MA 214 Calculus IV (Spring 2016)

Section 2

Homework Assignment 6

Solutions

1. Boyce and DiPrima, p. 151, Problem 12.

Solution: First we put the given differential equation in standard form:

$$
y^{\prime \prime}+\frac{1}{x-2} y^{\prime}+\tan x=0 .
$$

The function $p(x)=1 /(x-2)$ is continuous on $(-\infty, 2) \cup(2, \infty)$, whereas $x=(2 k+$ 1) $\pi / 2$, where $k=0, \pm 1, \pm 2, \cdots$, are the points of discontinuity of the function $q(x)=$ $\tan x$. The largest interval which contains $x_{o}=3$ and on which both p and q are continuous is $(2,3 \pi / 2)$. By Theorem 3.2.1, the longest interval on which the given initial-value problem is certain to have a unique solution is $(2,3 \pi / 2)$.
2. Boyce and DiPrima, p. 156, Problem 17.

Solution: We have

$$
W(f, g)=\left|\begin{array}{cc}
e^{2 t} & g \\
2 e^{2 t} & g^{\prime}
\end{array}\right|=e^{2 t}\left|\begin{array}{cc}
1 & g \\
2 & g^{\prime}
\end{array}\right|=3 e^{4 t}
$$

Hence g satisfies the differential equation

$$
g^{\prime}-2 g=3 e^{2 t}
$$

An integrating factor of the preceding linear equation is $\mu(t)=e^{-2 t}$. Hence we have $\left(e^{-2 t} g\right)^{\prime}=3$, which implies

$$
e^{-2 t} g(t)=3 t+C, \quad \text { or } \quad g(t)=3 t e^{2 t}+C e^{2 t}
$$

where C is an arbitrary constant.
3. Boyce and DiPrima, p. 156, Problem 23.

Solution: We seek solutions y_{1} and y_{2} of the differential equation

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0
$$

that satisfy the initial conditions

$$
y_{1}(1)=1, \quad y_{1}^{\prime}(1)=0,
$$

and

$$
y_{2}(1)=0, \quad y_{2}^{\prime}(1)=1,
$$

respectively. The characteristic equation of the given differential equation is $r^{2}+4 r+$ $3=0$, which has two real roots $r_{1}=-1$ and $r_{2}=-3$. Hence the general solution is

$$
y=c_{1} e^{-t}+c_{2} e^{-3 t}
$$

From the initial conditions for solution y_{1}, we obtain the simultaneous equations

$$
\begin{array}{r}
c_{1} e^{-1}+c_{2} e^{-3}=1, \\
c_{1} e^{-1}+3 c_{2} e^{-3}=0,
\end{array}
$$

the solution of which gives $c_{1}=3 e / 2$ and $c_{2}=-e^{3} / 2$. From the initial conditions for solution y_{2}, we get the simultaneous equations

$$
\begin{aligned}
c_{1} e^{-1}+c_{2} e^{-3} & =0 \\
c_{1} e^{-1}+3 c_{2} e^{-3} & =-1
\end{aligned}
$$

the solution of which gives $c_{1}=e / 2$ and $c_{2}=-e^{3} / 2$. Hence we have

$$
y_{1}=\frac{3}{2} e^{-(t-1)}-\frac{1}{2} e^{-3(t-1)}, \quad y_{2}=\frac{1}{2} e^{-(t-1)}-\frac{1}{2} e^{-3(t-1)} .
$$

4. Boyce and DiPrima, p. 156, Problem 27.

Solution: Let $L[y]=(1-x \cot x) y^{\prime \prime}-x y^{\prime}+y$. For $y_{1}=x$, we get $y_{1}^{\prime}=1, y_{1}^{\prime \prime}=0$. Hence we have

$$
L\left[y_{1}\right]=0-x(1)+x=0 .
$$

For $y_{2}=\sin x$, we obtain $y_{2}^{\prime}=\cos x, y_{2}^{\prime \prime}=-\sin x$. Hence we have

$$
L\left[y_{2}\right]=(1-x \cot x)(-\sin x)-x(\cos x)+\sin x=0 .
$$

Therefore both y_{1} and y_{2} are solutions of the given differential equation. The Wronskian of solutions y_{1} and y_{2} is:

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
x & \sin x \\
1 & \cos x
\end{array}\right|=x \cos x-\sin x
$$

Since $W\left(y_{1}, y_{2}\right)(\pi / 2)=-1 \neq 0$, the solutions y_{1} and y_{2} constitute a fundamental set of solutions of the given differential equation on the interval $(0, \pi)$.
5. Boyce and DiPrima, p. 156, Problem 29.

Solution: In standard form the given differential equation reads:

$$
y^{\prime \prime}-\frac{t+2}{t} y^{\prime}+\frac{t+2}{t^{2}} y=0 .
$$

Hence $p(t)=-1-2 / t$. Therefore the Wronskian W satisfies the differential equation

$$
W^{\prime}+(-1-2 / t) W=0
$$

the general solution of which is $W=C e^{t} t^{2}$, where C is an arbitrary constant.
6. Boyce and DiPrima, p. 157, Problem 33.

Solution: We recast the given equation in standard form as:

$$
y^{\prime \prime}+\frac{p^{\prime}}{p} y^{\prime}+\frac{q}{p} y=0
$$

The Wronskian of two solutions of the preceding equation satisfies the equation

$$
\begin{equation*}
\frac{d W}{d t}+\frac{p^{\prime}}{p} W=0 \tag{1}
\end{equation*}
$$

An integrating factor of the equation on W is given by

$$
\mu=e^{\int\left(p^{\prime} / p\right) d t}=e^{\ln p}=p
$$

Multiplying both sides of (1) by the integrating factor $\mu=p$, we obtain

$$
(p(t) W(t))^{\prime}=0 .
$$

Hence we have $p(t) W(t)=c$ or

$$
W(t)=\frac{c}{p(t)},
$$

where c is an arbitrary constant.
7. Boyce and DiPrima, p. 157, Problem 35.

