MA 213 – Sec. 01/02 – Spring 2003	The exam is on Wednesday February 12	Please, be neat and
PRACTICE EXAM – A. Corso	CP 103 — 6:00-8:00pm	show all your work!

1. Find the equation of the tangent line to the curve

$$x = t^2$$
 $y = t^3$

at the point t = 2, without eliminating the parameter.

2. Find the work done by the force $\mathbf{F} = 3\mathbf{i} + 10\mathbf{j}$ newtons in moving an object 10 meters north (i.e., in the **j** direction).

3.
$$\lim_{t \to \infty} \left[\frac{t \sin t}{t^2} \mathbf{i} - \frac{7t^3}{t^3 - 3t} \mathbf{j} \right]$$

4. Consider the vector $\mathbf{a} = 3\mathbf{i} - 5\mathbf{j} + \mathbf{k}$. Find a vector \mathbf{b} with the same direction as \mathbf{a} , opposite orientation and length 6.

- 5. Consider the points A(1,2,0), B(3,0,-4), the midpoint M of the segment AB and the origin O. Find
 - (a) the component form of \vec{AB} ;
 - (b) the component form of $\vec{OA}, \vec{OB}, \vec{OM}$;
 - (c) the coordinates of M.

6. Let $\mathbf{u} = 8\mathbf{i} + 4\mathbf{j} - 12\mathbf{k}$ and $\mathbf{v} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$. Compute

- (*a*) 3u 2v;
- (b) $\mathbf{u} \cdot \mathbf{v};$
- (c) $\cos \theta$, where θ is the angle between the two vectors;
- (d) $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})$.
- 7. Let $\mathbf{a} = -5\mathbf{i} + \mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} + 10\mathbf{j} + \sqrt{17}\mathbf{k}$. Find $\mathbf{a} \cdot \mathbf{b}$, $\mathbf{a} \times \mathbf{b}$, $|\mathbf{a}|$, $\text{proj}_{\mathbf{a}}(\mathbf{b})$ and the angle between \mathbf{a} and \mathbf{b} . Find a vector perpendicular to \mathbf{a} . Find a vector parallel to \mathbf{a} that has length 10.
- 8. Give the area of the parallelogram formed by the two vectors

 $\mathbf{a} = 2\mathbf{i} + \mathbf{j}$ $\mathbf{b} = \mathbf{i} - 2\mathbf{k}$.

9. Let $\mathbf{a} = 2\mathbf{i} - 3\mathbf{j}$, $\mathbf{b} = \mathbf{i} + 3/2\mathbf{j} - \mathbf{k}$ and $\mathbf{c} = -\mathbf{i} + \mathbf{j} + \mathbf{k}$.

- (a) find a unit vector **n** that is normal to a plane determined by **a** and **b** (any one of many such planes) such that **a**, **b** and **n** (in that order) form a right-hand system;
- (b) find $\operatorname{proj}_{\mathbf{a}}(\mathbf{c})$;
- (c) if **a**, **b** and **c** are placed end-to-end they form three sides of a parallelepiped. Find the volume of this parallelepiped.
- 10. In each part below, find all possible values of the scalar c, or explain why no such value exists.

- (a) Is there a value of c such that the vector $\mathbf{i} \mathbf{j} + c\mathbf{k}$ is perpendicular to the vector $2\mathbf{i} \mathbf{k}$?
- (b) Is there a value of c such that the vector $\mathbf{i} \mathbf{j} + c\mathbf{k}$ is parallel to the vector $2\mathbf{i} \mathbf{k}$?
- 11. Find the area of the triangle determined by the points (-2, 1, 0), (2, 0, 4) and (-1, -1, 3).
- 12. Write the equations of the plane determined by the points O(0,0,0), A(1,1,0) and B(-1,1,1).
- 13. Find the distance from the origin to the plane x + y + z 2 = 0.
- 14. Find the equation of the sphere centered at C(1,1,2) and tangent to the plane 3x 4y + 5z = 4.
- 15. Give the distance from the point P(2,3,4) to the plane whose equation is x + y + z = 3.
- 16. Write the parametric equations of the line parallel to the z-axis passing through the point (1,1,1).
- 17. Give the parametric equations for the line through the points P(2,3,4) and Q(3,2,1).
- 18. Give the distance from the point P(1,1,1) to the line which goes through both the origin and the point Q(6,1,4).
- 19. Find parametric equations for the line ℓ_2 which both lies on the plane with equation 2x + 3y + z = 6 and is perpendicular to the line ℓ_1 , where ℓ_1 has the parametric equations

$$x = 1 + t$$
, $y = 1 + 2t$, $z = 1 + 3t$.

