MA 214 Calculus IV (Spring 2016)

Section 2

Homework Assignment 8

Solutions

1. Boyce and DiPrima, Section 3.7, p. 203, Problem 3 and Problem 4.

Solution: In both of these problems, the given expression of u is recast in the form $u=R \cos \left(\omega_{0} t-\delta\right)$, where R and δ are given as follows.
Problem 3. Here $A=R \cos \delta=4, B=R \sin \delta=-2$. Hence $R=\sqrt{A^{2}+B^{2}}=2 \sqrt{5}$. It follows that

$$
\cos \delta=\frac{2}{\sqrt{5}}, \quad \sin \delta=-\frac{1}{\sqrt{5}}, \quad \tan \delta=-\frac{1}{2}
$$

From the sign of $\cos \delta$ and of $\sin \delta$, we see that the angle δ is in the 4 th quadrant and $\delta=\arctan (-1 / 2) \approx-0.4636$ radians.
Problem 4. Here $A=R \cos \delta=-2, B=R \sin \delta=-3$. Hence $R=\sqrt{A^{2}+B^{2}}=\sqrt{13}$. It follows that

$$
\cos \delta=-\frac{2}{\sqrt{13}}, \quad \sin \delta=-\frac{3}{\sqrt{13}}, \quad \tan \delta=\frac{3}{2}
$$

From the sign of $\cos \delta$ and of $\sin \delta$, we see that the angle δ is in the 3rd quadrant and $\delta=\pi+\arctan (3 / 2) \approx 4.1244$ radians.
2. Boyce and DiPrima, Section 3.7, p. 203, Problem 7.

Solution: In what follows we take the acceleration due to gravity $g=32 \mathrm{ft} / \mathrm{s}^{2}$. Let k be the spring constant in question. Then we have $k=3 \mathrm{lbf} /(1 / 4) \mathrm{ft}=12 \mathrm{lbf} / \mathrm{ft}$. The mass weighs 3 lbf . Hence the initial-value problem in question is

$$
\frac{3}{32} u^{\prime \prime}+12 u=0, \quad u(0)=-\frac{1}{12}, \quad u^{\prime}(0)=2 .
$$

The general solution of the differential equation is

$$
u=A \cos 8 \sqrt{2} t+B \sin 8 \sqrt{2} t
$$

From the initial conditions, we find $A=-1 / 12, B=\sqrt{2} / 8$. Note that δ is in the 2 nd quadrant and $\tan \delta=B / A=-3 / \sqrt{2}$. Therefore the spring-mass system has vibration frequency $\omega_{0}=8 \sqrt{2} \mathrm{~s}^{-1}$, period $T=\pi /(4 \sqrt{2}) \mathrm{s}$, amplitude $R=\sqrt{A^{2}+B^{2}}=\sqrt{11 / 288}$ ft , and phase $\delta=\pi-\arctan (3 / \sqrt{2})$.
3. Boyce and DiPrima, Section 3.7, p. 204, Problem 11.

Solution: The spring constant of the spring is $k=3 / 0.1=30 \mathrm{~N} / \mathrm{m}$. The damping coefficient of the spring-mass system is $\gamma=3 / 5 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$. Hence the displacement u of the mass is governed by the equation of motion

$$
2 u^{\prime \prime}+\frac{3}{5} u^{\prime}+30 u=0 \quad \text { or } \quad u^{\prime \prime}+0.3 u^{\prime}+15 u=0
$$

The initial conditions for the motion are: $u(0)=0.05 \mathrm{~m}, u^{\prime}(0)=10 \mathrm{~m} / \mathrm{s}$. Solving the initial-value problem, we obtain

$$
u=e^{-0.15 t}(A \cos \mu t+B \sin \mu t)
$$

where

$$
\mu=\frac{\sqrt{4 k m-\gamma^{2}}}{2 m}=3.870078 \mathrm{~s}^{-1}, \quad A=0.05 \mathrm{~m}, \quad B=0.027777 \mathrm{~m}
$$

The displacement u can be written in the form

$$
u=0.057201 e^{-0.15 t} \cos (3.870078 t-0.507087) \mathrm{m}
$$

and the ratio $\mu / \omega_{0}=3.870078 / \sqrt{15}=0.99925$.
4. Boyce and DiPrima, Section 6.1, p. 315, Problem 5.

