MA 214 Calculus IV (Spring 2016)

Section 2

Homework Assignment 7

Solutions

1. Boyce and DiPrima, Section 3.5, p. 184, Problem 8.

Solution: The given equation is: $y^{\prime \prime}+2 y^{\prime}+y=2 e^{-t}$. Let $L[y]=y^{\prime \prime}+2 y^{\prime}+y$. The characteristic equation of the homogeneous equation $L[y]=0$ is

$$
r^{2}+2 r+1=(r+1)^{2}=0,
$$

which has a repeated real root $r_{1}=r_{2}=-1$. Using the method of undetermined coefficients to find a particular solution Y, we put $Y=A t^{2} e^{-t}$, where the constant A is to be determined. By straightforward computations we find $L[Y]=2 A e^{-t}$. Equating $2 A e^{-t}=2 e^{-t}$, we find $A=1$ and thence $Y=t^{2} e^{-t}$. The general solution of the given equation is

$$
y=c_{1} e^{-t}+c_{2} t e^{-t}+t^{2} e^{-t}
$$

where c_{1} and c_{2} are arbitrary constants.
2. Boyce and DiPrima, Section 3.5, p. 184, Problem 9.

Solution: The given equation is: $2 y^{\prime \prime}+3 y^{\prime}+y=t^{2}+3 \sin t$. Let $L[y]=2 y^{\prime \prime}+3 y^{\prime}+y$. The characteristic equation of the homogeneous equation $L[y]=0$ is

$$
2 r^{2}+3 r+1=(2 r+1)(r+1)=0
$$

which has two distinct real roots $r_{1}=-1 / 2, r_{2}=-1$.
We find particular solutions for the two equations $L[y]=t^{2}, L[y]=3 \sin t$ separately. Using the method of undetermined coefficients, we put $Y_{1}=A t^{2}+B t+C$, where the constant A, B and C are to be determined. By direct computations we find $L\left[Y_{1}\right]=A t^{2}+(6 A+B) t+(4 A+3 B+C)$. Hence we have $A=1,6 A+B=0$, and $4 A+3 B+C=0$, which give $B=-6$ and $C=14$. Therefore $Y_{1}=t^{2}-6 t+14$.
Next we put $Y_{2}=D \cos t+E \sin t$. Then we have

$$
L\left[Y_{2}\right]=(3 E-D) \cos t+(-3 D-E) \sin t
$$

Setting the right-hand side of the preceding equation equal to $3 \sin t$, we get $3 E-D=0$, $-3 D-E=3$, which imply

$$
D=-9 / 10, \quad E=-3 / 10
$$

Hence $Y_{2}=(-9 / 10) \cos t-(3 / 10) \sin t$.
The general solution of the given equation is:

$$
y=c_{1} e^{-t / 2}+c_{2} e^{-t}+t^{2}-6 t+14+(-9 / 10) \cos t-(3 / 10) \sin t
$$

where c_{1} and c_{2} are arbitrary constants.
3. Boyce and DiPrima, Section 3.5, p. 184, Problem 12.

Solution: The given equation is: $u^{\prime \prime}+\omega_{o}^{2} u=\cos \omega_{o} t$. The characteristic equation of the accompanying homogeneous equation is $r^{2}+\omega_{o}^{2}=0$, which has roots $r_{1}=i \omega_{o}$, $r_{2}=-i \omega_{o}$. Using the method of undetermined coefficients, we find a particular solution of the given equation by putting $U=t\left(A \cos \omega_{o} t+B \sin \omega_{o} t\right)$. Let $L[u]=u^{\prime \prime}+\omega_{o}^{2} u$. By direct computations we find $L[U]=-2 \omega_{o} A \sin \omega_{o} t+2 \omega_{o} B \cos \omega_{o} t$. It follows that the coefficients A and B must satisfy $A=0$ and $2 \omega_{o} B=1$, which gives $U=\left(t / 2 \omega_{o}\right) \sin \omega_{o} t$. Hence the general solution of the given equation is:

$$
u=c_{1} \cos \omega_{o} t+c_{2} \sin \omega_{o} t+\frac{1}{2 \omega_{o}} t \sin \omega_{o} t
$$

where c_{1} and c_{2} are arbitrary constants.
4. Boyce and DiPrima, Section 3.5, p. 184, Problem 20.

