y=0$, i.e., $y(t) \neq 0$ for all t. By dividing both sides of the given ODE by y^{2}, we separate the variables and obtain

$$
\frac{1}{y^{2}} d y=2 t d t, \quad \text { or } \quad-\frac{1}{y}=t^{2}+C
$$

The initial condition $y(0)=y_{o}$ dictates that $C=-1 / y_{o}$. Hence the solution of the initial-value problem is

$$
y=\frac{-1}{t^{2}-1 / y_{o}}
$$

For $y_{o}<0$, we have $t^{2}-1 / y_{o}>0$, and the solution is defined on $(-\infty, \infty)$.
For $y_{o}>0$, the solution cannot cross the lines $t= \pm \sqrt{1 / y_{o}}$. Since $0 \in\left(-1 / \sqrt{y_{o}}, 1 / \sqrt{y_{o}}\right)$, the interval of existence of the solution is $\left(-1 / \sqrt{y_{o}}, 1 / \sqrt{y_{o}}\right)$.
4. Boyce and DiPrima, p. 77, Problem 22.

Solution: Let $f(t, y)=\frac{-t+\left(t^{2}+4 y\right)^{1 / 2}}{2}$.
(a) For $y_{1}(t)=1-t$, we have $y_{1}^{\prime}=-1$ and

$$
f(t, 1-t)=\frac{-t+\sqrt{(t-2)^{2}}}{2}=\left\{\begin{array}{ll}
\frac{-t+(t-2)}{2} \\
\frac{-t+(2-t)}{2}
\end{array}= \begin{cases}-1 & \text { for } t \geq 2 \\
1-t & \text { for } t<2\end{cases}\right.
$$

Hence y_{1} is a solution of the given initial-value problem for $t \geq 2$. For $y_{2}(t)=-t^{2} / 4$, we have $y_{2}^{\prime}=-t / 2$ and $f\left(t,-t^{2} / 4\right)=-t / 2$ for all t; moreover, $y_{2}(2)=-1$. Hence y_{2} is a solution of the given initial-value problem for all t.
(b) Since $\frac{\partial f}{\partial y}=\frac{1}{\sqrt{t^{2}+4 y}}$, which is not continuous in any rectangular box containing the point $(t, y)=(2,-1)$, the hypotheses of Theorem 2.4.2 are not all satisfied. Hence the existence of two solutions of the given problem does not contradict Theorem 2.4.2.
(c) For $y=c t+c^{2}$, where c is a constant, we have $y^{\prime}(t)=c$ and

$$
f\left(t, c t+c^{2}\right)=\frac{-t+\sqrt{(t+2 c)^{2}}}{2}=c
$$

for $t \geq-2 c$, and $f\left(t, c t+c^{2}\right)=-(t+c)$ for $t<-2 c$. Hence $y=c t+c^{2}$ satisfies the given differential equation for $t \geq-2 c$. It is obvious that if $c=-1$, the initial condition is also satisfied, and the solution $y=y_{1}(t)$ is obtained.
If $y=c t+c^{2}=y_{2}(t)=-t^{2} / 4$, then $c t+c^{2}=-t^{2} / 4$ or $(t+2 c)^{2}=0$, which implies $t=-2 c$. This is impossible because t is a variable and c is a constant. Therefore there is no choice of constant c which makes $y=c t+c^{2}=y_{2}(t)$.

Figure 1: Sketch of the graph of $f(y)=y(y-1)(y-2)$.
5. Boyce and DiPrima, p. 88, Problem 3.

