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Abstract. The core of a projective dimension oRemoduleE is computed explicitly in
terms of Fitting ideals. In particular, our formula recovers previous work by R. Mohan on
integrally closed torsionfree modules over a two dimensional regular local ring.
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1. Introduction

There is an extensive literature on tRees algebrag (1) of an R-ideall in a
Noetherian rindR. One reason for that is the major role tkgtl ) plays in Commu-
tative Algebra and Algebraic Geometry, since P#(l )) is the blowup of SpedR)
along the subscheme definedlby

There are several reasons for studying Rees algebras of finitely genBrated
modulesk as well. For instance, Rees algebras of modules include the so called
multi-Rees algebras, which correspond to the case of direct sums of ideals. Fur-
thermore, symmetric algebras of modules arise naturally as coordinate rings of
certain correspondences in Algebraic Geometry, and the projection of these vari-
eties often requires the killing of torsion. This takes us back to the study of Rees
algebras of modules: We refer to the articles by D. Eisenbud, C. Huneke and B.
Ulrich [7] and by A. Simis, B. Ulrich and W.V. Vasconcelos [14] for additional
motivation as well as a rich list of references. We stress, though, that this is not
a routine generalization of what happens for ideals. This occurs mainly because
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the remarkable interaction that exists between the Rees algebra and the associated
graded ring of an ideal is missing in the module case.

The importance ofeductionsin the study of Rees algebras of ideals has long
been noticed by commutative algebraists. Roughly, a reduction is a simplification
of the given ideal which carries the most relevant information about the original
ideal itself. In this sense, the study of tbere of an ideal — by which we mean
the intersection of all the reductions of the ideal — helps finding uniform properties
shared by all reductions. We refer to [13,9, 4, 5] for more details as well as for the
few known explicit formulas on the core of ideals. Another strong motivation for
studying the core of an ideal is given by the celebrated Briangon-Skoda theorem.

Similarly to what happens for ideals, it is useful to study Rees algebras of mod-
ules via the ones of reduction modules. Likewise the ideal case, one then defines
corg E) to be the intersection of alminimal) reductiondJ of E. Our goal is to
give an explicit formula for the core in terms of a Fitting idealEgfwhenE is a
finitely generatedR-module with ranle, projective dimension one, analytic spread
¢=((E) >e+1, and propertys,_e;1. Interestingly enough, this is the same class
of R-modules that has been studied in [3] in the context of cancellation theorems.
One of the equivalences of Theorem 2.4 below says that

corg E) = Fitt,(E) - E

if and only if the reduction number & is at most/ — e. This result in particular
covers earlier work by Mohan [12].

To prove Theorem 2.4 we reduce the ranktoby factoring out general el-
ements. The task then becomes to assure that this inductive procedure preserves
our assumptions and conclusions. This requires a sequence of technical lemmas.
The corresponding results for ‘generic’ instead of ‘general’ elements have been
shown in [14] — they are useless however in our context since they require purely
transcendental residue extensions which may a priori change the core.

2. The main result

Let R be a Noetherian ring and I& be a finitely generate®-module with rank
e > 0. TheRees algebrag (E) of E is the symmetric algebra & modulo its
R-torsion. LetU C E be a submodule. One says thatis areductionof E or,
equivalently,E is integral overU if R (E) is integral over théR-subalgebra gen-
erated byJ. Alternatively, the integrality condition is expressed by the equations
R(E)r+1 =UR(E), with r > 0. The least integer > 0 for which this equality
holds is called theeduction number of E with respect todhd denoted by (E).
For any reductiord of E the moduleE/U is torsion, henc&) has a rank and
rankU = rankE. If Ris moreover local with residue fieldthen the Krull dimen-
sion of thespecial fiber ring® (E) ®rk is called theanalytic spreadof E and is
denoted by/(E). A reduction ofE is said to beminimalif it is minimal with re-
spect to inclusion. If in additiok is infinite then minimal reductions d&& always
exist. Thereduction number (E) of E is defined to be the minimum af; (E),
whereU ranges over all minimal reductions Bf Finally, we recall thak is said
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to satisfy conditiorGs, for an integels > 1, if y(E,) < dimR, 4+ e— 1 whenever
1<dimR, <s-1.