Solution: The given initial-value problem is:

$$
y^{\prime \prime}+2 y^{\prime}+5 y=4 e^{-t} \cos 2 t, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Let $L[y]=y^{\prime \prime}+2 y^{\prime}+5 y$. The characteristic equation of the homogeneous equation is: $r^{2}+2 r+5=0$, which has roots $r_{1}=-1+2 i, r_{2}=-1-2 i$.
We find a particular solution of the equation $L[y]=4 e^{-t} \cos 2 t$ by the method of undetermined coefficients. We put $Y=t\left(A e^{-t} \cos 2 t+B e^{-t} \sin 2 t\right)$. By direct computations we find

$$
L[Y]=-4 A e^{-t} \sin 2 t+4 B e^{-t} \cos 2 t
$$

Hence we have $A=0, B=1$.
The general solution of the nonhomogeneous equation $L[y]=4 e^{-t} \cos 2 t$ is

$$
y=c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t+t e^{-t} \sin 2 t
$$

From the initial conditions $y(0)=1$ and $y^{\prime}(0)=0$, we get $c_{1}=1$ and $2 c_{2}-c_{1}=0$, respectively. Hence $c_{1}=1$, and $c_{2}=1 / 2$. Therefore the solution of the given initialvalue problem is:

$$
y=e^{-t} \cos 2 t+\frac{1}{2} e^{-t} \sin 2 t+t e^{-t} \sin 2 t
$$

5. Boyce and DiPrima, Section 3.6, p. 184, Problem 24(a) and 25(a).

Solution: Problem 24(a). The characteristic equation of the homogeneous equation $y^{\prime \prime}+2 y^{\prime}+2 y=0$ is $r^{2}+2 r+2=0$, which has complex conjugate roots $r_{1}=-1+i$, $r_{2}=-1-i$. By the method of undetermined coefficients, to find a particular solution of the equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=3 e^{-t}+2 e^{-t} \cos t+4 e^{-t} t^{2} \sin t
$$

we should determine a particular solution of the form

$$
Y=A e^{-t}+t\left(\left(B t^{2}+C t+D\right) e^{-t} \cos t+\left(E t^{2}+F t+G\right) e^{-t} \sin t\right)
$$

where A, B, \ldots, G are constants to be determined.
Problem 25(a). The characteristic equation of the homogeneous equation $y^{\prime \prime}-4 y^{\prime}+4 y=$ 0 is $r^{2}-4 r+4=(r-2)^{2}=0$, which has the repeated real root $r_{1}=r_{2}=2$. By the method of undetermined coefficients, to find a particular solution of the equation

$$
y^{\prime \prime}-4 y^{\prime}+4 y=2 t^{2}+4 t e^{2 t}+t \sin 2 t
$$

we should seek a particular solution of the form

$$
Y=A t^{2}+B t+C+t^{2}\left((D t+E) e^{2 t}\right)+(F t+G) \cos 2 t+(H t+I) \sin 2 t
$$

where A, B, \ldots, I are constants to be determined.
6. Boyce and DiPrima, Section 3.6, p. 190, Problem 3.

Solution: The characteristic equation of the homogeneous equation is $r^{2}+2 r+1=$ $(r+1)^{2}=0$, which has double real root $r_{1}=r_{2}=-1$. A fundamental set of solutions of the homogeneous equation has $y_{1}=e^{-t}, y_{2}=t e^{-t}$, and the Wronskian $W\left(y_{1}, y_{2}\right)=$ $W\left(e^{-t}, t e^{-t}\right)=e^{-t}$. By the method of variation of parameters, a particular solution of the given nonhomogeneous equation is given by the formula

$$
\begin{aligned}
Y & =u_{1} y_{1}+u_{2} y_{2} \\
& =-e^{-t} \int^{t} \frac{3 e^{-s} s e^{-s}}{e^{-2 s}} d s+t e^{-t} \int^{t} \frac{3 e^{-s} e^{-s}}{e^{-2 s}} d s \\
& =-\frac{3}{2} t^{2} e^{-t}+3 t^{2} e^{-t}=\frac{3}{2} t^{2} e^{-t} .
\end{aligned}
$$

7. Boyce and DiPrima, Section 3.6, p. 190, Problem 6.

Solution: The characteristic equation of the homogeneous equation is $r^{2}+9=0$, which has conjugate complex roots $r_{1}=3 i, r_{2}=-3 i$. A fundamental set of solutions of the homogeneous equation has $y_{1}=\cos 3 t, y_{2}=\sin 3 t$, and the Wronskian
$W\left(y_{1}, y_{2}\right)=3$. By the method of variation of parameters, a particular solution of the given nonhomogeneous equation is given by the formula

$$
\begin{aligned}
Y & =u_{1} y_{1}+u_{2} y_{2} \\
& =-\cos 3 t \int^{t} \frac{1}{3} 9 \sec ^{2} 3 s \sin 3 s d s+\sin 3 t \int^{t} \frac{1}{3} 9 \sec ^{2} 3 s \cos 3 s d s \\
& =\cos 3 t \int^{\cos 3 t} \frac{1}{u^{2}} d u+\sin 3 t \int^{3 t} \sec u d u \\
& =-1+\sin 3 t \ln (\tan 3 t+\sec 3 t) .
\end{aligned}
$$

