2nd Exam on Thursday Oct. 30, 1997 Time: 9:00-10:15 am during regular class hour

Introductory Analysis I

(Mathematics 223 - Fall 1997)

Exercise #1: If $f(x) = \frac{x+1}{x^2}$, find f''(x).

Problem #2: Find the equation of the line tangent to the graph of $y = \sqrt[3]{x^5} - \frac{1}{\sqrt{x}}$ at x = 1.

Exercise #3: If $(x^2+1)^3y^3 = 8x$, evaluate $\frac{dy}{dx}$ at x = 1.

- **Exercise #4:** Compute $\lim_{\Delta x \to 0} \frac{f(1 + \Delta x) f(1)}{\Delta x}$ when $f(x) = (x^2 + 1)^4$.
- **Exercise #5:** Estimate the percentage change in the function $f(x) = 2x^2 6x + 7$ as *x* increases from 4 to 4.3. Use approximation by differentials. (Do <u>not</u> find <u>exact</u> value!)
- **Problem #6:** Let g(x) be a function so that g'(-2) = 5. If $f(x) = g(x^4 3)$, find f'(-1). (Hint: apply chain rule.)

Exercise #7: Find the slope of the tangent to the curve $x^3y^3 + 3xy = x + 3y$ at the point whose *x* coordinate is 1.

Problem #8:

Given the above graph of f(x), answer true or false. T/F

1. f'(a) < 0.

2. If $c < \alpha < d$ then $f'(\alpha) < 0$.

3.
$$f'(x) > 0$$
 on (a,b) and $f'(x) < 0$ on $(b,c) \cup (c,d)$.

4.
$$\lim_{\Delta x \to 0} \frac{f(d + \Delta x) - f(d)}{\Delta x} > 0.$$

5.
$$\lim_{\Delta x \to 0} \frac{f(b + \Delta x) - f(b)}{\Delta x} = 0.$$

Problem #9: The radius of a spherical balloon is growing at the rate of $4/\pi$ m/min when the radius is 3 m. How fast is the volume of the balloon growing when the radius is 3m?

Problem #10: Let $s(t) = t^3 - 6t^2 + 9t - 2$ be the displacement of an object moving along a line for $0 \le t \le 4$.

- 1. Find the velocity of the object.
- 2. Find the total distance travelled by the object.
- 3. Find the acceleration of the object.
- 4. Determine when the object is decelerating.

Problem #11: Find the simplified form of $\frac{f(x + \Delta x) - f(x)}{\Delta x}$, if $f(x) = x^2 - 2x + 4$.

Problem #12: The cost is $C(q) = 1/6q^3 + 492q + 500$ \$ when q units are produced. Use marginal analysis to estimate the cost of producing the 4th unit.

Exercise #13: If
$$f(x) = x + \frac{1}{x}$$
, find $f''(x)$.

Exercise #14: Find the derivative of each of the given functions:

1.
$$f(x) = x^{6} - \frac{2}{3\sqrt{x}} + \frac{x + \sqrt{2}}{3};$$

2. $f(x) = \frac{2x^{2} + 1}{3x^{2} - 1};$
3. $f(x) = x^{20}(1 - 2x)^{10}.$

Exercise #15: Find the equation of the line tangent to the graph of $y = \sqrt{2x+2}$ at x = 1.

Exercise #16: Given $2x^2y + xy^3 = 2$.

- 1. Use implicit differentiation to find y';
- 2. Find the equation of the tangent line at P(1,1).

Exercise #17: It is estimated that *t* years after 1997 the population of a certain town will be $P(t) = t^2 + 200t + 8,000.$

- 1. Use calculus to estimate how much will the population increase during the first half of the year 2002?
- 2. What is the percentage of the population increase in (a)?
- **Exercise #18:** A ladder of length 10 meters is sliding along two perpendicular surfaces. The bottom of the ladder slides at a constant speed of 4 meters/sec. How fast is the top sliding when x = 2y?