Elementary Modern Algebra I, MA 361 – Spring 2012 Homework set # 1 (Section 0) (due on January 27 (Friday), 2012)

- 1. (#4 on page 8) Describe the set $\{m \in \mathbb{Z} \mid m^2 m < 115\}$ by listing its elements.
- 2. (#5 on page 8) Decide whether the object described

 $\{n \in \mathbb{Z}^+ \mid n \text{ is a large number}\}\$

is indeed a set (is well defined). Give an alternative description of each set.

3. (#10 on page 8) Decide whether the object described

 $\{x \in \mathbb{Q} \mid x \text{ may be written with a positive denominator less than } \}$

is indeed a set (is well defined). Give an alternative description of each set.

- 4. (#16 on page 9) List the elements of the power set of the given set and give the cardinality of the power set.
 - **a.** ∅
 - **b.** {*a*}
 - **c.** $\{a, b\}$
 - **d.** $\{a, b, c\}$
- 5. (#17 on page 9) Let A be a finite set, and let |A| = s. Based on the preceding exercise, make a conjecture about the value of $|\mathcal{P}(A)|$. Then try to prove your conjecture.
- 6. (#36 on page 9) Let $n \in \mathbb{Z}^+$ and let \sim be defined on \mathbb{Z} by $r \sim s$ if and only if r s is divisible by n, that is, if and only if r s = nq for some $q \in \mathbb{Z}$.
 - **a.** Show that \sim is an equivalence relation on \mathbb{Z} .
 - **b.** Show that, when restricted to the subset \mathbb{Z}^+ of \mathbb{Z} , this \sim is the equivalence relation, *congruence modulo* n, of Example 0.20.
 - **c.** The cells of this partition of \mathbb{Z} are *residue classes modulo* n in \mathbb{Z} .