MA 113 - Calculus I
FINAL EXAM
Spring 2002
04/29/2002
Name: ____________________ Sec.: __

<table>
<thead>
<tr>
<th>SEC.</th>
<th>INSTRUCTORS</th>
<th>T.A.'S</th>
<th>LECTURES</th>
<th>RECITATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>A. Corso</td>
<td>B. Bennewitz</td>
<td>MWF 8:00-8:50, CB 204</td>
<td>TR 8:00-9:15, CB 341</td>
</tr>
<tr>
<td>002</td>
<td>A. Corso</td>
<td>B. Bennewitz</td>
<td>MWF 8:00-8:50, CB 204</td>
<td>TR 9:30-10:45, CB 345</td>
</tr>
<tr>
<td>004</td>
<td>M. Silhavy</td>
<td>H. Song</td>
<td>MWF 10:00-10:50, CB 214</td>
<td>TR 8:00-9:15, CB 349</td>
</tr>
<tr>
<td>005</td>
<td>M. Silhavy</td>
<td>C. Budovsky</td>
<td>MWF 10:00-10:50, CB 214</td>
<td>TR 2:00-3:15, CB 343</td>
</tr>
<tr>
<td>006</td>
<td>M. Silhavy</td>
<td>H. Song</td>
<td>MWF 10:00-10:50, CB 214</td>
<td>TR 3:30-4:45, CB 345</td>
</tr>
<tr>
<td>007</td>
<td>A. Martin</td>
<td>M. Neu</td>
<td>MWF 12:00-12:50, CB 208</td>
<td>TR 9:30-10:45, CB 347</td>
</tr>
<tr>
<td>008</td>
<td>A. Martin</td>
<td>Y. Jia</td>
<td>MWF 12:00-12:50, CB 208</td>
<td>TR 11:00-12:15, CB 347</td>
</tr>
<tr>
<td>009</td>
<td>A. Martin</td>
<td>Y. Jia</td>
<td>MWF 12:00-12:50, CB 208</td>
<td>TR 12:30-1:45, CB 349</td>
</tr>
<tr>
<td>010</td>
<td>M. Silhavy</td>
<td>C. Budovsky</td>
<td>MWF 2:00-2:50, CB 204</td>
<td>TR 12:30-1:45, CB 345</td>
</tr>
<tr>
<td>011</td>
<td>M. Silhavy</td>
<td>M. Slone</td>
<td>MWF 2:00-2:50, CB 204</td>
<td>TR 2:00-3:15, CB 345</td>
</tr>
<tr>
<td>012</td>
<td>M. Silhavy</td>
<td>M. Slone</td>
<td>MWF 2:00-2:50, CB 204</td>
<td>TR 3:30-4:45, CB 349</td>
</tr>
</tbody>
</table>

Answer all of the following questions. Use the backs of the question papers for scratch paper. No books or notes may be used. You may use a calculator. You may not use a calculator which has symbolic manipulation capabilities. When answering these questions, please be sure to:

- check answers when possible,
- clearly indicate your answer and the reasoning used to arrive at that answer
 (unsupported answers may receive NO credit).

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>SCORE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
1. Compute the following limits. Each limit is worth 4 points.

(a) \[\lim_{x \to 2} \frac{x^3 - 1}{x - 1} = \lim_{x \to 2} \frac{(x^2 + x + 1)}{2} = 7 \]

We can write \(x^3 - 1 = (x-1)(x^2 + x + 1) \)

(b) \[\lim_{x \to 0} \frac{\cos^2 x - 1}{2x^2} = \lim_{x \to 0} \left(-\frac{1}{2} \frac{\sin^2 x}{x^2} \right) = \left(\lim_{x \to 0} \frac{\sin x}{x} \right)^2 = \frac{1}{2} \]

\[\sin^2 x + \cos^2 x = 1 \quad \Rightarrow \quad \cos^2 x - 1 = -\sin^2 x \]