Solution: Let n be a positive integer. For $s>0$, we have

$$
\begin{aligned}
\mathcal{L}\left[t^{n}\right] & =\int_{0}^{\infty} t^{n} e^{-s t} d t \\
& =\lim _{A \rightarrow \infty} \int_{0}^{A} t^{n} e^{-s t} d t \\
& =\lim _{A \rightarrow \infty}\left(\left[\frac{t^{n} e^{-s t}}{-s}\right]_{0}^{A}+\frac{1}{s} \int_{0}^{A} n t^{n-1} e^{-s t} d t\right) \\
& =\lim _{A \rightarrow \infty} \frac{A^{n} e^{-s A}}{-s}+\frac{n}{s} \int_{0}^{\infty} t^{n-1} e^{-s t} d t \\
& =\frac{n}{s} \mathcal{L}\left[t^{n-1}\right]=\frac{n(n-1)}{s^{2}} \mathcal{L}\left[t^{n-2}\right]=\cdots=\frac{n!}{s^{n}} \mathcal{L}[1]=\frac{n!}{s^{n+1}} .
\end{aligned}
$$

Putting $n=1$ and $n=2$, we obtain

$$
\mathcal{L}[t]=\frac{1}{s^{2}} \quad \text { and } \quad \mathcal{L}\left[t^{2}\right]=\frac{2}{s^{3}}
$$

respectively.
5. Boyce and DiPrima, Section 6.1, p. 315, Problem 13.

Solution: By definition, we have

$$
\mathcal{L}\left[e^{a t} \sin b t\right]=\lim _{A \rightarrow \infty} \int_{0}^{A} e^{a t}(\sin b t) e^{-s t} d t=\lim _{A \rightarrow \infty} \int_{0}^{A}(\sin b t) e^{(a-s) t} d t
$$

Let $I=\int_{0}^{A}(\sin b t) e^{(a-s) t} d t$. Using integration by parts, we observe that

$$
\begin{aligned}
I & =\left[\frac{(\sin b t) e^{(a-s) t}}{a-s}\right]_{0}^{A}-\frac{b}{a-s} \int_{0}^{A}(\cos b t) e^{(a-s) t} d t \\
& =\frac{(\sin b A) e^{(a-s) A}}{a-s}-\frac{b}{a-s}\left(\left[\frac{(\cos b t) e^{(a-s) t}}{a-s}\right]_{0}^{A}-\int_{0}^{A} \frac{-b \sin b t}{a-s} e^{(a-s) t} d t\right)
\end{aligned}
$$

For $s>a$, we obtain

$$
\mathcal{L}\left[e^{a t} \sin b t\right]=\lim _{A \rightarrow \infty} I=\frac{b}{s-a}\left(\frac{1}{s-a}-\frac{b}{s-a} \mathcal{L}\left[e^{a t} \sin b t\right]\right) .
$$

It follows that

$$
\left(1+\frac{b^{2}}{(s-a)^{2}}\right) \mathcal{L}\left[e^{a t} \sin b t\right]=\frac{b}{(s-a)^{2}}
$$

and

$$
\mathcal{L}\left[e^{a t} \sin b t\right]=\frac{b}{(s-a)^{2}+b^{2}} \quad \text { for } \quad s>a .
$$

6. Boyce and DiPrima, Section 6.1, p. 315, Problem 16.

Solution: By definition, we have

$$
\mathcal{L}[t \sin a t]=\lim _{A \rightarrow \infty} \int_{0}^{A}(t \sin a t) e^{-s t} d t
$$

Let $I=\int_{0}^{A}(t \sin a t) e^{-s t} d t$. Using integration by parts, we observe that

$$
I=\left[\frac{(t \sin a t) e^{-s t}}{-s}\right]_{0}^{A}+\frac{1}{s} \int_{0}^{A}(\sin a t+a t \cos a t) e^{-s t} d t
$$

It follows that for $s>0$,

$$
\mathcal{L}[t \sin a t]=\lim _{A \rightarrow \infty} I=\frac{1}{s} \mathcal{L}[\sin a t]+\frac{a}{s} \mathcal{L}[t \cos a t] .
$$

On the other hand, a similar calculation shows that for $s>0$

$$
\begin{aligned}
\mathcal{L}[t \cos a t] & =\lim _{A \rightarrow \infty}\left(\left[\frac{(t \cos a t) e^{-s t}}{-s}\right]_{0}^{A}+\frac{1}{s} \int_{0}^{A}(\cos a t-a t \sin a t) e^{-s t} d t\right) \\
& =-\frac{a}{s} \mathcal{L}[t \sin a t]+\frac{1}{s} \mathcal{L}[\cos a t] .
\end{aligned}
$$

Hence we have

$$
\mathcal{L}[t \sin a t]=\frac{1}{s} \mathcal{L}[\sin a t]-\frac{a^{2}}{s^{2}} \mathcal{L}[t \sin a t]+\frac{a}{s^{2}} \mathcal{L}[\cos a t]
$$

