Answer all of the following questions. Use the backs of the question papers for scratch paper. No books or notes may be used. You may use a calculator. You may not use a calculator which has symbolic manipulation capabilities. When answering these questions, please be sure to:

- check answers when possible,
- clearly indicate your answer and the reasoning used to arrive at that answer (unsupported answers may receive NO credit).

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>SCORE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. Find all the critical values and the absolute maximum and absolute minimum values for

\[f(x) = 3x^4 - 16x^3 + 18x^2 \]

on the closed interval \(-1 \leq x \leq 4\).

\[f'(x) = 12x^3 - 48x^2 + 36x \]

\[f'(x) = 0 \iff x^3 - 4x^2 + 3x = 0 \]

\[x(x^2 - 4x + 3) = 0 \]

\[x(x - 3)(x - 1) = 0 \]

\(\therefore x = 0, \ x = 1, \ x = 3 \)

<table>
<thead>
<tr>
<th>X</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>37</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>-27</td>
</tr>
</tbody>
</table>

\[f(x) \text{ has an absolute max of } 37 \text{ at } x = -1 \]

\[f(x) \text{ has an absolute min of } -27 \text{ at } x = 3 \]

pts: /10

2. (a) Does the Mean Value Theorem apply to the function \(f(x) = \frac{x+1}{x-1} \) on the interval \(2 \leq x \leq 3 \)?

Why? If so, find all possible values of \(c \) for which the Mean Value Theorem holds on the given interval.

the function \(f(x) \) is continuous and differentiable on \([2, 3]\). The MVT says that there exists \(c \in (2, 3) \) s.t.

\[f'(c) = \frac{f(3) - f(2)}{3 - 2} = \frac{2}{1} - \frac{3}{1} = -1 \]

Note that \(f'(x) = \frac{1(x-1) - 1(x+1)}{(x-1)^2} = \frac{-2}{(x-1)^2} \)

\(\therefore \frac{-2}{(c-1)^2} = -1 \)

\(\therefore (c-1)^2 = 2 \)

\(\therefore c = 1 \pm \sqrt{2} \)

But \(1 - \sqrt{2} \) is outside the interval.

(b) Same as (a), but on the new interval \(0.5 \leq x \leq 1.5 \).

the mean value theorem does not apply as the function is not continuous at \(x = 1 \in [0.5, 1.5] \)

pts: /10
3. Consider the function:
\[f(x) = x^4(x^2 - 3) = x^6 - 3x^4 \]

Each question is worth 5 points.

(a) Determine the intervals where the graph of \(f(x) \) is increasing or decreasing. Find the values of \(f(x) \) at the local maxima and minima of \(f(x) \).

\[f'(x) = 6x^5 - 12x^3 = 6x^3(x^2 - 2) = 0 \]

\[\Rightarrow x = 0 \text{ or } x = \pm \sqrt{2} \]

\[\begin{array}{c|c|c|c|c}
\text{decr} & \text{incr} & \text{decr} & \text{incr} \\
\hline
- & + & - & + \\
\hline
-\sqrt{2} & 0 & \sqrt{2} & 7 \\
\end{array} \]

\[\text{local min at } x = \pm \sqrt{2} \]

\[f(\pm \sqrt{2}) = -4 \]

\[\text{local max at } x = 0 \]

\[f(0) = 0 \]

(b) Determine the intervals where the graph of \(f(x) \) is concave up or down. Find the values of \(f(x) \) at the inflection points of \(f(x) \).

\[f''(x) = 30x^4 - 36x^2 = 6x^2(5x^2 - 6) = 0 \]

\[\Rightarrow x = 0, \quad x = \pm \sqrt{\frac{6}{5}} \]

\[\begin{array}{c|c|c|c|c}
\text{conc. up} & \text{conc. down} & \text{conc. up} \\
\hline
-\sqrt{\frac{6}{5}} & - & \sqrt{\frac{6}{5}} & + \\
\hline
\end{array} \]

\[\text{inflection pts} \]

\(x = \pm \sqrt{\frac{6}{5}} \)

\[f(\pm \sqrt{\frac{6}{5}}) = -2.592 \]

(c) Sketch the graph of \(f(x) \).

Make sure to label the local maxima, the local minima and the inflection points of \(f(x) \).
4. Without using a calculator, show that the equation

\[x^{101} + x^1 + x - 1 = 0 \]

has exactly one real root.

Observe that if we consider \(f(x) = x^{101} + x + x - 1 \) defined on \([0, 1]\), then by the Intermediate Value Theorem \(f(x) \) has a root in \((0, 1)\). In fact \(f(x) \) is continuous and \(f(0) = -1 \), while \(f(1) = 2 \).

Suppose that \(f(x) \) has 2 roots \("a, b" \). I.e. \(f(a) = 0 = f(b) \). Since \(f \) is continuous and differentiable by Rolle's Theorem there exist \(c \in (a, b) \) where \(f'(c) = 0 \). BUT \(f'(x) = 101x^{100} + 51x^5 + 1 \) is never zero.

\[\therefore \text{there is only one real root} \] pts: 78

5. Show that if \(x > 0 \) then \(x + \frac{4}{x^2} \geq 3 \).

Let \(f(x) = x + \frac{4}{x^2} \) defined on the half line \(x > 0 \). Notice that \(f'(x) = 1 - \frac{8}{x^3} \) also, \(f \) has only one critical value \(\text{for } x > 0 \). \(0 = f'(x) = \frac{x^3 - 8}{x^3} \iff x^3 - 8 = 0 \iff x = 2 \)

\[\begin{array}{c|cccc}
\text{sign of } f'(x) & - & + & + & +
\end{array} \] \(\therefore f \) has an absolute min at \(x = 2 \)

\(\therefore f(x) = x + \frac{4}{x^2} \geq f(2) = 2 + \frac{4}{2^2} = 3 \)

pts: /10
6. Each question is worth 5 points.

