
MA 214 Calculus IV (Spring 2016)

Section 2

Homework Assignment 6

Solutions

1. Boyce and DiPrima, p. 151, Problem 12.

Solution: First we put the given differential equation in standard form:

y′′ +
1

x− 2
y′ + tanx = 0.

The function p(x) = 1/(x − 2) is continuous on (−∞, 2) ∪ (2,∞), whereas x = (2k +
1)π/2, where k = 0,±1,±2, · · · , are the points of discontinuity of the function q(x) =
tanx. The largest interval which contains xo = 3 and on which both p and q are
continuous is (2, 3π/2). By Theorem 3.2.1, the longest interval on which the given
initial-value problem is certain to have a unique solution is (2, 3π/2).

2. Boyce and DiPrima, p. 156, Problem 17.

Solution: We have

W (f, g) =

∣∣∣∣∣ e2t g

2e2t g′

∣∣∣∣∣ = e2t

∣∣∣∣∣ 1 g

2 g′

∣∣∣∣∣ = 3e4t.

Hence g satisfies the differential equation

g′ − 2g = 3e2t.

An integrating factor of the preceding linear equation is µ(t) = e−2t. Hence we have
(e−2tg)′ = 3, which implies

e−2tg(t) = 3t+ C, or g(t) = 3te2t + Ce2t,

where C is an arbitrary constant.

3. Boyce and DiPrima, p. 156, Problem 23.

Solution: We seek solutions y1 and y2 of the differential equation

y′′ + 4y′ + 3y = 0
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that satisfy the initial conditions

y1(1) = 1, y′1(1) = 0,

and
y2(1) = 0, y′2(1) = 1,

respectively. The characteristic equation of the given differential equation is r2 + 4r+
3 = 0, which has two real roots r1 = −1 and r2 = −3. Hence the general solution is

y = c1e
−t + c2e

−3t.

From the initial conditions for solution y1, we obtain the simultaneous equations

c1e
−1 + c2e

−3 = 1,

c1e
−1 + 3c2e

−3 = 0,

the solution of which gives c1 = 3e/2 and c2 = −e3/2. From the initial conditions for
solution y2, we get the simultaneous equations

c1e
−1 + c2e

−3 = 0,

c1e
−1 + 3c2e

−3 = −1,

the solution of which gives c1 = e/2 and c2 = −e3/2. Hence we have

y1 =
3

2
e−(t−1) − 1

2
e−3(t−1), y2 =

1

2
e−(t−1) − 1

2
e−3(t−1).

4. Boyce and DiPrima, p. 156, Problem 27.

Solution: Let L[y] = (1 − x cotx)y′′ − xy′ + y. For y1 = x, we get y′1 = 1, y′′1 = 0.
Hence we have

L[y1] = 0− x(1) + x = 0.

For y2 = sinx, we obtain y′2 = cosx, y′′2 = − sinx. Hence we have

L[y2] = (1− x cotx)(− sinx)− x(cosx) + sin x = 0.

Therefore both y1 and y2 are solutions of the given differential equation. The Wronskian
of solutions y1 and y2 is:

W (y1, y2) =

∣∣∣∣∣ x sinx

1 cosx

∣∣∣∣∣ = x cosx− sinx.

Since W (y1, y2)(π/2) = −1 6= 0, the solutions y1 and y2 constitute a fundamental set
of solutions of the given differential equation on the interval (0, π).
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5. Boyce and DiPrima, p. 156, Problem 29.

Solution: In standard form the given differential equation reads:

y′′ − t+ 2

t
y′ +

t+ 2

t2
y = 0.

Hence p(t) = −1− 2/t. Therefore the Wronskian W satisfies the differential equation

W ′ + (−1− 2/t)W = 0,

the general solution of which is W = Cett2, where C is an arbitrary constant.

6. Boyce and DiPrima, p. 157, Problem 33.

Solution: We recast the given equation in standard form as:

y′′ +
p′

p
y′ +

q

p
y = 0.

The Wronskian of two solutions of the preceding equation satisfies the equation

dW

dt
+
p′

p
W = 0. (1)

An integrating factor of the equation on W is given by

µ = e
∫
(p′/p)dt = eln p = p.

