4.3 The Natural Exponential Function

We discussed — in the previous lecture — that the amount of money deposited in a bank grows according to the formula

$$P(t) = P_0 \left(1 + \frac{r}{n}\right)^{nt}$$

where

- n = # of interest periods per year
- r = interest rate
- t = time in years

If n grows, of course, we expect better profit.

Example: $P_0 = 1,000$, $r = 9\%$ or 0.09

- If $n = 4$ (i.e. the interest is computed each quarter)
 $$P(1) = 1,000 \left(1 + \frac{0.09}{4}\right)^4 = 1,093.08$$

- If $n = 12$ (i.e. the interest is computed each month)
 $$P(1) = 1,000 \left(1 + \frac{0.09}{12}\right)^{12} = 1,093.81$$

- If $n = 52$ (i.e. the interest is computed each week)
 $$P(1) = 1,000 \left(1 + \frac{0.09}{52}\right)^{52} = 1,094.09$$

- If $n = 365$ (i.e. the interest is computed each day)
 $$P(1) = 1,000 \left(1 + \frac{0.09}{365}\right)^{365} = 1,094.16$$

- If $n = 8760$ (i.e. the interest is computed each hour)
 $$P(1) = 1,000 \left(1 + \frac{0.09}{8760}\right)^{8760} = 1,094.17$$
* If \(n = 525,600 \) (i.e. the interest is computed each minute),
\[
P'(1) = \frac{1,000}{525,600} \left(1 + \frac{0.09}{525,600} \right)^{525,600} = \$ 1,094.17
\]

Thus \(P'(1) \) approaches a fixed value as \(n \) increases.

If \(n \to \infty \) we say that the interest is compounded continuously.

What's the formula in this case?
\[
P_o (1 + \frac{r}{n})^{nt} = P_o \left[(1 + \frac{1}{n})^{\frac{n}{r}} \right]^{rt} \quad \text{as} \quad n \to \infty
\]

This is because the sequence of numbers
\[
(1 + \frac{1}{q})^q \quad \text{approaches} \quad e = 2.71828 \quad \text{as} \quad q \to \infty
\]

as you can convince yourself after building a chart of values:

<table>
<thead>
<tr>
<th>(q)</th>
<th>(q = 1)</th>
<th>(q = 10)</th>
<th>(q = 1,000)</th>
<th>(q = 1,000,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1 + \frac{1}{q})^q)</td>
<td>2</td>
<td>2.59374</td>
<td>2.71692</td>
<td>2.71828</td>
</tr>
</tbody>
</table>

Thus:
\[
P(t) = P_o e^{rt}
\] is the formula in the interest compounded continuously.
The natural exponential function is defined by \(f(x) = e^x \) and \(\frac{d}{dx} e^x = e^x \).

Its graph looks like:

Ex: How much money invested at the interest rate of \(r = 9.5\% \) compounded continuously will amount to \(\$15,000 \) after 4 years?

\[
15,000 = e^{0.095 \cdot 4}
\]

\[
\therefore \quad \frac{15,000}{e^{0.38}} = 15,000 \cdot e^{-0.38}
\]

\[
= \$10,257.92
\]

Ex: An investment of \(\$400 \) increased to \(P = \$890.20 \) in 16 years. Find the interest rate \(r \) if the interest was compounded continuously.

We need to solve the equation

\[
890.20 = 400 \cdot e^{4r}
\]

\[
\Leftrightarrow e^{4r} = \frac{890.20}{400} = 2.2255
\]

We can check with the calculator that \(r = 0.05 \) (or 5\%) works.

The exact answer is:

\[
r = \frac{1}{4} \ln(2.2255)
\]

(we'll see this later!)
Ex. The function \(f(x) = \frac{e^x + e^{-x}}{2} \)

is called the hyperbolic cosine function. Observe that \(f'(x) = \frac{e^{-x} + e^{-(x)}}{2} = f(x) \)

i.e. \(f(x) \) is even.

Its graph looks like:

\[\cosh(x) \]

It can be shown that a uniform flexible cable hangs from 2 poles of the same height according to a shape described by:

\[g(x) = \frac{a}{2} \left(e^{x/a} + e^{-x/a} \right) \]

The case \(a=1 \) means:

\[\cosh(x) = \frac{e^x + e^{-x}}{2} \]

Similarly, the hyperbolic sine is defined by:

\[\sinh(x) = \frac{e^x - e^{-x}}{2} \]

This function is odd!

Observe that:

\[
\frac{[\cosh(x)]^2 - [\sinh(x)]^2}{\left(\frac{e^x + e^{-x}}{2} \right)^2 - \left(\frac{e^x - e^{-x}}{2} \right)^2} = \frac{e^{2x} + 2 + e^{-2x} - (e^{2x} - 2 + e^{-2x})}{4} = 1
\]

Ex.: Find the zeros of

\[-x^2 e^{-x} + 2x e^{-x} = 0 \]

\[e^{-x} [2x - x^2] = 0 \quad \Rightarrow \quad 2x - x^2 = 0 \quad \Rightarrow \quad x = 0, 2 \quad \text{as} \ e^x \neq 0 \]