(c) \[\lim_{x \to \infty} \cot \left(\frac{2}{x} + \frac{\pi}{4} \right) = \cot \left(\frac{\pi}{4} \right) = 1 \]

\[\cot x = \frac{\cos x}{\sin x} \quad \text{as} \quad x \to \infty \quad \frac{2}{x} + \frac{\pi}{4} \to \frac{\pi}{4} \]

\[\therefore \cot \left(\frac{\pi}{4} \right) = 1 \]

(d) \[\lim_{x \to \infty} \frac{\sqrt{9x^4 + 8}}{3x^2 + \sqrt{x}} = \lim_{x \to \infty} \frac{\sqrt{9 + \frac{8}{x^4}}}{3 + \frac{1}{\sqrt{x^3}}} = \frac{3}{3} = 1 \]

\[\text{pts: } /16 \]
2. Find the derivative of the following functions. Each derivative is worth 4 points. Do not simplify your answers.

(a) If \(f(x) = (2x^8 + 7)(3x^2 + 5x) \) then \(f'(x) = \)

\[
f'(x) = 16x^7(3x^2 + 5x) + (2x^8 + 7)(6x + 5)
\]

(b) If \(f(x) = \sin(\sqrt[3]{x^2}) \) then \(f'(x) = \)

\[
f(x) = \sin(x^{2/3}) \quad \text{use chain rule}
\]

\[
f'(x) = \cos(x^{2/3}) \cdot 2/3 \cdot x^{-1/3}
\]

(c) If \(f(x) = \cos^3(x^3) + (5x^2 - 3)^3 \) then \(f'(x) = \)

\[
f'(x) = 3 \cos^2(x^3) \cdot (-\sin(x^3)) \cdot 3x^2 + 3(5x^2 - 3)^2 \cdot 10x
\]

(d) If \(f(x) = \frac{\sin(x^3 - 1)}{x^3 + 1} \) then \(f'(x) = \)

\[
\text{use quotient rule and chain rule}
\]

\[
f'(x) = \frac{[\cos(x^3 - 1) \cdot 3x^2] (x^3 + 1) - \sin(x^3 - 1) \cdot 3x^2}{(x^3 + 1)^2}
\]

\text{pts: 7/16}
3. A particle is moving on a line such that its position after t hours is $s(t) = -t^2 + t + 2$ measured in miles.

(a) Find the velocity of the particle.

$$v(t) = -2t + 1$$

(b) When does the particle change its direction?

It changes direction when $v(t) = 0$,

i.e. at $t = \frac{1}{2}$

(c) What is the largest distance of the particle to its origin within the first 5 hours.

The position at $t = 0$ is 2,

the position at $t = \frac{1}{2}$ is $\frac{9}{4}$.

The position at $t = 5$ is -18.

Thus the largest distance to its origin is 20.

pts: 16
4. Consider the function $f(x) = \frac{x^3}{x^2 - 4}$.

(a) (3pts) Determine the intervals where $f(x)$ is increasing or decreasing. Find the values of f at the local minima and maxima of f.

\[f'(x) = \frac{3x^2(x^2 - 4) - x^3(2x)}{(x^2 - 4)^2} = \frac{x^4 - 12x^2}{(x^2 - 4)^2} \]

\[f'(x) = 0 \iff x^4 - 12x^2 = 0 \iff x^2(x^2 - 12) = 0 \iff x = 0, x = \pm \sqrt{12} \]

(b) (3pts) Determine the intervals where $f'(x)$ is concave up or down. Find the values of f at its inflection points.

\[f''(x) = \frac{(4x^3 - 24x)(x^2 - 4) - (x^4 - 12x^2) \cdot 2 \cdot x}{(x^2 - 4)^3} = \frac{8x^3 + 96x}{(x^2 - 4)^3} = \frac{8x(x^2 + 12)}{(x^2 - 4)^3} \]

Sign of f'': \[\begin{array}{cccccc}
&\bullet&-&+&0&-&+&\bullet&+
\end{array}\]

(c) (2pts) Find the horizontal and vertical asymptotes of the graph of f.

