MA 214 Calculus IV (Spring 2016)

Section 2

Homework Assignment 9

Solutions

In what follows the Heaviside function, written as $u_{c}(t)$ in the text of Boyce and Diprima, is denoted by $H(t-c)$.

1. Boyce and DiPrima, Section 6.3, p. 333, Problem 6.

Solution: We recast the given function as

$$
f(t)=(t-1)(H(t-1)-H(t-2))+(3-t)(H(t-2)-H(t-3)) .
$$

A sketch of the graph of f is depicted in Figure 1.

Figure 1: Sketch of graph of f.
2. Boyce and DiPrima, Section 6.3, p. 333, Problem 11.

Solution: We recast the given function as

$$
f(t)=(t-2) H(t-2)-H(t-2)-(t-3) H(t-3)-H(t-3) .
$$

Using formulas 12 and 13 in the Table of Laplace Transforms and the fact that $\mathcal{L}\{t\}=$ $1 / s^{2}$ (cf. formula 3 in the Table), we obtain

$$
\mathcal{L}\{f(t)\}=\frac{e^{-2 s}}{s^{2}}-\frac{e^{-2 s}}{s}-\frac{e^{-3 s}}{s^{2}}-\frac{e^{-3 s}}{s}
$$

3. Boyce and DiPrima, Section 6.3, p. 333, Problem 15 and Problem 17.

Solution: Problem 15. First we recast the given function in terms of the Heaviside function:

$$
\begin{aligned}
f(t) & =(t-\pi)[H(t-\pi)-H(t-2 \pi)] \\
& =(t-\pi) H(t-\pi)-(t-2 \pi) H(t-2 \pi)-\pi H(t-2 \pi) .
\end{aligned}
$$

Hence we have

$$
\mathcal{L}[f]=\frac{e^{-\pi s}}{s^{2}}-\frac{e^{-2 \pi s}}{s^{2}}-\frac{\pi e^{-2 \pi s}}{s}
$$

Problem 17. Since

$$
\begin{aligned}
f(t) & =(t-3) H(t-2)-(t-2) H(t-3) \\
& =(t-2) H(t-2)-H(t-2)-(t-3) H(t-3)-H(t-3),
\end{aligned}
$$

we have

$$
\mathcal{L}[f]=\frac{e^{-2 s}}{s^{2}}-\frac{e^{-2 s}}{s}-\frac{e^{-3 s}}{s^{2}}-\frac{e^{-3 s}}{s}
$$

4. Boyce and DiPrima, Section 6.3, p. 333, Problem 23.

It is easy to use partial fractions to get

$$
\frac{s-2}{s^{2}-4 s+3}=\frac{s-2}{(s-1)(s-3)}=\frac{1}{2}\left(\frac{1}{s-1}+\frac{1}{s-3}\right) .
$$

Hence we have

$$
\begin{aligned}
\mathcal{L}^{-1}[F(s)] & =\mathcal{L}^{-1}\left[\frac{e^{-s}}{2}\left(\frac{1}{s-1}+\frac{1}{s-3}\right)\right] \\
& =\frac{1}{2} H(t-1)\left(e^{t-1}+e^{3(t-1)}\right)
\end{aligned}
$$

5. Boyce and DiPrima, Section 6.3, p. 335, Problem 37.

Solution: The given function is periodic with period $T=1$. Using the formula given in Problem 34 of the text of Boyce and DiPrima (which was derived in class), we have

$$
\begin{aligned}
\mathcal{L}[f(t)] & =\frac{1}{1-e^{-s}} \int_{0}^{1} t e^{-s t} d t \\
& =\frac{1}{1-e^{-s}}\left(\left[\frac{t e^{-s t}}{-s}\right]_{0}^{1}+\frac{1}{s} \int_{0}^{1} e^{-s t} d t\right) \\
& =\frac{1}{1-e^{-s}}\left(\frac{e^{-s}}{-s}+\frac{1}{s}\left[\frac{e^{-s t}}{-s}\right]_{0}^{1}\right) \\
& =\frac{1-e^{-s}-s e^{-s}}{s^{2}\left(1-e^{-s}\right)}
\end{aligned}
$$

For problems 6 to 9 , I will write down the equations with $u_{c}(t)$ replaced by $H(t-c)$.
6. $y^{\prime \prime}+4 y=\sin t-\sin (t-2 \pi) H(t-2 \pi), \quad y(0)=0, \quad y^{\prime}(0)=0$.

