
manuscripta mathematica manuscript No.
(will be inserted by the editor)

Alberto Corso·Claudia Polini·Bernd Ulrich

Core of projective dimension one modules

Received: / Revised version:

Abstract. The core of a projective dimension oneR-moduleE is computed explicitly in
terms of Fitting ideals. In particular, our formula recovers previous work by R. Mohan on
integrally closed torsionfree modules over a two dimensional regular local ring.
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1. Introduction

There is an extensive literature on theRees algebraR (I) of an R-ideal I in a
Noetherian ringR. One reason for that is the major role thatR (I) plays in Commu-
tative Algebra and Algebraic Geometry, since Proj(R (I)) is the blowup of Spec(R)
along the subscheme defined byI .

There are several reasons for studying Rees algebras of finitely generatedR-
modulesE as well. For instance, Rees algebras of modules include the so called
multi-Rees algebras, which correspond to the case of direct sums of ideals. Fur-
thermore, symmetric algebras of modules arise naturally as coordinate rings of
certain correspondences in Algebraic Geometry, and the projection of these vari-
eties often requires the killing of torsion. This takes us back to the study of Rees
algebras of modules: We refer to the articles by D. Eisenbud, C. Huneke and B.
Ulrich [7] and by A. Simis, B. Ulrich and W.V. Vasconcelos [14] for additional
motivation as well as a rich list of references. We stress, though, that this is not
a routine generalization of what happens for ideals. This occurs mainly because
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the remarkable interaction that exists between the Rees algebra and the associated
graded ring of an ideal is missing in the module case.

The importance ofreductionsin the study of Rees algebras of ideals has long
been noticed by commutative algebraists. Roughly, a reduction is a simplification
of the given ideal which carries the most relevant information about the original
ideal itself. In this sense, the study of thecore of an ideal – by which we mean
the intersection of all the reductions of the ideal – helps finding uniform properties
shared by all reductions. We refer to [13,9,4,5] for more details as well as for the
few known explicit formulas on the core of ideals. Another strong motivation for
studying the core of an ideal is given by the celebrated Briançon-Skoda theorem.

Similarly to what happens for ideals, it is useful to study Rees algebras of mod-
ules via the ones of reduction modules. Likewise the ideal case, one then defines
core(E) to be the intersection of all(minimal) reductionsU of E. Our goal is to
give an explicit formula for the core in terms of a Fitting ideal ofE, whenE is a
finitely generatedR-module with ranke, projective dimension one, analytic spread
` = `(E)≥ e+1, and propertyG`−e+1. Interestingly enough, this is the same class
of R-modules that has been studied in [3] in the context of cancellation theorems.
One of the equivalences of Theorem 2.4 below says that

core(E) = Fitt`(E) ·E

if and only if the reduction number ofE is at most̀ −e. This result in particular
covers earlier work by Mohan [12].

To prove Theorem 2.4 we reduce the rank ofE by factoring out general el-
ements. The task then becomes to assure that this inductive procedure preserves
our assumptions and conclusions. This requires a sequence of technical lemmas.
The corresponding results for ‘generic’ instead of ‘general’ elements have been
shown in [14] – they are useless however in our context since they require purely
transcendental residue extensions which may a priori change the core.

2. The main result

Let R be a Noetherian ring and letE be a finitely generatedR-module with rank
e > 0. TheRees algebraR (E) of E is the symmetric algebra ofE modulo its
R-torsion. LetU ⊂ E be a submodule. One says thatU is a reductionof E or,
equivalently,E is integral overU if R (E) is integral over theR-subalgebra gen-
erated byU . Alternatively, the integrality condition is expressed by the equations
R (E)r+1 = UR (E)r with r � 0. The least integerr ≥ 0 for which this equality
holds is called thereduction number of E with respect to Uand denoted byrU (E).
For any reductionU of E the moduleE/U is torsion, henceU has a rank and
rankU = rankE. If R is moreover local with residue fieldk then the Krull dimen-
sion of thespecial fiber ringR (E)⊗R k is called theanalytic spreadof E and is
denoted bỳ (E). A reduction ofE is said to beminimal if it is minimal with re-
spect to inclusion. If in additionk is infinite then minimal reductions ofE always
exist. Thereduction number r(E) of E is defined to be the minimum ofrU (E),
whereU ranges over all minimal reductions ofE. Finally, we recall thatE is said
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to satisfy conditionGs, for an integers≥ 1, if µ(Ep) ≤ dimRp + e−1 whenever
1≤ dimRp ≤ s−1.