Our first lemma establishes the existence of ‘superficial’ elements for modules:

Lemma 2.1. Let R be a local Cohen—Macaulay ring with infinite residue field, let
E be a finitely generated R-module having rani, and let U be a reduction of
E. If x is a general element of U then BXR and x is regular o (E). Writing

E = E/Rx and K for the kernel of the natural epimorphism fr&n= R (E)/(x)

onto R (E), we have that K= H% (R),i.e., Ky=0forn> 0.
+

Proof. Since rank) =rankE > 2 andx € U is general, we have thatis basic for
U locally in codimension one [6, A]. Hend@x~ R andx generates a nontrivial
free summand oE locally at every minimal prime oR. It follows thatx is regular
on R (E), K is theR-torsion of ,, andH;li+ (R) CK.

Toprovethe|nclu5|oKCH0 (LTQ) write ® = R (E), A=R,B=A/HR (A).

We need to show th& is R- torsmnfree We first prove that the rimsatisfiesS;,
or equivalently that every associated prime of the Amgpt containingd; is mini-
mal. To this end we consider the following subsets of $gc? = {P|dimR p >
2>depthRp} \V(R 1) andV (L) = {P| R p is notS} for L someR -ideal. AsR.
satisfiesS;, L contains arR -regular elemeny. Now P C Assg (R./(y)), showing
that 2 is a finite set(see also [8, 3.2] AsV (R +) =V(UR), a general element
x € U is not contained in any prime @. Therefore every associated prime/of
not containingA, is indeed minimal.

It remains to show that every minimal prinkeof A contracts to a minimal
prime ofR. To this end leQ be the preimage d&?in X and writep = QNR=PNR.
Sete=rankE and consider the subs@t= Min (Fitte(E) R ) \V (R 1) of Spe¢R).
Again sinceV(R +) =V(UR), a general elemente U is not contained in any
prime of Q. Thus since R . =e > 2> 1= htQand htFitt(E)® > 1, Q cannot
contain Fits(E) R . ThereforeE, is free, henc&, =U, and dimR, <dim® o =1.
Thusx generates a free summands®f=U, , and sdA, = R ,/(X) is a polynomial
ring overR,. Therefore dinRR, < dimAp =0. O

The next lemma is the main ingredient to set up the inductive procedure in the
proof of Theorem 2.4. We show how the properties oRamoduleE change after
factoring out a general element.

Lemma 2.2. In addition to the assumptions and notation lobfmma 2.1write
e=rankE and let'—’ denote images iE.

(a) E hasrank e- 1;

(b) if E is torsionfree and satisfiess@nd if htU :g E > s for some & 2, thenE
is torsionfree and satisfiess>

(c)ifVCEisa submodule and is a reduction o, then V is a reduction of E;

(d) €(E) = ¢(E) - i _

(e)if Uisa m|n|mal reduction of E thet is a minimal reduction oE and
r(E) <ru(E);
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(f) if R (E)is Cohen—Macaulay oR (E) satisfies $then K= 0.

Proof. Part(a) follows sinceRx~ R. As for (b), notice that) satisfie<Gs and then
U has the same property by [11, 3.2 and its proof]. TRisGs since htU: E > s.

