MA 214 Calculus IV (Spring 2016)

Section 2

Homework Assignment 5

Solutions

1. Boyce and DiPrima, p. 144, Problem 8.

Solution: The characteristic equation of the differential equation

$$
y^{\prime \prime}-2 y^{\prime}-2 y=0
$$

is $r^{2}-2 r-2=0$, which by virtue of the quadratic formula has two real solutions

$$
r_{1}=1+\sqrt{3}, \quad r_{2}=1-\sqrt{3}
$$

Hence the general solution of the given equation is:

$$
y=c_{1} e^{(1+\sqrt{3}) t}+c_{2} e^{(1-\sqrt{3}) t}
$$

where c_{1} and c_{2} are arbitrary constants.
2. Boyce and DiPrima, p. 144, Problem 15.

Solution: The characteristic equation of the differential equation

$$
y^{\prime \prime}+8 y^{\prime}-9 y=0
$$

is $r^{2}+8 r-9=0$, which has two real solutions $r_{1}=1$ and $r_{2}=-9$. Hence the general solution of the given differential equation is:

$$
y=c_{1} e^{t}+c_{2} e^{-9 t}
$$

where c_{1} and c_{2} are arbitrary constants. It follows from the preceding formula for the general solution that

$$
y^{\prime}=c_{1} e^{t}-9 c_{2} e^{-9 t}
$$

From the initial conditions $y(1)=1$ and $y^{\prime}(1)=0$, we obtain the simultaneous equations

$$
\begin{aligned}
c_{1} e+c_{2} e^{-9} & =1 \\
c_{1} e-9 c_{2} e^{-9} & =0,
\end{aligned}
$$

whose unique solution is given by

$$
c_{1}=\frac{9}{10} e^{-1}, \quad c_{2}=\frac{1}{10} e^{9} .
$$

Hence the solution of the given initial-value problem is

$$
y=\frac{9}{10} e^{t-1}+\frac{1}{10} e^{-9(t-1)} .
$$

Since $y^{\prime}=\frac{9}{10} e^{t-1}\left(1-e^{-10(t-1)}\right)>0$ and $y^{\prime \prime}=\frac{9}{10} e^{t-1}\left(1-e^{-10(t-1)}\right)+9 e^{-9(t-1)}>0$ for $t>1$, we see that $y(t)$ is increasing and is concave upward on $[1, \infty)$. Moreover, $y(t) \rightarrow \infty$ as $t \rightarrow \infty$.
3. Boyce and DiPrima, p. 144, Problem 18.

Solution: Since $r_{1}=-1 / 2$ and $r_{2}=-2$, the characteristic equation of the differential equation in question is $\left(r+\frac{1}{2}\right)(r+2)=0$ or $2 r^{2}+5 r+2=0$. Hence the required differential equation is:

$$
2 y^{\prime \prime}+5 y^{\prime}+2 y=0
$$

4. Boyce and DiPrima, p. 144, Problem 21.

Solution: The characteristic equation of the given differential equation is $r^{2}-r-2=0$, which has two real roots $r_{1}=2$ and $r_{2}=-1$. Hence the general solution is

$$
y=c_{1} e^{2 t}+c_{2} e^{-t} .
$$

From the initial conditions $y(0)=\alpha$ and $y^{\prime}(0)=2$, we obtain the simultaneous equations

$$
\begin{aligned}
c_{1}+c_{2} & =\alpha, \\
2 c_{1}-c_{2} & =2,
\end{aligned}
$$

from which we obtain

$$
c_{1}=\frac{\alpha+2}{3}, \quad c_{2}=\frac{2(\alpha-1)}{3} .
$$

For a given α, the solution of the given initial-value problem is

$$
y(t)=\frac{\alpha+2}{3} e^{2 t}+\frac{2(\alpha-1)}{3} e^{-t} .
$$

For the solution to approach zero as $t \rightarrow \infty$, it is necessary and sufficient that $\alpha=-2$.
5. Boyce and DiPrima, p. 164, Problem 4 and Problem 5.

Solution: Problem 4. We have

$$
e^{2-\frac{\pi}{2} i}=e^{2} e^{-\frac{\pi}{2} i}=e^{2}\left(\cos \left(-\frac{\pi}{2}\right)+i \sin \left(-\frac{\pi}{2}\right)\right)=-i e^{2}
$$

Problem 5. Note that $2^{z}=e^{z \ln 2}$ for any complex number z. Hence we have

$$
2^{1-i}=e^{(1-i) \ln 2}=e^{\ln 2} e^{-i \ln 2}=2(\cos (\ln 2)-i \sin (\ln 2)) .
$$

6. Boyce and DiPrima, p. 164, Problem 8 and Problem 10.

Solution: Problem 8. The characteristic equation is $r^{2}-2 r+6=0$. Using the quadratic formula, we find the roots of the characteristic equation, which are $r_{1}=$ $1+i \sqrt{5}, r_{2}=1-i \sqrt{5}$. Hence the general solution of the given equation is:

$$
y=c_{1} e^{t} \cos \sqrt{5} t+c_{2} e^{t} \sin \sqrt{5} t
$$

where c_{1} and c_{2} are arbitrary constants.
Problem 10. The characteristic equation is $r^{2}+2 r+2=0$. Its roots are $r=-1 \pm i$. Hence the general solution of the given equation is:

$$
y=c_{1} e^{-t} \cos t+c_{2} e^{-t} \sin t
$$

where c_{1} and c_{2} are arbitrary constants.
7. Boyce and DiPrima, p. 164, Problem 18.