Vertical asymptotes: $x = 2, x = -2$.

No horizontal asymptote.

\[\lim_{x \to \infty} \frac{x^3}{x^2 - 4} = +\infty \]

\[\lim_{x \to -\infty} \frac{x^3}{x^2 - 4} = -\infty \]

(d) (2pts) Sketch the graph of f. **Make sure** to label the local extrema and the inflection points as well as to include the asymptotes of the graph of f.

\[\text{pts: /10} \]
5. Find the largest area of a rectangle that can be inscribed in a circle of radius 1.

Notice that the main diagonals of any such rectangle are diameters.

Now, if \(x \) and \(y \) are the dimensions of the rectangle we have that \(x^2 + y^2 = 2^2 = 4 \) thus \(y = \sqrt{4-x^2} \). We need to maximize the function

\[
\text{Area} = xy = x \sqrt{4-x^2} \quad 0 \leq x \leq 2
\]

\[
A' = 1 \cdot \sqrt{4-x^2} + x \cdot \frac{1}{\sqrt{4-x^2}} \left(-\frac{kx}{\sqrt{4-x^2}} \right) = \frac{4-x^2 - x^2}{\sqrt{4-x^2}} = \frac{4-2x^2}{\sqrt{4-x^2}}
\]

\[
A' = 0 \iff 4-2x^2 = 0 \quad x^2 = 2 \quad x = \sqrt{2}
\]

\[
\begin{array}{c|c|c}
 x & A(x) & \text{value at the endpoints} \\
 \hline
 0 & 0 & \{} \text{value at the endpoints} \}\{ \\
 2 & 0 & \}\{ \\
 \sqrt{2} & 2 & \text{max}
\end{array}
\]

Notice \(x=\sqrt{2} = y \) \(\therefore \text{it is a square} \)
6. Find the following indefinite integrals. Each problem is worth 4 points.

(a) \(\int (\sqrt{x} + \sin(5x)) \, dx = \frac{2}{3} \sqrt{x} - \frac{1}{5} \cos(5x) + \text{const} \)

\[
\int \sqrt{x} \, dx + \int \sin(5x) \, dx = \frac{2}{3} x^{3/2} + \frac{1}{5} (-\cos(5x)) + \text{const}
\]

\[
x^{3/2} = x\sqrt{x}
\]

(b) \(\int \sqrt{x} \cdot (x^7 - 1) \, dx = \frac{3}{25} x^{\frac{3}{2}} - \frac{3}{4} x^{\frac{3}{2}} + \text{const} \)

\[
\int (x^{\frac{7}{3}} - x^{\frac{1}{3}}) \, dx = \int (x^{\frac{23}{3}} - x^{\frac{1}{3}}) \, dx = \frac{3}{25} x^{\frac{1}{3}} - \frac{3}{4} x^{\frac{1}{3}} + \text{const}
\]

(c) \(\int \frac{\sin x}{\cos^4 x} \, dx = \frac{1}{4} \cot^4 x + \text{const} \)

\[
\text{use } u = \cot x \quad \Rightarrow \quad \int -\frac{du}{u^5} = -\int u^{-5} \, du = -\frac{1}{-4} u^{-4} + \text{const}
\]

\[
= \frac{1}{4} u^{-4} + \text{const}
\]

(d) \(\int (x^5 + x^3)^7 \cdot (x^5 + x^3)^2 \, dx = \frac{1}{24} (x^6 + x^3)^8 + \text{const} \)

\[
\text{set } u = x^6 + x^3 \quad \Rightarrow \quad \int u^7 \, du = \int \frac{u^7}{3} \, du = \frac{1}{3} \cdot \frac{1}{8} u^8 + \text{const}
\]

pts: /16

\underline{Note:} there was a typo in problem (d)!!
7. Calculate the following definite integrals. Each problem is worth 4 points.