It now follows thatE is torsionfree, becaudeis torsionfree and is free in codi-
mension 1. We now provg). By Lemma 2.1, the kernel of the natural map from
A= (R(E)/VR(E)) @rk to B= (R (E)/VR(E)) @rk is contained irHQ (A).
As dimB = 0 it follows that dimA = 0, henceéV is a reduction oE. To prove(d),
we may assume that the imagexa$ part of a system of parameters®R{E) @rk.
Thus/(E) < ¢(E) — 1. Now part(c) gives the asserted equality. As {@), we may
choosex to be part of a minimal generating setdf Thus(d) implies thatU is

a minimal reduction oE, and hence (E) < rg(E) < ry(E). Finally (f) follows
from Lemma 2.1. This is obvious in ca®gE) is Cohen—Macaulay. If on the other
hand® (E) satisfiesS;, one argues as in [14, the proof of 3.7]. |

Lemma 2.3. Let R be a local Cohen—Macaulay ring with infinite residue field, and
let E be a finitely generated R-module wjtiojdimE = 1. Write e=rankE, ¢ =
¢(E), and assume that E satisfies G, 1 and is torsionfree locally in codimension
1. If U is any minimal reduction of E then YU :r E)U ~ (R/U :grE)".

Proof. We use induction oe > 1. If e= 1 thenE is isomorphic to a perfect ideal
of grade 2 becaugg is torsionfree. Now the assertion follows from [5, 2.5]. Thus
we may assume > 2. Letx be a general element bf and let =’ denote images
in E=E/Rx By Lemma 2.1Rx~ R. Notice thatE is free locally in codimension
1. Furthermore according to [1, Proposition E]is of linear type locally in codi-
mensior/ — e, hence ht) : E > ¢ — e+ 1. Therefore by Lemma 2(8), (b), (d), E
satisfies the same assumption&asith rankE = e—1 and/(E) = ¢—1, andU is

a minimal reduction oE. These facts remain true if we replacby x;, for a suit-
able generating sdixs,...,x} of U. Now the asserted isomorphism holds if and
only if Fitt,_1(U) CU: E, or equivalentlyRx +. ..+ RX+...+ Rx):xCcU: E

for every 1<i < /. Takingx € {x1,...,%,...,X¢}, we have(Rx1+...+|$q+...+
RX): X :(Rx1+...+§>\q+...+Rxg): %, CU: E=U: E, where the middle in-
clusion holds by induction hypothesis. |

We are now ready to prove our main result, which characterizes the shape of the
core of anR-module with projective dimension one in terms of conditions either
on the reduction number or on a Fitting ideal of the module. The corresponding
result forR-ideals has been shown in [4, 3.4].

Theorem 2.4. Let R be a local Gorenstein ring with infinite residue field and let E
be a finitely generated R-module wjghojdimE = 1. Write e= rankE, ¢ = ¢(E),
and assume that E satisfies G,; and is torsionfree locally in codimensidh
The following conditions are equivalent:

(a) (U :rE)E C corgE) for some minimal reduction U of E;

(b) (U:rE)U = (U :grE)E = corgE) for every minimal reduction U of E;
(c) corgE) =Fitty(E) - E;
(d)

U :r E does not depend on the minimal reduction U of E;
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(e) U :rE = Fitty(E) for every minimal reduction U of E;
(f) the reduction number of E is at mast e.

Proof. Notice thatE is free locally in codimension 1 and torsionfree. Letbe
any minimal reduction oE. By [1, Proposition 4]E is of linear type locally in
codimensior! — e, hence hit) : E > ¢—e+1. ThusU : E = Fitto(E/U) according
to [2, 3.1(2)]. In particular Fitt(E) = YU : E with U ranging over all minimal
reductions ofE. This establishes the equivalen@ < (e) and the implications
(b) = (c) = (a). The implication(d) = (a) on the other hand is obvious.

Now we are going to prove the remaining equivalences by inducti@>ei.
If e= 1 thenE is isomorphic to a perfect ideal of grade 2, and the theorem follows
from [5, 2.63)] and [5, 3.4]. Thus we may assume tleat 2. Letx be a general
element ofU and let =’ denote images ifE = E/Rx By Lemma 2.1Rx~ R
andx is regular on® (E). Furthermore Lemma 2(2), (b), (d), (e) shows thaE
satisfies the same assumptionsEawith rankE = e— 1, /(E) = /—1 andU a
minimal reduction oE. Finally coreE) C coreE) by Lemma 2.2c). These facts
remain true if we replace by x;, for a suitable generating sty, ..., X/} of U.