Our first lemma establishes the existence of ‘superficial’ elements for modules:

Lemma 2.1. Let R be a local Cohen–Macaulay ring with infinite residue field, let
E be a finitely generated R-module having rank≥ 2, and let U be a reduction of
E. If x is a general element of U then Rx' R and x is regular onR (E). Writing
E = E/Rx and K for the kernel of the natural epimorphism fromR = R (E)/(x)
ontoR (E), we have that K= H0

R +
(R ), i.e., Kn = 0 for n� 0.

Proof. Since rankU = rankE≥ 2 andx∈U is general, we have thatx is basic for
U locally in codimension one [6, A]. HenceRx' R andx generates a nontrivial
free summand ofE locally at every minimal prime ofR. It follows thatx is regular
on R (E), K is theR-torsion ofR , andH0

R +
(R )⊂ K.

To prove the inclusionK⊂H0
R +

(R ), writeR = R (E), A= R , B= A/H0
A+

(A).
We need to show thatB is R-torsionfree. We first prove that the ringB satisfiesS1,
or equivalently that every associated prime of the ringA not containingA+ is mini-
mal. To this end we consider the following subsets of Spec(R ), P = {P|dimR P≥
2 > depthR P}\V(R +) andV(L) = {P|R P is notS2} for L someR -ideal. AsR
satisfiesS1, L contains anR -regular elementy. Now P ⊂ AssR (R /(y)), showing
that P is a finite set(see also [8, 3.2]). As V(R +) = V(UR ), a general element
x∈U is not contained in any prime ofP . Therefore every associated prime ofA
not containingA+ is indeed minimal.

It remains to show that every minimal primeP of A contracts to a minimal
prime ofR. To this end letQbe the preimage ofP in R and writep = Q∩R= P∩R.
Sete= rankE and consider the subsetQ = Min(Fitte(E)R )\V(R +) of Spec(R ).
Again sinceV(R +) = V(UR ), a general elementx ∈U is not contained in any
prime ofQ . Thus since htR + = e≥ 2 > 1 = htQ and htFitte(E)R ≥ 1, Q cannot
contain Fitte(E)R . ThereforeEp is free, henceEp =Up and dimRp≤ dimR Q = 1.
Thusx generates a free summand ofEp =Up , and soAp = R p/(x) is a polynomial
ring overRp. Therefore dimRp ≤ dimAP = 0.

The next lemma is the main ingredient to set up the inductive procedure in the
proof of Theorem 2.4. We show how the properties of anR-moduleE change after
factoring out a general element.

Lemma 2.2. In addition to the assumptions and notation ofLemma 2.1write
e= rankE and let‘ ’ denote images inE.

(a) E has rank e−1;
(b) if E is torsionfree and satisfies Gs and if htU :R E ≥ s for some s≥ 2, thenE

is torsionfree and satisfies Gs;
(c) if V ⊂ E is a submodule andV is a reduction ofE, then V is a reduction of E;
(d) `(E) = `(E)−1;
(e) if U is a minimal reduction of E thenU is a minimal reduction ofE and

r(E)≤ rU (E);
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(f ) if R (E) is Cohen–Macaulay orR (E) satisfies S2 then K= 0.

Proof. Part(a) follows sinceRx'R. As for (b), notice thatU satisfiesGs and then
U has the same property by [11, 3.2 and its proof]. ThusE is Gs since htU : E≥ s.
It now follows thatE is torsionfree, becauseE is torsionfree andE is free in codi-
mension 1. We now prove(c). By Lemma 2.1, the kernel of the natural map from
A = (R (E)/VR (E))⊗R k to B = (R (E)/VR (E))⊗R k is contained inH0

A+
(A).

