MA 214 Calculus IV (Spring 2016)

Section 2

Homework Assignment 6

Solutions

1. Boyce and DiPrima, p. 151, Problem 12.

Solution: First we put the given differential equation in standard form:
! ]' /
Y+ ——=y +tanz = 0.
r—2

The function p(z) = 1/(x — 2) is continuous on (—o0,2) U (2,00), whereas x = (2k +
1)m/2, where k = 0,£1,42, - -, are the points of discontinuity of the function ¢(x) =
tanx. The largest interval which contains x, = 3 and on which both p and ¢ are
continuous is (2,37/2). By Theorem 3.2.1, the longest interval on which the given
initial-value problem is certain to have a unique solution is (2, 37/2).

2. Boyce and DiPrima, p. 156, Problem 17.

Solution: We have

€2t g 1 g
W) =|., ,|= e L= et
2e“t g 2 g
Hence g satisfies the differential equation
g —2g = 3e*.

—2t

An integrating factor of the preceding linear equation is u(t) = e~ *". Hence we have

(e7?'g)’ = 3, which implies
e *g(t) =3t+C, or  g(t) = 3te* + Ce*,
where C' is an arbitrary constant.

3. Boyce and DiPrima, p. 156, Problem 23.

Solution: We seek solutions y; and y, of the differential equation

y'+4y +3y =0



that satisfy the initial conditions

and
y2(1) =0, wh(1) =1,

respectively. The characteristic equation of the given differential equation is 72 + 4r +
3 = 0, which has two real roots r; = —1 and ry = —3. Hence the general solution is

y=cre '+ e
From the initial conditions for solution y;, we obtain the simultaneous equations

crel + e = 1,

cre”t 4 3epe73 = 0,

the solution of which gives ¢; = 3e/2 and ¢y = —e3/2. From the initial conditions for
solution y5, we get the simultaneous equations

cre 4+ e 3 =0,
cret + 373 = —1,
the solution of which gives ¢; = ¢/2 and ¢, = —e®/2. Hence we have
3 1 1 1
_ 9 (-1 _ L -30-1) _ L ey L e
= 5e 5¢ , Y2 = g€ 5¢ )

. Boyce and DiPrima, p. 156, Problem 27.

Solution: Let Lly] = (1 — xcotz)y” —xy' +y. For y; = x, we get 3y = 1, y{ = 0.
Hence we have
Ll = 0 — 2(1) + 2 = 0.

For y, = sinz, we obtain y, = cosx, yy = —sinx. Hence we have
Llys) = (1 — zcot z)(—sinz) — z(cosx) + sinz = 0.

Therefore both y; and y, are solutions of the given differential equation. The Wronskian
of solutions y; and ys is:

xr sinz _
=xcosT —sin.

W(y1,y2) =

1 coszx

Since W (yy,y9)(m/2) = —1 # 0, the solutions y; and yy constitute a fundamental set
of solutions of the given differential equation on the interval (0, ).
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5. Boyce and DiPrima, p. 156, Problem 29.

Solution: In standard form the given differential equation reads:

S, t+2, t+2
Yy - / y + 2
Hence p(t) = —1 — 2/t. Therefore the Wronskian W satisfies the differential equation
W' + (=1 —-2/t)IW =0,
the general solution of which is W = Ce!t?, where C is an arbitrary constant.
6. Boyce and DiPrima, p. 157, Problem 33.

Solution: We recast the given equation in standard form as:

/
y”+2y'+gy=0.
p p

The Wronskian of two solutions of the preceding equation satisfies the equation

aw o
— 4+ =W =0. 1

An integrating factor of the equation on W is given by

u= ef(p//p)dt — elnp =p.
Multiplying both sides of (1) by the integrating factor p = p, we obtain

(p(t)W(t))" = 0.

Hence we have p(t)W (t) = c or

where ¢ is an arbitrary constant.

7. Boyce and DiPrima, p. 157, Problem 35.

Solution: In standard form the given differential equation reads:

Hence p(t) = —2/t?. Therefore the Wronskian W satisfies the differential equation
W — (2/tH)W =0,

the general solution of which is W = Ce~%*, where C is an arbitrary constant. From
W (2) = 3 we obtain C = 3e. Hence W = 3¢ - =% and W (4) = 3\/e.
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8.

10.

Boyce and DiPrima, p. 157, Problem 40.

Solution. Suppose ty € I is a common point of inflection of y; and y,. Then yf(to) =
yg(to) = 0. Since W/(t()) =1 (to)yg<t0) - yg(t0>ylll(t0>, we have W/(t()) =0.If U1 and Y2
form a set of fundamental solutions, we must have W (yy,y2)(to) # 0. It then follows
from the equation W'(ty) + p(to)W (to) = 0 that p(ty) = 0.

Since y; and yy are solutions, they satisfy

Yl + )y +q(t)y =0, Yy +p(t)yh + q(t)y2 = 0.

Substituting ¢ = ¢y in the preceding equations, we obtain

q(to)y1(to) =0, q(to)y2(te) = 0.

Since W (y1,y2)(to) # 0, y1(to) and ya(ty) cannot both equal to zero. Hence we must
have ¢(ty) = 0.

Boyce and DiPrima, Section 3.5, p. 173, Problem 20.

Solution: (a) The characteristic equation of the equation y” + 2ay’ + a®y = 0 is
r? 4+ 2ar + a* = (r + a)? = 0, which has repeated roots r; = ry = —a. Hence y; = e~
is a solution of the given homogeneous equation.

(b) By Abel’s theorem, the Wronskian I of the given equation satisfies the differential
equation
W'+ p(t)W = W'+ 2aW =0,

the general solution of which is W = cie72%, where ¢, is a constant. Since W(t) =

y1Y5 — Y1y and y; is determined in (a), we see that y, satisfies the first-order equation

/ / o —2at
Y1Ys — Y1Y2 = 1€ .

a

(c) Putting y; = e~ into the differential equation for y, in (b), we obtain the equation

/ —at
Yy T ayz = cre 7,

which has the general solution

Yo = cite” ™ 4 e,

To get one solution which forms a fundamental set of solutions with y;, we simply take
ci =1 and ¢y = 0, i.e., we take y, = te .
Boyce and DiPrima, Section 3.5, p. 173, Problem 26.

Solution: In standard form the given equation reads:

t+2 , t42
" / =0 t> 0.
Y gy =0,




11.

Putting y = vy, = tv into the preceding equation, we obtain the equation
tv" —tv' = 0.

Let u = v’. Then u satisfies the equation u' — u = 0, which has u = €' as a non-trivial
solution. Therefore v' = €', and v = €' is a solution for v. Hence we have y, = te! as a
second solution.

Boyce and DiPrima, Section 3.5, p. 173, Problem 28.
Solution: In standard form the given equation reads:
" x 1

_ /
Y x—1y+

=0 > 1.
x—ly ) z

Putting y = vy, = e®v into the preceding equation, we obtain the equation

e + <2em ! 63”) =0
r—1

or

v"+x_2v’:().
z—1

Let u = v'. Then u satisfies the equation

1
u’+(1— )u:O,
r—1

which has u = (z — 1)e™ as a non-trivial solution. From the equation v = (x — 1)e™?,
we get v = —xe™™ as one non-trivial solution. Hence y, = vy; = —x is a second
solution we seek. As the given homogeneous equation is linear, we may take ys = x as
the second solution.