Solution: Let $Y(s)=\mathcal{L}[y(t)]$, the Laplace transform of the solution $y(t)$. Taking the Laplace transform of both sides of the given differential equation, we appeal to the initial conditions to obtain

$$
\left(s^{2}+4\right) Y(s)=\frac{1}{s^{2}+1}-\frac{e^{-2 \pi s}}{s^{2}+1}
$$

which implies

$$
\begin{aligned}
Y(s) & =\frac{1}{\left(s^{2}+1\right)\left(s^{2}+4\right)}-\frac{e^{-2 \pi s}}{\left(s^{2}+1\right)\left(s^{2}+4\right)} \\
& =\frac{1}{3}\left(\frac{1}{s^{2}+1}-\frac{1}{s^{2}+4}\right)-\frac{e^{-2 \pi s}}{3}\left(\frac{1}{s^{2}+1}-\frac{1}{s^{2}+4}\right) .
\end{aligned}
$$

Hence we have

$$
y(t)=\frac{1}{6}(2 \sin t-\sin 2 t-[2 \sin (t-2 \pi)-\sin 2(t-2 \pi)] H(t-2 \pi))
$$

7. $y^{\prime \prime}+3 y^{\prime}+2 y=H(t-2), \quad y(0)=0, \quad y^{\prime}(0)=1$.

Solution: Taking the Laplace transform of both sides of the given equation, we obtain

$$
s^{2} Y(s)-s y(0)-y^{\prime}(0)+3[s Y(s)-y(0)]+2 Y(s)=\frac{e^{-2 s}}{s}
$$

Substituting $y(0)=0$ and $y^{\prime}(0)=1$, we solve the preceding equation for $Y(s)$ and obtain

$$
\begin{aligned}
Y(s) & =\frac{e^{-2 s}}{s\left(s^{2}+3 s+2\right)}+\frac{1}{s^{2}+3 s+2} \\
& =\frac{e^{-2 s}}{s(s+1)(s+2)}+\frac{1}{(s+1)(s+2)} \\
& =e^{-2 s}\left(\frac{1}{2 s}-\frac{1}{s+1}+\frac{1}{2(s+2)}\right)+\frac{1}{s+1}-\frac{1}{s+2} .
\end{aligned}
$$

Hence the solution of the given initial-value problem is

$$
y(t)=H(t-2)\left[\frac{1}{2}-e^{-(t-2)}+\frac{1}{2} e^{-2(t-2)}\right]+e^{-t}-e^{-2 t}
$$

8. $y^{\prime \prime}+y=g(t), \quad y(0)=(0), \quad y^{\prime}(0)=1, \quad g(t)=\left\{\begin{array}{ll}t / 2, & 0 \leq t<6 \\ 3, & t \geq 6\end{array}\right.$.