As dimB = 0 it follows that dimA = 0, henceV is a reduction ofE. To prove(d),
we may assume that the image ofx is part of a system of parameters ofR (E)⊗Rk.
Thus`(E)≤ `(E)−1. Now part(c) gives the asserted equality. As for(e), we may
choosex to be part of a minimal generating set ofU . Thus(d) implies thatU is
a minimal reduction ofE, and hencer(E) ≤ rU (E) ≤ rU (E). Finally (f ) follows
from Lemma 2.1. This is obvious in caseR (E) is Cohen–Macaulay. If on the other
handR (E) satisfiesS2, one argues as in [14, the proof of 3.7].

Lemma 2.3. Let R be a local Cohen–Macaulay ring with infinite residue field, and
let E be a finitely generated R-module withprojdimE = 1. Write e= rankE, ` =
`(E), and assume that E satisfies G`−e+1 and is torsionfree locally in codimension
1. If U is any minimal reduction of E then U/(U :R E)U ' (R/U :R E)`.

Proof. We use induction one≥ 1. If e= 1 thenE is isomorphic to a perfect ideal
of grade 2 becauseE is torsionfree. Now the assertion follows from [5, 2.5]. Thus
we may assumee≥ 2. Letx be a general element ofU and let ‘ ’ denote images
in E = E/Rx. By Lemma 2.1,Rx'R. Notice thatE is free locally in codimension
1. Furthermore according to [1, Proposition 4],E is of linear type locally in codi-
mensioǹ −e, hence htU : E≥ `−e+1. Therefore by Lemma 2.2(a), (b), (d), E
satisfies the same assumptions asE with rankE = e−1 and`(E) = `−1, andU is
a minimal reduction ofE. These facts remain true if we replacex by xi , for a suit-
able generating set{x1, . . . ,x`} of U . Now the asserted isomorphism holds if and
only if Fitt`−1(U)⊂U : E, or equivalently(Rx1+ . . .+R̂xi + . . .+Rx̀ ) : xi ⊂U : E
for every 1≤ i ≤ `. Takingx∈ {x1, . . . , x̂i , . . . ,x`}, we have(Rx1+ . . .+ R̂xi + . . .+
Rx̀ ) : xi = (Rx1 + . . .+ R̂xi + . . .+Rx̀ ) : xi ⊂U : E = U : E, where the middle in-
clusion holds by induction hypothesis.

We are now ready to prove our main result, which characterizes the shape of the
core of anR-module with projective dimension one in terms of conditions either
on the reduction number or on a Fitting ideal of the module. The corresponding
result forR-ideals has been shown in [4, 3.4].

Theorem 2.4. Let R be a local Gorenstein ring with infinite residue field and let E
be a finitely generated R-module withprojdimE = 1. Write e= rankE, ` = `(E),
and assume that E satisfies G`−e+1 and is torsionfree locally in codimension1.
The following conditions are equivalent:

(a) (U :R E)E ⊂ core(E) for some minimal reduction U of E;
(b) (U :R E)U = (U :R E)E = core(E) for every minimal reduction U of E;
(c) core(E) = Fitt`(E) ·E;
(d) U :R E does not depend on the minimal reduction U of E;



Core of projective dimension one modules 5

(e) U :R E = Fitt`(E) for every minimal reduction U of E;
(f ) the reduction number of E is at most`−e.

Proof. Notice thatE is free locally in codimension 1 and torsionfree. LetU be
any minimal reduction ofE. By [1, Proposition 4],E is of linear type locally in
codimensioǹ −e, hence htU : E≥ `−e+1. ThusU : E = Fitt0(E/U) according
to [2, 3.1(2)]. In particular Fitt̀(E) = ∑U : E with U ranging over all minimal
reductions ofE. This establishes the equivalence(d) ⇔ (e) and the implications
(b)⇒ (c)⇒ (a). The implication(d)⇒ (a) on the other hand is obvious.

Now we are going to prove the remaining equivalences by induction one≥ 1.
If e= 1 thenE is isomorphic to a perfect ideal of grade 2, and the theorem follows
from [5, 2.6(3)] and [5, 3.4]. Thus we may assume thate≥ 2. Let x be a general
element ofU and let ‘ ’ denote images inE = E/Rx. By Lemma 2.1,Rx' R
andx is regular onR (E). Furthermore Lemma 2.2(a), (b), (d), (e) shows thatE
satisfies the same assumptions asE with rankE = e− 1, `(E) = `− 1 andU a
minimal reduction ofE. Finally core(E)⊂ core(E) by Lemma 2.2(c). These facts
remain true if we replacex by xi , for a suitable generating set{x1, . . . ,x`} of U .

