MA 114 - Calculus II PRACTICE FINAL EXAM		Spring 2004 05/07/2004	Name:	Sec.:	
	SEC.	INSTRUCTORS	T.A.'S	LECTURES	RECITATIONS
	001	A. Corso	D. Watson	MWF 8:00-8:50, CP 222	TR 8:00-9:15, CB 347
	002	A. Corso	D. Watson	MWF 8:00-8:50, CP 222	TR 12:30-1:45, CP 155
	003	A. Corso	S. Petrovic	MWF 8:00-8:50, CP 222	TR 3:30-4:45, CB 347

Answer all of the following questions. Use the backs of the question papers for scratch paper. No books or notes may be used. You may use a calculator. You may not use a calculator which has symbolic manipulation capabilities. When answering these questions, please be sure to:

- check answers when possible,
- clearly indicate your answer and the reasoning used to arrive at that answer (*unsupported answers may receive NO credit*).

QUESTION	SCORE	TOTAL
1.		10
2.		30
3.		10
4.		10
5.		15
6.		10
7.		10
8.		10
9.		10
Bonus.		5
TOTAL	out of 100 pts	120

1. Find dy/dx for each of the following functions:

(a) $y = \tan^{-1}(e^{3x})$

dy/dx =_____

(b) $y = x^{\sin x}$

dy/dx =_____

 $(c) \ y = \ln(\ln(x^2))$

dy/dx =_____

2. Evaluate the following integrals. Each problem is worth 5 points.

(a)
$$\int \frac{e^{2x}}{1+e^{2x}} dx =$$
_____.

(b)
$$\int \frac{x^2 + 2x + 3}{(x^2 + 1)(x + 1)} dx =$$
______.

$$(c) \quad \int x^2 \ln x \, dx = \underline{\qquad}.$$

2.(cont.d)

$$(d) \quad \int \frac{x^2}{\sqrt{1-x^2}} \, dx = \underline{\qquad}.$$

$$(e) \quad \int x\sqrt{1+x} \, dx = \underline{\qquad}.$$

(f)
$$\int \frac{3x^4 + 2x^2 + x - 1}{1 + x^2} dx =$$

- **3.** An isotope of strontium, Sr^{90} , has a half-life of 25 years.
 - (a) Find the mass Q(t) of Sr⁹⁰ that remains from a sample of 18 mg after t years.
 - (b) How long would it take for the mass to decay to 2 mg?

pts: /10

4. (5 pts each) Find the limits of the following sequences:

(a)
$$a_n = \left(1 - \frac{1}{n}\right)^n;$$

(b)
$$a_n = (-1)^n \frac{n+1}{n};$$

5. (5 pts each) Determine if the following series are absolutely convergent, conditionally convergent, or divergent.

(a)
$$\sum_{n=2}^{\infty} (-1)^n \frac{1}{\sqrt{2+n}};$$

$$(b) \sum_{n=1}^{\infty} \frac{n^2}{4^n};$$

$$(c) \sum_{n=1}^{\infty} \frac{\sin(n)}{n^3}.$$

6. (a) Find the interval of convergence of the power series

$$\sum_{n=0}^{\infty} \frac{3n}{2^n} x^{2n}.$$

(b) Find the 4th degree Taylor polynomial centered at a = -1 for $f(x) = \ln(2+x)$.

7. (a) Find the area bounded by the curve

$$x(t) = \cos t$$
 $y(t) = e^t$ $0 \le t \le \pi/2$,

and the lines y = 1 and x = 0.

(b) Find the length of the curve

 $x(t) = e^t - t$ $y(t) = 4e^{t/2}$ $0 \le t \le 1$.

8. (a) Sketch the curve

$$x(t) = t^2 \qquad y(t) = t^3 - t$$

- (b) Find the coordinates of the point where the curve crosses itself.
- (c) Find the equations of the tangent lines at the point in part (b).

 $\frac{dy}{dx} = xy + x \qquad y(1) = 0.$

pts: /10

Bonus. Sketch carefully the graphs of the following equations given in polar coordinates

 $r = 1 - \cos \theta$ $r = \cos \theta$

Label and give the coordinates of all the points of intersection.