The general solution of the given equation is given by the formula

$$
y=c_{1} \cos 3 t+c_{2} \sin 3 t-1+\sin 3 t \ln (\tan 3 t+\sec 3 t) .
$$

8. Boyce and DiPrima, Section 3.6, p. 190, Problem 12.

Solution: The characteristic equation of the homogeneous equation is $r^{2}+4=0$, which has conjugate complex roots $r_{1}=2 i, r_{2}=-2 i$. A fundamental set of solutions of the homogeneous equation has $y_{1}=\cos 2 t, y_{2}=\sin 2 t$, and the Wronskian $W\left(y_{1}, y_{2}\right)=2$. By the method of variation of parameters, a particular solution of the given nonhomogeneous equation is given by the formula

$$
\begin{aligned}
Y & =u_{1} y_{1}+u_{2} y_{2} \\
& =-\cos 2 t \int^{t} \frac{1}{2} g(s) \sin 2 s d s+\sin 2 t \int^{t} \frac{1}{2} g(s) \cos 2 s d s \\
& =\frac{1}{2} \int^{t} g(s) \sin 2(t-s) d s,
\end{aligned}
$$

where we have appealed to the trigonometric formula

$$
\sin 2(t-s)=\sin (2 t-2 s)=\sin 2 t \cos 2 s-\cos 2 t \sin 2 s
$$

The general solution of the given equation is given by the formula

$$
y=c_{1} \cos 2 t+c_{2} \sin 2 t+\frac{1}{2} \int^{t} g(s) \sin 2(t-s) d s
$$

9. Boyce and DiPrima, Section 3.6, p. 190, Problem 17.

Solution: In standard form, the given equation reads:

$$
L[y]=y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{4}{x^{2}}=\ln x, \quad x>0 .
$$

It is easily verified that $L\left[y_{1}\right]=L\left[x^{2}\right]=2-6+4=0$ and $L\left[y_{2}\right]=L\left[x^{2} \ln x\right]=$ $3+2 \ln x-3(2 \ln x+1)+4 \ln x=0$. Moreover we have

$$
W\left(x^{2}, x^{2} \ln x\right)=\left|\begin{array}{cc}
x^{2} & x^{2} \ln x \\
2 x & 2 x \ln x+x
\end{array}\right|=x^{3}>0
$$

for $x>0$. Hence $y_{1}=x^{2}$ and $y_{2}=x^{2} \ln x$ form a fundamental set of solutions of the homogeneous equation $L[y]=0$ on the interval $(0, \infty)$. By the method of variation of parameters, a particular solution of the given nonhomogeneous equation is given by the formula

$$
\begin{aligned}
Y & =u_{1} y_{1}+u_{2} y_{2} \\
& =-x^{2} \int^{x} \frac{(\ln t) t^{2} \ln t}{t^{3}} d t+x^{2} \ln x \int^{x} \frac{(\ln t) t^{2}}{t^{3}} d t \\
& =-\frac{x^{2}}{3}(\ln x)^{3}+\frac{1}{2} x^{2}(\ln x)^{3}=\frac{1}{6} x^{2}(\ln x)^{3} .
\end{aligned}
$$

10. Boyce and DiPrima, Section 3.6, p. 190, Problem 19.

Solution: In standard form, the given equation reads:

$$
L[y]=y^{\prime \prime}+\frac{x}{1-x} y^{\prime}-\frac{1}{1-x}=\frac{g(x)}{1-x}, \quad 0<x<1 .
$$

It is easily verified that $L\left[y_{1}\right]=L\left[e^{x}\right]=e^{x}+x e^{x} /(1-x)-e^{x} /(1-x)=0$ and $L\left[y_{2}\right]=L[x]=x /(1-x)-x /(1-x)=0$. Moreover we have

$$
W\left(e^{x}, x\right)=\left|\begin{array}{ll}
e^{x} & x \\
e^{x} & 1
\end{array}\right|=e^{x}(1-x)>0
$$

for $0<x<1$. Hence $y_{1}=e^{x}$ and $y_{2}=x$ form a fundamental set of solutions of the homogeneous equation $L[y]=0$ on the interval $0<x<1$. By the method of variation of parameters, a particular solution of the given nonhomogeneous equation is given by the formula

$$
\begin{aligned}
Y & =u_{1} y_{1}+u_{2} y_{2} \\
& =-e^{x} \int^{x} \frac{g(t) t}{(1-t)^{2} e^{t}} d t+x \int^{x} \frac{g(t)}{(1-t)^{2}} d t \\
& =\int^{x} \frac{x e^{t}-t e^{x}}{(1-t)^{2} e^{t}} g(t) d t .
\end{aligned}
$$