(a)⇒ (f ): TakeU as in(a). Sincecore(E)⊂ core(E), part(a) gives(U : E)E⊂
core(E). Now the induction hypothesis implies thatr(E)≤ `(E)− (e−1). Hence
R (E) is Cohen–Macaulay by [14, 4.7(a)]. Thus Lemma 2.2(f ) shows thatR (E)
is Cohen–Macaulay, and thenr(E)≤ `−eagain by [14, 4.7(a)].

(f )⇒ (e) and(b): If (f ) holds thenR (E) is Cohen–Macaulay by [14, 4.7(a)].
Lemma 2.2(f ) then shows thatR (E) ' R (E)/(x) is Cohen–Macaulay as well.
Now again according to [14, 4.7(a)], r(E) ≤ `(E)− (e−1). To establish(e) we
use the isomorphismωR (E) ' Fitt`(E)R (E)[−e] proved in [14, 4.10]. From the
corresponding formula forωR (E) and the isomorphismωR (E)⊗R (E) R (E)/(x)'
ωR (E)[−1], we deduce that Fitt`(E) = Fitt`−1(E). On the other hand by induc-

tion hypothesis, Fitt`−1(E) = U : E. SinceU : E = U : E we obtain the equality
Fitt`(E) = U : E asserted in(e). Now (e) being established, part(d) holds as
well and hence(U : E)E ⊂ core(E) for every minimal reductionU of E. Thus
to prove(b) it suffices to show that core(E)⊂ (U : E)U . By the induction hypoth-
esis, core(E) = (U : E)U . Sincecore(E) ⊂ core(E) we deduce that core(E) ⊂
Rx+(U : E)U . Replacingx by xi we obtain

core(E)⊂
⋂̀
i=1

(Rxi +(U : E)U).

However the latter module is(U : E)U . This is obvious ifU : E = R and follows
from Lemma 2.3 ifU : E 6= R since then the images ofx1, . . . ,x` form a basis of
the freeR/U : E-moduleU/(U : E)U .

Our first corollary deals with a formula for the core ofR-modules with projec-
tive dimension one that are presented by a matrix with linear entries.

Corollary 2.5. Let R= k[x1, . . . ,xd](x1,...,xd) be the localization of a polynomial
ring in d≥ 2 variables over an infinite field, letm be the maximal ideal of R, and
let E be a finitely generated R-module withprojdimE = 1, presented by a matrix
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whose entries are linear forms. Write e= rankE, n= µ(E), and assume that E
satisfies Gd. One has

core(E) = mn−e−d+1E.

Proof. We may assume thatn > d + e− 1, since otherwiseE is of linear type
according to [14, 4.11]. But then by the same result,` = `(E) = d + e−1. Fur-
thermoreR (E) is Cohen–Macaulay. Thus [14, 4.7(a)] shows thatr(E) ≤ `− e
and Fitt̀ (E) = Fitt0(E/U) for some minimal reductionU of E. Now according to
Theorem 2.4, core(E) = Fitt0(E/U) ·E. On the other hand, Fitt0(E/U) has height
d and is the ideal of maximal minors of ann−e−d+1 byn−ematrix with linear
entries. Thus Fitt0(E/U) = mn−e−d+1.

Theorem 2.4 also recovers the next result of Mohan about the core of integrally
closed modules over a two-dimensional regular local ring [12, 2.10].

Corollary 2.6. Let R be a two-dimensional regular local ring with infinite residue
field and let E be a finitely generated torsionfree R-module of rank e. If E is inte-
grally closed then

core(E) = Fitte+1(E) ·E.

Proof. We may assume thatE is not free, in which casè(E) = e+ 1 by [14,
4.1(a)]. Sincer(E) = 1 according to [10, 4.1(i)], the assertion now follows from
Theorem 2.4.
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