Solution: Here $d y / d t=f(y)=y(y-1)(y-2), y_{0} \geq 0$. Hence the critical points, at which $f(y)=0$, are: $y=0,1,2$. A sketch of the graph of f is given in Figure 1.
The critical points divide $(0, \infty)$ into three open intervals, namely: $(0,1),(1,2)$, and $(2, \infty)$. It is easy to see that $y^{\prime}=f(y)>0$ and $y(t)$ is increasing for $y \in(0,1)$ and $y \in(2, \infty) ; y^{\prime}=f(y)<0$ and $y(t)$ is decreasing for $y \in(1,2)$. See Figure 1. The phase line of the system modeled by the given differential equation (with $y_{0} \geq 0$) is shown in Figure 2. It follows that the critical points $y=0, y=1$, and $y=2$ are unstable, asymptotically stable, and unstable, respectively.
To determine the concavity of solution curves, we examine the sign of $y^{\prime \prime}=f(y) f^{\prime}(y)$.

Figure 2: Phase line of system modeled by $y^{\prime}=y(y-1)(y-2), y_{0} \geq 0$.

Intervals for y	$(0, a)$	$(a, 1)$	$(1, b)$	$(b, 2)$	(b, ∞)
$y^{\prime}=f(y)$	+	+	-	-	+
$f^{\prime}(y)$	+	-	-	+	+
$y^{\prime \prime}=f(y) f^{\prime}(y)$	+	-	+	-	+
Concavity	CU	CD	CU	CD	CU

Table 1: Concavity of solution curves on various intervals for y.

By direct differentiation, we find $f^{\prime}(y)=3 y^{2}-6 y+2$ and f assumes a local maximum at $a=1-\sqrt{3} / 3$ and a local minimum at $b=1+\sqrt{3} / 3$. Thus $f^{\prime}(y)>0$ on the intervals $(0, a)$ and $(b, \infty) ; f^{\prime}(y)<0$ on the interval (a, b). From the sign of $f(y)$ and of $f^{\prime}(y)$, we infer the concavity of solution curves on various intervals for y; see Table 1.

Representative solution curves will be sketched on the board in class on Wednesday, 9/23.
6. Boyce and DiPrima, p. 89, Problem 8.

Solution: Here $d y / d t=f(y)=-k(y-1)^{2}, k>0,-\infty<y_{0}<\infty$. There is only one critical point: $y=1$. A sketch of the graph of f for the case $k=2$ is given in Figure 3.

Figure 3: Sketch of the graph of $f(y)=-k(y-1)^{2}$, where k is taken as 2 .

Figure 4: Phase line of system modeled by $y^{\prime}=-k(y-1)^{2}, k>0$.

The critical point $y=1$ divides $(-\infty, \infty)$ into two open intervals: $(-\infty, 1)$ and $(1, \infty)$, on both of which $y^{\prime}=f(y)<0$. The phase line in question is shown in Figure 4. It is clear that the critical point $y=1$ is semi-stable.
Since $f^{\prime}(y)=-2 k(y-1)$, clearly $f^{\prime}(y)>0$ for $y \in(-\infty, 1)$, and $f^{\prime}(y)<0$ for $y \in(1, \infty)$. It follows that $y^{\prime \prime}(t)=f(y) f^{\prime}(y)<0$ and solution curves are concave down when $y \in(-\infty, 1) ; y^{\prime \prime}(t)=f(y) f^{\prime}(y)>0$ and solution curves are concave up when $y \in(1, \infty)$.

Representative solution curves will be sketched on the board in class on Wednesday, 9/23.

Figure 5: Sketch of the graph of $f(y)=y\left(1-y^{2}\right)$.

Figure 6: Phase line of system modeled by $y^{\prime}=y\left(1-y^{2}\right),-\infty<y_{0}<\infty$.

Intervals for y	$(-\infty,-1)$	$(-1,-1 / \sqrt{3})$	$(-1 / \sqrt{3}, 0)$	$(0,1 / \sqrt{3})$	$(1 / \sqrt{3}, 1)$	$(1, \infty)$
$y^{\prime}=f(y)$	+	-	-	+	+	-
$f^{\prime}(y)$	-	-	+	+	-	-
$y^{\prime \prime}=f(y) f^{\prime}(y)$	-	+	-	+	-	+
Concavity	CD	CU	CD	CU	CD	CU

Table 2: Concavity of solution curves on various intervals for y.
7. Boyce and DiPrima, p. 89, Problem 10.