(a) \[\lim_{{x \to \infty}} \frac{\sqrt{x} + 3}{3 - 2x} = \]

\[= \lim_{{x \to \infty}} \frac{\frac{1}{\sqrt{x}} + \frac{3}{x}}{3 - 2} = \frac{0}{-2} = 0 \]

(b) \[\lim_{{x \to \infty}} \frac{2 \sqrt{1 + 9x^2}}{9 - 16x} = \]

\[= \lim_{{x \to \infty}} \frac{\frac{2 \sqrt{1 + 9x^2}}{x}}{\frac{9 - 16x}{x}} = \lim_{{x \to \infty}} \frac{2 \sqrt{\frac{1}{x^2} + 9}}{9 - 16} = \frac{2 \sqrt{9}}{-16} = \frac{-6}{16} = -\frac{3}{8} \]

(c) Find the vertical and horizontal asymptotes of the curve

\[f(x) = \frac{3x^2 + 4}{2 - x^2} \]

Compute \(\lim_{{x \to a^+}} f(x) \) and \(\lim_{{x \to a^-}} f(x) \) for all the values of ‘a’ such that the line \(x = a \) is a vertical asymptote of the given function \(f(x) \).

The equation of the horizontal asymptote is \(y = -3 \) as \(\lim_{{x \to \infty}} \frac{3x^2 + 4}{2 - x^2} = -3 \)

The function has 2 vertical asymptotes at \(x = \sqrt{2}, \; x = -\sqrt{2} \).

\[\lim_{{x \to \sqrt{2}^+}} f(x) = -\infty \]
\[\lim_{{x \to \sqrt{2}^-}} f(x) = +\infty \]

\[\lim_{{x \to -\sqrt{2}^+}} f(x) = +\infty \]
\[\lim_{{x \to -\sqrt{2}^-}} f(x) = -\infty \]

pts: 15
7. Each problem is worth 5 points.

(a) The graph of a function $f(x)$ is shown. Which graph is an antiderivative of $f(x)$ and why?

(b) Find the most general antiderivative of: $f(x) = x^3 + \sqrt{x} - 2 \cos(2x)$.

\[
\begin{align*}
\frac{df(x)}{dx} &= \frac{1}{4} x^4 + \frac{2}{3} x^{3/2} - \sin(2x) + \text{Const} \\
&= \frac{1}{4} x^4 + \frac{2}{3} x^{3/2} - \sin(2x) + \text{Const} \\
&= \text{don't forget it}
\end{align*}
\]

pts: /10
8. A swimmer S is in the ocean 100 meters from a straight shoreline. A person P in distress is located on the shoreline 300 meters from the point on the shoreline closest to the swimmer.

If the swimmer can swim 3 meters per second and run 5 meters per second, what path should the swimmer follow in order to reach the person in distress as quickly as possible?

Let x be the distance between H and L ($L =$ landing point): $0 \leq x \leq 300$

We need to minimize the time to go from S to P (via L):

$$T(x) = \text{time} = \frac{\sqrt{x^2 + 100^2}}{3} + \frac{300 - x}{5}$$

$$T'(x) = \frac{1}{3} \cdot \frac{2x}{2\sqrt{x^2 + 10000}} - \frac{1}{5} = 0$$

$$\Rightarrow \frac{x}{3\sqrt{x^2 + 10000}} = \frac{1}{5}$$

$$\Rightarrow 5x = 3\sqrt{x^2 + 10000}$$

$$\Rightarrow 25x^2 = 9x^2 + 90000 \Rightarrow 16x^2 = 90000 \Rightarrow x = \pm \sqrt{\frac{90000}{16}}$$

$$x = \pm 75$$

But $x = +75$

Critical value $\{75\}$

End points $\{0, 300\}$

$T(x)$

<table>
<thead>
<tr>
<th>x</th>
<th>$T(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>93.3 sec</td>
</tr>
<tr>
<td>300</td>
<td>105.4 sec</td>
</tr>
</tbody>
</table>

pts: /10
9. The graph of the derivative \(f'(x) \) of a function \(f(x) \) is shown:

Each question is worth 3 points.

(a) On what intervals is \(f(x) \) increasing or decreasing?

\[
\begin{array}{ccccccc}
\text{decreasing} & \text{increasing} & \text{decreasing} & \text{increasing} \\
-\infty & \bullet & - & \bullet & 0 & \bullet & 2 & 4 & \infty
\end{array}
\]

(b) At what values of \(x \) does \(f(x) \) attains a local maximum or minimum?

\(f(x) \) has local max at \(x = 0 \)
\(f(x) \) has local min at \(x = -2, 4 \)

(c) On what intervals is \(f(x) \) concave up or down?

\[
\begin{array}{ccccccc}
\text{concave up} & \text{concave down} & \text{concave up} & \text{concave down} \\
-\infty & 1 & 2 & 3 & 5 & \infty
\end{array}
\]

(d) State the \(x \)-coordinates of the inflection points.

\(f(x) \) has inflection points at the points with \(x \)-coordinates:

\(x = -1, 1, 2, \frac{3}{2}, 5 \)

pts: /12