(a) = (f): TakeU asin(a). Sincecorg E) C corgE), part(a) gives(U: E)E C

corgE). Now the induction hypothesis implies thdE) < ¢/(E) — (e— 1). Hence
R (E) is Cohen—Macaulay by [14, 4&)]. Thus Lemma 2.¢) shows thatg (E)
is Cohen—Macaulay, and the(E) < ¢ — eagain by [14, 4.7a)].

(f) = (e) and(b): If (f) holds theng (E) is Cohen—Macaulay by [14, 4&)].
Lemma 2.2f) then shows thai (E) ~ R (E)/(x) is Cohen—Macaulay as well.
Now again according to [14, 4&)], r(E) < ¢(E) — (e—1). To establish(e) we
use the isomorphisrwg g ~ Fitt,(E)R (E)[—¢€] proved in [14, 4.10]. From the
corresponding formula faiog &) and the isomorphisig ) @« &) R(E)/(X) ~

Wy g)[—1], we deduce that FittE) = Fitt,_1(E). On the other hand by induc-
tion hypothesis, Fitt 1(E) =U: E. SinceU: E = U: E we obtain the equality
Fitt,(E) = U: E asserted in(e). Now (e) being established, paft) holds as
well and hencgU: E)E C coreg(E) for every minimal reductiotJ of E. Thus
to prove(b) it suffices to show that co(E) C (U: E)U. By the induction hypoth-
esis, coréE) = (U: E)U. SincecorgE) C corg E) we deduce that co(E) C
Rx+ (U: E)U. Replacingx by x; we obtain

l
corgE) C [|(Rx + (U: E)U).
i=1

However the latter module i8J : E)U. This is obvious iU : E = Rand follows
from Lemma 2.3 ifU : E # R since then the images @&f,...,x, form a basis of
the freeR/U : E-moduleU /(U : E)U. O

Ouir first corollary deals with a formula for the coreRimodules with projec-
tive dimension one that are presented by a matrix with linear entries.

Corollary 2.5. Let R=K[x1,...,Xd](x,....x;) b€ the localization of a polynomial

ring in d > 2 variables over an infinite field, let be the maximal ideal of R, and
let E be a finitely generated R-module wttojdimE = 1, presented by a matrix
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whose entries are linear forms. Write=erankE, n= p(E), and assume that E
satisfies @. One has
corg E) = m"e4F1E,

Proof. We may assume that > d + e— 1, since otherwisd is of linear type
according to [14, 4.11]. But then by the same resti /(E) =d +e— 1. Fur-
thermoreR (E) is Cohen—Macaulay. Thus [14, 48f] shows thatr (E) < /—e
and Fitg(E) = Fitto(E/U) for some minimal reductiold of E. Now according to
Theorem 2.4, cor&) = Fitto(E/U ) - E. On the other hand, F#tE /U ) has height
d and is the ideal of maximal minors of an- e—d+ 1 by n— e matrix with linear
entries. Thus Fig{E/U) = m"—¢-d+1, O

Theorem 2.4 also recovers the next result of Mohan about the core of integrally
closed modules over a two-dimensional regular local ring [12, 2.10].

Corollary 2.6. Let R be a two-dimensional regular local ring with infinite residue
field and let E be a finitely generated torsionfree R-module of rank e. If E is inte-
grally closed then

corg(E) = Fitte11(E) - E.

Proof. We may assume thd& is not free, in which casé(E) = e+ 1 by [14,
4.1(a)]. Sincer(E) = 1 according to [10, 4(1)], the assertion now follows from
Theorem 2.4. O
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