Multiplying both sides of (1) by the integrating factor µ = p, we obtain

(p(t)W (t))′ = 0.

Hence we have p(t)W (t) = c or

W (t) =
c

p(t)
,

where c is an arbitrary constant.

7. Boyce and DiPrima, p. 157, Problem 35.

Solution: In standard form the given differential equation reads:

y′′ − 2

t2
y′ +

3 + t

t2
y = 0.

Hence p(t) = −2/t2. Therefore the Wronskian W satisfies the differential equation

W ′ − (2/t2)W = 0,

the general solution of which is W = Ce−2/t, where C is an arbitrary constant. From
W (2) = 3 we obtain C = 3e. Hence W = 3e · e−2/t and W (4) = 3

√
e.
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8. Boyce and DiPrima, p. 157, Problem 40.

Solution. Suppose t0 ∈ I is a common point of inflection of y1 and y2. Then y′′1(t0) =
y′′2(t0) = 0. Since W ′(t0) = y1(t0)y

′′
2(t0)− y2(t0)y′′1(t0), we have W ′(t0) = 0. If y1 and y2

form a set of fundamental solutions, we must have W (y1, y2)(t0) 6= 0. It then follows
from the equation W ′(t0) + p(t0)W (t0) = 0 that p(t0) = 0.

Since y1 and y2 are solutions, they satisfy

y′′1 + p(t)y′1 + q(t)y1 = 0, y′′2 + p(t)y′2 + q(t)y2 = 0.

Substituting t = t0 in the preceding equations, we obtain

q(t0)y1(t0) = 0, q(t0)y2(t0) = 0.

Since W (y1, y2)(t0) 6= 0, y1(t0) and y2(t0) cannot both equal to zero. Hence we must
have q(t0) = 0.

9. Boyce and DiPrima, Section 3.5, p. 173, Problem 20.

Solution: (a) The characteristic equation of the equation y′′ + 2ay′ + a2y = 0 is
r2 + 2ar + a2 = (r + a)2 = 0, which has repeated roots r1 = r2 = −a. Hence y1 = e−at

is a solution of the given homogeneous equation.

(b) By Abel’s theorem, the Wronskian W of the given equation satisfies the differential
equation

W ′ + p(t)W = W ′ + 2aW = 0,

the general solution of which is W = c1e
−2at, where c1 is a constant. Since W (t) =

y1y
′
2− y′1y2 and y1 is determined in (a), we see that y2 satisfies the first-order equation

y1y
′
2 − y′1y2 = c1e

−2at.

(c) Putting y1 = e−at into the differential equation for y2 in (b), we obtain the equation

y′2 + ay2 = c1e
−at,

which has the general solution

y2 = c1te
−at + c2e

−at.

To get one solution which forms a fundamental set of solutions with y1, we simply take
c1 = 1 and c2 = 0, i.e., we take y2 = te−at.

10. Boyce and DiPrima, Section 3.5, p. 173, Problem 26.

Solution: In standard form the given equation reads:

y′′ − t+ 2

t
y′ +

t+ 2

t2
y = 0, t > 0.
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Putting y = vy1 = tv into the preceding equation, we obtain the equation

tv′′ − tv′ = 0.

Let u = v′. Then u satisfies the equation u′ − u = 0, which has u = et as a non-trivial
solution. Therefore v′ = et, and v = et is a solution for v. Hence we have y2 = tet as a
second solution.

11. Boyce and DiPrima, Section 3.5, p. 173, Problem 28.

Solution: In standard form the given equation reads:

y′′ − x

x− 1
y′ +

1

x− 1
y = 0, x > 1.

Putting y = vy1 = exv into the preceding equation, we obtain the equation

exv′′ +

(
2ex − x

x− 1
ex
)
v′ = 0

or

v′′ +
x− 2

x− 1
v′ = 0.

Let u = v′. Then u satisfies the equation

u′ +

(
1− 1

x− 1

)
u = 0,

which has u = (x− 1)e−x as a non-trivial solution. From the equation v′ = (x− 1)e−x,
we get v = −xe−x as one non-trivial solution. Hence y2 = vy1 = −x is a second
solution we seek. As the given homogeneous equation is linear, we may take y2 = x as
the second solution.
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