(a) \[\int_{0}^{9} (x^2 - \sqrt{x}) \, dx = \frac{225}{3} \]

\[= \frac{1}{3} x^3 - \frac{2}{3} x^{3/2} \bigg|_{0}^{9} = \frac{1}{3} \cdot 9^3 - \frac{2}{3} \cdot 9^{3/2} - 0 = 243 - 18 \]
\[= 225 \]

(b) \[\int_{0}^{1} x^3 \sqrt{1 + 2x^4} \, dx = \frac{3\sqrt{3} - 1}{12} \]

\[u = 1 + 2x^4 \]
\[du = 8x^3 \, dx \]
\[\frac{1}{8} \int \sqrt{u} \, du = \frac{1}{8} \int u^{1/2} \, du = \frac{1}{8} \left[\frac{2}{3} u^{3/2} \right]_1^{3} \]
\[= \frac{1}{8} \left[\frac{2}{3} (3\sqrt{3} - 1) \right] = \frac{3\sqrt{3} - 1}{12} \]

(c) \[\int_{0}^{1} (2x + 1)^2 \, dx = \frac{13}{3} \]

\[u = 2x + 1 \]
\[du = 2 \, dx \]
\[\int \frac{1}{2} u^2 \, du = \frac{1}{6} u^3 \bigg|_{1}^{3} = \]
\[= \frac{1}{6} \left[27 - 1 \right] = \frac{26}{6} = \frac{13}{3} \]

pts: /12
8. (a) Sketch the region that is bounded by the graphs of the functions \(f(x) = 2x - x^2 \) and \(g(x) = x^3 \). Determine the points of intersections of the two curves.

\[
\begin{align*}
\left\{ \begin{array}{l}
y = x^3 \\
y = 2x - x^2
\end{array} \right. \\
2x - x^2 + x^3 = 0 \\
x(x^2 + x - 2) = 0 \\
x(x + 2)(x - 1) = 0 \\
x = 0, 1, -2
\end{align*}
\]

(b) Compute the area of the region.

\[
\text{Area} = \int_{-2}^{0} (x^3 - (2x - x^2)) \, dx + \int_{0}^{1} ((2x - x^2) - x^3) \, dx
\]

\[
= \int_{-2}^{0} (x^3 - 2x + x^2) \, dx + \int_{0}^{1} (-x^3 + x^2 + 2x) \, dx
\]

\[
= \left[\frac{1}{4}x^4 + \frac{1}{3}x^3 - x^2 \right]_{-2}^{0} + \left[\frac{-1}{4}x^4 - \frac{1}{3}x^3 + x^2 \right]_{0}^{1}
\]

\[
= 0 - \left(\frac{1}{4}(4) + \frac{1}{3}(-8) + 4 \right) + \left(\frac{-1}{4} - \frac{1}{3} + 1 \right)
\]

\[
= \frac{8}{3} + \frac{-3 - 4 + 12}{12} = \frac{32 + 5}{12} = \frac{37}{12}
\]

\text{pts: 7/8}
9. Find the volume of the solid that is obtained by rotating about the x-axis the region bounded by the curve \(x - y^3 = 0 \) and the line \(x = 1 \).

\[
\text{Volume} = \int_{0}^{1} \pi \left[f(x) \right]^2 \, dx
\]

\[
= \int_{0}^{1} \pi \left[3 \sqrt[3]{x} \right]^2 \, dx = \int_{0}^{1} \pi x^{2/3} \, dx
\]

\[
= \left. \pi \cdot \frac{3}{5} x^{5/3} \right|_{0}^{1} = \pi \cdot \frac{3}{5} \cdot 1^{5/3} - 0
\]

\[
= \frac{3}{5} \pi
\]

\[\text{pts: } /8\]