Solution: In standard form the given differential equation reads:

$$
y^{\prime \prime}-\frac{2}{t^{2}} y^{\prime}+\frac{3+t}{t^{2}} y=0
$$

Hence $p(t)=-2 / t^{2}$. Therefore the Wronskian W satisfies the differential equation

$$
W^{\prime}-\left(2 / t^{2}\right) W=0
$$

the general solution of which is $W=C e^{-2 / t}$, where C is an arbitrary constant. From $W(2)=3$ we obtain $C=3 e$. Hence $W=3 e \cdot e^{-2 / t}$ and $W(4)=3 \sqrt{e}$.
8. Boyce and DiPrima, p. 157, Problem 40.

Solution. Suppose $t_{0} \in I$ is a common point of inflection of y_{1} and y_{2}. Then $y_{1}^{\prime \prime}\left(t_{0}\right)=$ $y_{2}^{\prime \prime}\left(t_{0}\right)=0$. Since $W^{\prime}\left(t_{0}\right)=y_{1}\left(t_{0}\right) y_{2}^{\prime \prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime \prime}\left(t_{0}\right)$, we have $W^{\prime}\left(t_{0}\right)=0$. If y_{1} and y_{2} form a set of fundamental solutions, we must have $W\left(y_{1}, y_{2}\right)\left(t_{0}\right) \neq 0$. It then follows from the equation $W^{\prime}\left(t_{0}\right)+p\left(t_{0}\right) W\left(t_{0}\right)=0$ that $p\left(t_{0}\right)=0$.
Since y_{1} and y_{2} are solutions, they satisfy

$$
y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}=0, \quad y_{2}^{\prime \prime}+p(t) y_{2}^{\prime}+q(t) y_{2}=0 .
$$

Substituting $t=t_{0}$ in the preceding equations, we obtain

$$
q\left(t_{0}\right) y_{1}\left(t_{0}\right)=0, \quad q\left(t_{0}\right) y_{2}\left(t_{0}\right)=0
$$

Since $W\left(y_{1}, y_{2}\right)\left(t_{0}\right) \neq 0, y_{1}\left(t_{0}\right)$ and $y_{2}\left(t_{0}\right)$ cannot both equal to zero. Hence we must have $q\left(t_{0}\right)=0$.
9. Boyce and DiPrima, Section 3.5, p. 173, Problem 20.

Solution: (a) The characteristic equation of the equation $y^{\prime \prime}+2 a y^{\prime}+a^{2} y=0$ is $r^{2}+2 a r+a^{2}=(r+a)^{2}=0$, which has repeated roots $r_{1}=r_{2}=-a$. Hence $y_{1}=e^{-a t}$ is a solution of the given homogeneous equation.
(b) By Abel's theorem, the Wronskian W of the given equation satisfies the differential equation

$$
W^{\prime}+p(t) W=W^{\prime}+2 a W=0
$$

the general solution of which is $W=c_{1} e^{-2 a t}$, where c_{1} is a constant. Since $W(t)=$ $y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$ and y_{1} is determined in (a), we see that y_{2} satisfies the first-order equation

$$
y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=c_{1} e^{-2 a t}
$$

(c) Putting $y_{1}=e^{-a t}$ into the differential equation for y_{2} in (b), we obtain the equation

$$
y_{2}^{\prime}+a y_{2}=c_{1} e^{-a t}
$$

which has the general solution

$$
y_{2}=c_{1} t e^{-a t}+c_{2} e^{-a t}
$$

To get one solution which forms a fundamental set of solutions with y_{1}, we simply take $c_{1}=1$ and $c_{2}=0$, i.e., we take $y_{2}=t e^{-a t}$.
10. Boyce and DiPrima, Section 3.5, p. 173, Problem 26.

Solution: In standard form the given equation reads:

$$
y^{\prime \prime}-\frac{t+2}{t} y^{\prime}+\frac{t+2}{t^{2}} y=0, \quad t>0
$$

Putting $y=v y_{1}=t v$ into the preceding equation, we obtain the equation

$$
t v^{\prime \prime}-t v^{\prime}=0
$$

Let $u=v^{\prime}$. Then u satisfies the equation $u^{\prime}-u=0$, which has $u=e^{t}$ as a non-trivial solution. Therefore $v^{\prime}=e^{t}$, and $v=e^{t}$ is a solution for v. Hence we have $y_{2}=t e^{t}$ as a second solution.
11. Boyce and DiPrima, Section 3.5, p. 173, Problem 28.

Solution: In standard form the given equation reads:

$$
y^{\prime \prime}-\frac{x}{x-1} y^{\prime}+\frac{1}{x-1} y=0, \quad x>1 .
$$

Putting $y=v y_{1}=e^{x} v$ into the preceding equation, we obtain the equation

$$
e^{x} v^{\prime \prime}+\left(2 e^{x}-\frac{x}{x-1} e^{x}\right) v^{\prime}=0
$$

or

$$
v^{\prime \prime}+\frac{x-2}{x-1} v^{\prime}=0 .
$$

Let $u=v^{\prime}$. Then u satisfies the equation

$$
u^{\prime}+\left(1-\frac{1}{x-1}\right) u=0
$$

which has $u=(x-1) e^{-x}$ as a non-trivial solution. From the equation $v^{\prime}=(x-1) e^{-x}$, we get $v=-x e^{-x}$ as one non-trivial solution. Hence $y_{2}=v y_{1}=-x$ is a second solution we seek. As the given homogeneous equation is linear, we may take $y_{2}=x$ as the second solution.