Solution: Here $d y / d t=f(y)=y\left(1-y^{2}\right),-\infty<y_{0}<\infty$. The critical points are clearly: $y=-1,0,1$. A sketch of the graph of f is given in Figure 5.
The critical points divide $(-\infty, \infty)$ into four open intervals, namely: $(-\infty,-1),(-1,0)$, $(0,1)$, and $(1, \infty)$. It is easy to see that $y^{\prime}=f(y)>0$ and $y(t)$ is increasing for $y \in(-\infty,-1)$ and $y \in(0,1) ; y^{\prime}=f(y)<0$ and $y(t)$ is decreasing $y \in(-1,0)$ and $y \in(1, \infty)$. See Figure 5 . The phase line of the system modeled by the given differential equation is shown in Figure 6. It follows that the critical points $y=-1, y=0$, and $y=1$ are asymptotically stable, unstable, and asymptotically stable, respectively.
To determine the concavity of solution curves, we examine the sign of $y^{\prime \prime}=f(y) f^{\prime}(y)$. By direct differentiation, we find $f^{\prime}(y)=1-3 y^{2}$ and f assumes a local minimum at $y=-1 / \sqrt{3}$ and a local maximum at $y=1 / \sqrt{3}$. Thus $f^{\prime}(y)<0$ on the intervals $(-\infty,-1 / \sqrt{3})$ and $(1 / \sqrt{3}, \infty) ; f^{\prime}(y)>0$ on the interval $(-1 / \sqrt{3}, 1 / \sqrt{3})$. From the sign of $f(y)$ and of $f^{\prime}(y)$, we infer the concavity of solution curves on various intervals for y; see Table 2.
Representative solution curves will be sketched on the board in class on Wednesday, 9/23.
8. Boyce and DiPrima, p. 90, Problem 18.

Solution: (a) Let $V(t)$ and $A(t)$ be the volume and surface area of water in the conical pond at time t, respectively. Let $r(t)$ be the radius of the water surface and $d(t)$ be the depth of the water at the center of the pond. Then we have

$$
d(t)=\frac{h r(t)}{a}, \quad \text { and } \quad V(t)=\frac{1}{3} \pi r^{2}(t) d(t)=\left(\frac{\pi h}{3 a}\right) r^{3}(t)
$$

which imply

$$
r(t)=\left(\frac{3 a V(t)}{\pi h}\right)^{1 / 3}, \quad \text { and } \quad A(t)=\pi\left(\frac{3 a}{\pi h}\right)^{2 / 3} V^{2 / 3}(t)
$$

Hence, by the given hypotheses, $V(t)$ satisfies the differential equation

$$
\frac{d V}{d t}=k-\alpha A=k-\pi\left(\frac{3 a}{\pi h}\right)^{2 / 3} V^{2 / 3}
$$

where α is the coefficient of evaporation.
(b) In what follows we use the suffix "eq" to denote the equilibrium value of a quantity. The equilibrium depth $d_{\text {eq }}$ of water in the pond is determined by the condition $V^{\prime}=0$ or $A_{\text {eq }}=k / \alpha$. Since

$$
A_{\mathrm{eq}}=\pi r_{\mathrm{eq}}^{2}=\pi\left(a d_{\mathrm{eq}} / h\right)^{2},
$$

the equilibrium depth is given by

$$
d_{\mathrm{eq}}=\sqrt{\frac{k}{\alpha \pi}} \cdot \frac{h}{a} .
$$

Note that $V^{\prime}<0$ and $V^{\prime}>0$ when $V>V_{\text {eq }}$ and $V<V_{\text {eq }}$, respectively. Hence the equilibrium is asymptotically stable.
(c) The pond will not overflow if $d_{\mathrm{eq}} \leq h$ or $k \leq \alpha \pi a^{2}$.