20. Let P(-1,0,5), Q(3,-1,-2) and $\mathbf{v} = 2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$.

- (a) Write parametric equations for the line parallel to **v** passing through *P*.
- (b) Determine the (exact) distance from Q to the line described in part (a).
- 21. Find the parametric equations of the line through the point P(3, -3, 1) and parallel to the line of intersection of the planes 2x + y + z = 4 and 3x y + z = 3.
- 22. Consider the plane x 2y + z = 2.
 - (a) Find the point P of intersection of this plane and the line

$$x = 5 + t$$
, $y = 5 + 2t$, $z = -5 - t$,

where $-\infty < t < \infty$.

(b) Find the line that is normal to the given plane and passes through the point P found in (a).

23. Find the equation of the line perpendicular to 5x - 3y + z = 5 through the point Q(1,2,3). Compute the point of intersection between this line and the plane.

24. The position vector $\mathbf{r}(t)$ of a particle is given by

$$\mathbf{r}(t) = \sin t \, \mathbf{i} + t \, \mathbf{j} + \cos t \, \mathbf{k}.$$

Find

- (*a*) the velocity $\mathbf{v}(t)$;
- (b) the acceleration $\mathbf{a}(t)$;
- (c) the distance travelled by the particle between t = 0 and $t = 2\pi$.

25. Determine the position vector $\mathbf{r}(t)$ satisfying the initial value problem

$$\frac{d^2\mathbf{r}}{dt^2} = 4e^{2t}\,\mathbf{i} - t\,\mathbf{j},$$

subject to the initial conditions

$$\mathbf{v}(0) = 2\mathbf{i} + \mathbf{j} - \mathbf{k} \qquad \mathbf{r}(0) = 3\mathbf{k}.$$

26. Find the length along the curve

$$\mathbf{r}(t) = (3/10t^2 - 1)\mathbf{i} + 2/5t^2\mathbf{j} + (2t+1)^{3/2}\mathbf{k}$$
 $t \ge -1/2$

from the point (-1,0,1) to the point (19/5,32/5,27).

27. Consider the position vector

$$\mathbf{r}(t) = (-2t^2 + 1)\mathbf{i} + \ln(2 + t^2)\mathbf{j} - (e^t - t)\mathbf{k}$$

of a particle moving in space. Find the particle's speed at time t = 3.

28. Set up but do not evaluate the integral to find the arc length of the curve

$$\mathbf{r}(t) = 3\sin(t^2)\mathbf{i} + 2\cos(3t)\mathbf{j},$$

for $t \in [0, \pi/2]$.

29. Find parametric equations for the line that is tangent to the curve

$$\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + \sin(2t) \, \mathbf{k}$$

at $t_0 = \pi/2$. Find the unit tangent vector $\mathbf{T}(t)$. Set up an integral to compute the arc length of this curve for $\pi/2 \le t \le \pi$.

30. Let

$$\mathbf{v}(t) = t^2 \mathbf{i} + \mathbf{j} + t \mathbf{k}$$

be the velocity of a particle. Compute the position vector $\mathbf{r}(t)$, using the fact that $\mathbf{r}(1) = \mathbf{i}$.

31. Find the curvature, the unit tangent vector, the principal normal, and binormal to the curve

$$\mathbf{r}(t) = e^{-2t} \,\mathbf{i} + e^{2t} \,\mathbf{j} + 2\sqrt{2}t \,\mathbf{k}$$

at the point t = 0.

32. Find the tangential and normal vector components a_T and a_N of the acceleration vector at any time if

$$\mathbf{r}(t) = (t - 1/3t^3)\mathbf{i} - (t + 1/3t^3)\mathbf{j} + t\mathbf{k}.$$

- 33. Name the surface represented by each of the following equations
 - (a) $4x^2 + 9y^2 + 4z^2 = 36;$ (b) $y = -x^2 - z^2;$ (c) $4x^2 + 9z^2 = y^2;$ (d) $y^2 - 4x^2 - z^2 = 1;$ (e) $y = -x^2 + z^2;$ (f) $x^2 + z^2 = 1.$

34. Consider the hyperboloid of two sheets

$$\frac{x^2}{4} - y^2 - z^2 = 1.$$

Give a geometric description of the cross sections of this quadric surface that are parallel to the

- (*a*) *xy*-plane;
- (b) yz-plane. Indicate which x-values correspond to an empty cross section.

35. Make a rough sketch of the surface which satisfies the equation

$$x^2 - y^2 + z^2 = 1.$$