It follows that

$$
\left(1+\frac{a^{2}}{s^{2}}\right) \mathcal{L}[t \sin a t]=\frac{1}{s} \cdot \frac{a}{s^{2}+a^{2}}+\frac{a}{s^{2}} \cdot \frac{s}{s^{2}+a^{2}}
$$

or

$$
\mathcal{L}[t \sin a t]=\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}} \quad \text { for } \quad s>0
$$

7. Boyce and DiPrima, Section 6.2, p. 324, Problem 5.

Solution: We have

$$
\mathcal{L}^{-1}\left[\frac{2 s+2}{s^{2}+2 s+5}\right]=2 \mathcal{L}^{-1}\left[\frac{s+1}{(s+1)^{2}+2^{2}}\right]=2 e^{-t} \cos 2 t .
$$

8. Boyce and DiPrima, Section 6.2, p. 324, Problem 8.

Solution: First we break up $F(s)$ into partial fractions:

$$
\frac{8 s^{2}-4 s+12}{s\left(s^{2}+4\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+4}
$$

Multiplying both sides of the preceding equation by $s\left(s^{2}+4\right)$, we obtain

$$
8 s^{2}-4 s+12=A\left(s^{2}+4\right)+(B s+C) s=(A+B) s^{2}+C s+4 A
$$

which implies $A=3, B=5$, and $C=-4$. It follows that

$$
\mathcal{L}^{-1}\left[\frac{8 s^{2}-4 s+12}{s\left(s^{2}+4\right)}\right]=\mathcal{L}^{-1}\left[\frac{3}{s}\right]+\mathcal{L}^{-1}\left[\frac{5 s-4}{s^{2}+4}\right]=3+5 \cos 2 t-2 \sin 2 t
$$

9. Boyce and DiPrima, Section 6.2, p. 325, Problem 13.

Solution: Finding the Laplace transform of both sides of the given equation, we have

$$
s^{2} Y(s)-s y(0)-y^{\prime}(0)-2(s Y(s)-y(0))+2 Y(s)=0
$$

Using the initial conditions $y(0)=0$ and $y^{\prime}(0)=1$, we solve the preceding equation for $Y(s)$ and obtain

$$
Y(s)=\frac{1}{s^{2}-2 s+2}=\frac{1}{(s-1)^{2}+1^{2}}
$$

Hence $y(t)=e^{t} \sin t$ is the solution of the given initial-value problem.
10. Boyce and DiPrima, Section 6.2, p. 325, Problem 17.

Solution: Finding the Laplace transform of both sides of the given equation and appealing to the initial conditions, we obtain the following equation for $Y(s)$:

$$
\left(s^{4}-4 s^{3}+6 s^{2}-4 s+1\right) Y(s)=s^{2}-4 s+7 .
$$

Hence we have

$$
\begin{aligned}
Y(s)=\frac{s^{2}-4 s+7}{(s-1)^{4}} & =\frac{(s-1)^{2}-2(s-1)+4}{(s-1)^{4}} \\
& =\frac{1}{(s-1)^{2}}-\frac{2}{(s-1)^{3}}+\frac{4}{(s-1)^{4}} .
\end{aligned}
$$

Therefore the solution to the given initial-value problem is:

$$
y(t)=t e^{t}-t^{2} e^{t}+\frac{2}{3} t^{3} e^{t}
$$

11. Boyce and DiPrima, Section 6.2, p. 325, Problem 22.

Solution: Finding the Laplace transform of both sides of the given equation and appealing to the initial conditions, we obtain the following equation for $Y(s)$:

$$
\left(s^{2}-2 s+2\right) Y(s)=\frac{1}{s+1}+1
$$

or

$$
Y(s)=\frac{1}{(s+1)\left(s^{2}-2 s+2\right)}+\frac{1}{s^{2}-2 s+2}
$$

Using partial fractions, we recast $Y(s)$ as

$$
\begin{aligned}
Y(s) & =\frac{1}{5}\left(\frac{1}{s+1}-\frac{s-8}{s^{2}-2 s+2}\right) \\
& =\frac{1}{5}\left(\frac{1}{s+1}-\frac{s-8}{(s-1)^{2}+1^{2}}\right)=\frac{1}{5}\left(\frac{1}{s+1}-\frac{s-1}{(s-1)^{2}+1^{2}}-\frac{7}{(s-1)^{2}+1^{2}}\right) .
\end{aligned}
$$

Hence the solution of the given initial-value problem is:

$$
y(t)=\frac{1}{5}\left(e^{-t}-e^{t} \cos t+7 e^{t} \sin t\right) .
$$

