Practice Problems (Chapter 14)

1. Let C be the curve in space parametrized by

$$\vec{r}(t) = (2t+8)\hat{i} + (-2t)\hat{j} + t^2\hat{k} \quad 0 \leq t \leq 1$$

(a) Evaluate the line integral

$$\int_C f(x,y,z) \, ds$$

where $f(x,y,z) = \sqrt{y + x + 4z}$

(b) Evaluate the work $\int_C \vec{F} \cdot d\vec{s}$, where

$$\vec{F}(x,y,z) = (x+y)\hat{i} + (yz)\hat{j} + y^2\hat{k}$$

and C is as above.

2. Let $\vec{F} = 2xz\hat{i} + z\hat{j} + (x^2+y)\hat{k}$ be a 3-dimensional vector field.

(a) Show that \vec{F} is conservative.

(b) Find the work done by \vec{F} over any path from $(0,1,1)$ to $(1,2,3)$.

3. Let $\vec{F} = xy^2\hat{i} + 3x\hat{j}$ be a 2-dimensional vector field. Use Green's theorem to calculate the counterclockwise circulation of \vec{F} around the unit square, as shown.

\[\begin{array}{c}
(0,0) \\
(0,1) \\
(1,1) \\
(1,0)
\end{array}\]
4. Find the work done by the force \[\mathbf{F}(x, y, z) = xy \mathbf{i} + yz \mathbf{j} + xz \mathbf{k} \]

over the path consisting of the line segment from the point \((1,1,0)\) to the point \((1,0,1)\) followed by the line segment from \((1,0,1)\) to \((1,1,1)\).

5. Evaluate \(\int_C \sqrt{x^2+y^2} \, ds \) along the curve \(\mathbf{r}(t) = 4 \cos t \mathbf{i} + 4 \sin t \mathbf{j} + 3t \mathbf{k} \) where \(-2\pi \leq t \leq 2\pi\).

6. Consider the vector field \[\mathbf{F}(x, y, z) = 2x \mathbf{i} + (2y+z) \mathbf{j} + (y+1) \mathbf{k} \]

(a) Show that \(\mathbf{F} \) is a conservative vector field.

(b) Find a potential function \(f \) for the field \(\mathbf{F} \).

7. Evaluate \(\int_C y e^x \, dx + e^x \, dy + 2z \, dz \) where \((1,1,1) \).
8. Use Green's theorem to find the work done by
\[\vec{F}(x, y) = (3x - y) \hat{i} + (x - 2y) \hat{j} \]
in moving a particle once counterclockwise around the space \(C \), where \(C \) is the boundary of the square \(0 \leq x \leq 1 \) and \(0 \leq y \leq 1 \).

9. Consider the line integral
\[(*) \quad \oint_C (xy^2 + e^{3x}) \, dx + (x^2 y + 2x + \sin y) \, dy. \]

(a) Compute \((*)\) along the segment from \((0,0)\) to \((2,4)\).

(b) If \(C \) is the counterclockwise boundary of the triangular region with vertices \((0,0)\), \((2,0)\), and \((2,4)\), use Green's Theorem to evaluate \((*)\).

10. Consider the vector field
\[\vec{F}(x, y, z) = (\cos y - x) \hat{i} + (ze^{yz} - x \sin y) \hat{j} + ye^{yz} \hat{k}. \]

(a) Assuming \(\vec{F} = \nabla f \), find the potential \(f \).
(b) Use \(f \) calculated in part (a) to evaluate
\[
\int_{(0, 0, 1)}^{(1, \pi, 0)} \mathbf{F} \cdot d\mathbf{r}
\]

11. Evaluate the line integral using Green's Theorem
\[
\oint (xy^2 + 2y + 5)\,dx + (y^3 \sin y + x^2 y)\,dy
\]
in counterclockwise direction around the circle
\[x^2 + y^2 = 9.\]

12. Find the work done by the force
\[
\mathbf{F}(x, y, z) = (y + 2xz)\,\mathbf{i} + x\,\mathbf{j} + x^2\,\mathbf{k}
\]
over the straight line path from \((0, 0, 0)\) to \((1, 1, 1)\).

13. Consider the vector field
\[
\mathbf{F}(x, y, z) = (2xy + e^{2-x})\,\mathbf{i} + (x^2 - \sin y)\,\mathbf{j} - e^{2-x}\,\mathbf{k}
\]
(a) Find a potential function for \(\mathbf{F}(x, y, z) \).
(b) Find the exact value of \(\int_C \mathbf{F} \cdot d\mathbf{r} \).
along the straight path from $(0,0,0)$ to $(1, \pi, 1)$.

14. Let C be the arc of the circle of radius 2 as shown in the figure.

Find \[\int_C xy \, dx + dy. \]