Solution: The characteristic equation of the given equation is $r^{2}+4 r+5=0$, which has conjugate complex roots $r_{1}=-2+i, r_{2}=-2-i$. The general solution is

$$
y=c_{1} e^{-2 t} \cos t+c_{2} e^{-2 t} \sin t
$$

From the initial condition $y(0)=1$ and $y^{\prime}(0)=0$, we get $c_{1}=1$ and the equation $-2 c_{1}+c_{2}=0$, respectively. It follows that $c_{2}=2$. Hence the solution of the given initial-value problem is

$$
y=e^{-2 t} \cos t+2 e^{-2 t} \sin t .
$$

The solution describes a decaying oscillation. As $t \rightarrow \infty, y(t) \rightarrow 0$.
8. Boyce and DiPrima, p. 164, Problem 20.

Solution: The roots of the characteristic equation $r^{2}+1=0$ are: $r= \pm i$. Hence the general solution of the given equation is:

$$
y=c_{1} \cos t+c_{2} \sin t .
$$

From the initial conditions $y(\pi / 3)=2$ and $y^{\prime}(\pi / 3)=4$, we obtain the following two linear equations on c_{1} and c_{2} :

$$
\begin{aligned}
\frac{1}{2} c_{1}+\frac{\sqrt{3}}{2} c_{2} & =2 \\
-\frac{\sqrt{3}}{2} c_{1}+\frac{1}{2} c_{2} & =-4
\end{aligned}
$$

The determinant of coefficients is:

$$
\Delta=\left|\begin{array}{cc}
1 / 2 & \sqrt{3} / 2 \\
-\sqrt{3} / 2 & 1 / 2
\end{array}\right|=1 .
$$

It follows from Cramer's rule that

$$
c_{1}=\left|\begin{array}{cc}
2 & \sqrt{3} / 2 \\
-4 & 1 / 2
\end{array}\right|=1+2 \sqrt{3}, \quad c_{2}=\left|\begin{array}{cc}
1 / 2 & 2 \\
-\sqrt{3} / 2 & -4
\end{array}\right|=-2+\sqrt{3} .
$$

Hence the solution of the given initial-value problem is:

$$
y=(1+2 \sqrt{3}) \cos t+(-2+\sqrt{3}) \sin t
$$

which describes a steady harmonic oscillation.
9. Boyce and DiPrima, Section 3.5, p. 172, Problem 6, and p. 173, Problem 10.

Solution: Problem 6. The characteristic equation of the given equation is $r^{2}-6 r+$ $9=(r-3)^{2}=0$, which has double real root $r_{1}=r_{2}=3$. The general solution is $y=c_{1} e^{3 t}+c_{2} t e^{3 t}$.
Problem 10. The characteristic equation of the given equation is $2 r^{2}+2 r+1=0$, which has a pair of cojugate complex roots $r_{1}=-\frac{1}{2}+\frac{1}{2} i, r_{2}=-\frac{1}{2}-\frac{1}{2} i$. The general solution is $y=c_{1} e^{-t / 2} \cos (t / 2)+c_{2} e^{-t / 2} \sin (t / 2)$.
10. Boyce and DiPrima, Section 3.5, p. 173, Problem 11.

Solution: The characteristic equation of the given equation is $9 r^{2}-12 r+4=(3 r-$ $2)^{2}=0$, which has double real root $r_{1}=r_{2}=2 / 3$. The general solution is $y=$ $c_{1} e^{2 t / 3}+c_{2} t e^{2 t / 3}$.
From the initial conditions $y(0)=2$ and $y^{\prime}(0)=-1$, we obtain the equations

$$
c_{1}=2, \quad \frac{2}{3} c_{1}+c_{2}=-1,
$$

from which we obtain $c_{1}=2, c_{2}=-7 / 3$. Hence the solution of the given initial-value problem is:

$$
y=2 e^{2 t / 3}-\frac{7}{3} t e^{2 t / 3}=e^{2 t / 3}\left(2-\frac{7}{3} t\right) .
$$

Since $e^{2 t / 3}>0$, we see that $y \rightarrow-\infty$ as $t \rightarrow \infty$.