Solution: First we recast $g(t)$ in terms of the Heaviside function:

$$
\begin{aligned}
g(t) & =\frac{t}{2}(1-H(t-6))+3 H(t-6) \\
& =\frac{t}{2}-\frac{t-6}{2} H(t-6)-3 H(t-6)+3 H(t-6) \\
& =\frac{t}{2}-\frac{t-6}{2} H(t-6) .
\end{aligned}
$$

Taking the Laplace transform of both sides of the given equation, we have

$$
s^{2} Y(s)-s y(0)-y^{\prime}(0)+Y(s)=\frac{1}{2 s^{2}}-\frac{e^{-\pi s}}{2 s^{2}}
$$

which implies

$$
\begin{aligned}
Y(s) & =\frac{1}{s^{2}+1}+\frac{1}{2} \cdot \frac{1}{s^{2}\left(s^{2}+1\right)}-\frac{1}{2} \cdot \frac{e^{-6 s}}{s^{2}\left(s^{2}+1\right)} \\
& =\frac{1}{s^{2}+1}+\frac{1}{2}\left(\frac{1}{s^{2}}-\frac{1}{s^{2}+1}\right)-\frac{e^{-6 s}}{2}\left(\frac{1}{s^{2}}-\frac{1}{s^{2}+1}\right) .
\end{aligned}
$$

Hence the solution of the given initial-value problem is:

$$
\begin{aligned}
y(t) & =\sin t+\frac{1}{2}(t-\sin t)-\frac{1}{2}[(t-6)-\sin (t-6)] H(t-6) \\
& =\frac{1}{2}(t+\sin t)-\frac{1}{2}[(t-6)-\sin (t-6)] H(t-6)
\end{aligned}
$$

9. $y^{(4)}+5 y^{\prime \prime}+4 y=1-H(t-\pi), \quad y(0)=0, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=0, \quad y^{(3)}(0)=0$.

Solution: Taking the Laplace transform of both sides of the given equation and then solving for $Y(s)$, we find

$$
\begin{aligned}
Y(s) & =\frac{1-e^{-\pi s}}{s\left(s^{2}+1\right)\left(s^{2}+4\right)} \\
& =\left(1-e^{-\pi s}\right)\left(\frac{1}{4 s}-\frac{s}{3\left(s^{2}+1\right)}+\frac{s}{12\left(s^{2}+4\right)}\right),
\end{aligned}
$$

where we have used the factorization $s^{4}+5 s^{2}+4=\left(s^{2}+1\right)\left(s^{2}+4\right)$ and the partialfraction decomposition

$$
\frac{1}{s\left(s^{2}+1\right)\left(s^{2}+4\right)}=\frac{1}{4 s}-\frac{s}{3\left(s^{2}+1\right)}+\frac{s}{12\left(s^{2}+4\right)} .
$$

Hence the solution of the given initial-value problem is:

$$
y(t)=\frac{1}{4}-\frac{1}{3} \cos t+\frac{1}{12} \cos 2 t+\left(\frac{1}{4}-\frac{1}{3} \cos (t-\pi)+\frac{1}{12} \cos 2(t-\pi)\right) H(t-\pi) .
$$

10. Boyce and DiPrima, Section 6.4, p. 341, Problem 15.

Solution: The function g in question is defined as follows:

$$
g(t)= \begin{cases}0, & 0 \leq t<t_{o} \\ h\left(t-t_{o}\right) / k, & t_{o} \leq t<t_{o}+k \\ -h\left(t-t_{o}-2 k\right) / k, & t_{o}+k \leq t<t_{o}+2 k \\ 0, & t_{o}+2 k \leq t<\infty\end{cases}
$$

In terms of the Heaviside function, we have

$$
\begin{aligned}
g(t)= & \frac{h}{k}\left(t-t_{o}\right)\left[H\left(t-t_{o}\right)-H\left(t-t_{o}-k\right)\right] \\
& \quad+\frac{-h}{k}\left(t-t_{o}-2 k\right)\left[H\left(t-t_{o}-k\right)-H\left(t-t_{o}-2 k\right)\right] \\
= & \frac{h}{k}\left[\left(t-t_{o}\right) H\left(t-t_{o}\right)-2\left(t-t_{o}-k\right) H\left(t-t_{o}-k\right)+\left(t-t_{o}-2 k\right) H\left(t-t_{o}-2 k\right)\right] .
\end{aligned}
$$

