MA 214002 Calculus IV (Spring 2016)

Answers to Review Problems for Exam 1

1. The solution is: $y=t^{2}-\frac{1}{t}$. The largest interval on which the solution is defined is: $(-\infty, 0)$.
2. (a) The given differential equation is both linear and separable. The solution of the initial-value problem is: $y=-3 e^{x^{4}-x}$.
(b) The differential equation is exact. The solution of the given initial-value problem is:

$$
\frac{x^{4}}{4}+y \ln x+\frac{y^{3}}{3}=\frac{1}{4}
$$

3. (a) The differential equation that the function f must satisfy is:

$$
\frac{d f}{d x}+\frac{1}{x} f=1
$$

(b) All possible functions f are given by the formula

$$
f(x)=\frac{x}{2}+\frac{C}{x},
$$

where C is an arbitrary constant.
4. (a) The initial-value problem that governs $A(t)$, the amount in thousands of dollars, is:

$$
\frac{d A}{d t}-0.05 A=5 e^{t / 20}, \quad A(0)=0
$$

(b) $A(40)=200 \times e^{2} \approx 1478$ thousands.
5. The mass $M(t)$ of pollutant Z in the tank at elapsed time t since cleaner water is pumped into the tank is given by the formula

$$
M(t)=10+40 e^{-t / 25}
$$

where M is in grams and t in hours. The concentration $c(t)$ of pollutant Z is the tank at time t is given by

$$
c(t)=0.1+0.4 e^{-t / 25}
$$

where c is in $\mathrm{g} / \mathrm{m}^{3}$.
6. (a) $t_{f}=500$ hours; $V(t)=1000+2 t$, where V is in liters and t in hours.
(b) At $t=t_{f}$, the concentration of the salt solution in the tank is $0.19 \mathrm{~kg} / \mathrm{L}$.
7. (a) Let $f(t, y)=-\sqrt{1-y^{2}}$. Then $\partial f / \partial y=y\left(1-y^{2}\right)^{-1 / 2}$. There does not exist any open rectangle $(\alpha, \beta) \times(\gamma, \delta)$ that contains $(0,1)$ in the $t y$-plane in which both f and $\partial f / \partial y$ are continuous. Hence the sufficient condition in Theorem 2.4.2 that guarantees the uniqueness of solution is not satisfied. Thus the fact that both y_{1} and y_{2} are solutions of the given initial-value problem does not contradict Theorem 2.4.2.
(b) The required region is the open unit disc $\left\{(t, y): t^{2}+y^{2}<1\right\}$.
8. The equilibrium solutions are: $y(t)=2$, which is unstable, and $y(t)=5$, which is asymptotically stable. The phase line and typical solution curves can be sketched with information given in the following table, where $f(y)=7 y-y^{2}-10$:

	$(-\infty, 2)$	$(2,7 / 2)$	$(7 / 2,5)$	$(5, \infty)$
$y^{\prime}=f(y)$	-	+	+	-
$f^{\prime}(y)$	+	+	-	-
$y^{\prime \prime}=f^{\prime}(y) f(y)$	-	+	-	+
Concavity of solutions $y(\cdot)$	D	U	D	U

Table 1: Concavity of solutions $y(\cdot) ; \mathrm{D}=$ concave down, $\mathrm{U}=$ concave up.
By the theorem on the uniqueness of solution for initial-value problems of first-order differential equations, a solution curve of the given equation cannot meet any other solution curve in the $t-y$ plane.
9. (a) $y=c_{1}+c_{2} e^{-5 t}$.
(b) $y=c_{1} e^{2 t}+c_{2} t e^{2 t}$.
(c) $y=c_{1} e^{t} \cos t+c_{2} e^{t} \sin t$.
10. (a) $e^{(1-2 i) t}=e^{t} \cos 2 t-i e^{t} \sin 2 t$.
(b) $y=e^{-t} \cos \sqrt{3} t+\frac{1}{\sqrt{3}} e^{-t} \sin \sqrt{3} t$.

