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(e) Show that the probability of a 100-word message being cor-
rectly decoded by the standard array is at least .92. [Compare
with part (b).]

——

16.3 BCH Codes

The Hamming codes in the last section have efficient decoding algo-
rithms that correct all single errors. The same is true of the BCH codes*
presented here. But these codes are even more useful because they correct
multiple errors.

The construction of a BCH code uses a finite ring whose additive
group is (isomorphic to) some B(n). Each ideal in such a ring is a linear code
because its additive group is (isomorphic to) a subgroup of B(n). The addi-
tional algebraic structure of the ring provides efficient error-correcting
decoding algorithms for the code.

The finite rings in question are constructed as follows. Let n be a
positive integer and (x” — 1) the principal ideal in Z,[x] consisting of all
multiples of x” — 1. The elements of the quotient ring Z,[x]/(x® — 1) are the
congruence classes (cosets) modulo x” — 1. By Corollary 5.5, the distinct
congruence classes in Z,[x]/(x" — 1) are in one-to-one correspondence with
the polynomials of the form

(*) ap+ ayx +axx®+ - - - a,_x"7Y, with g, € Z,.

Each such polynomial has n coefficients, and there are two possibilities for
each coeflicient. Hence Z,[x]/(x" — 1) is a ring with 2" elements. Further-
more, the n coefficients (aq,a, ,a5, . . . ,a,-,) of the polynomial (*) may be
considered as an element of the group B(n) =Z,X - - - X Z,.

THEOREM 16.12 The function f:Z,lx]/(x— 1)— B(n) given by
flao+ ayx + agx®+ - - - a,_1x2"7Y]) = (a9,8,,85, . . . ,8,—1) is an iso-
morphism of additive groups.

Proof Exercise 7. 1

Theorem 16.12 shows that every ideal of Z,[x]/(x® — 1) can be consid-
ered as a linear code since it is (up to isomorphism) a subgroup of B(n). In
particular, if g(x) € Z,[x], then the congruence class (coset) of g(x) generates
a principal ideal I in Z[x]/(x® — 1). The ideal I consists of all congruence
classes of the form [h(x)g(x)] with h(x) € Z;[x]. BCH codes are of this type.

* The initials BCH stand for Bose, Chaudhuri, and Hocquenghem, who invented these codes in
1959-60.
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In order to define a BCH code that corrects t errors, choose a positive
integer r such that t <271, Let n = 2" — 1. Then g(x) is determined by
considering a finite field of order 2, as explained below.

EXAMPLE Welett=2andr =4, so thatn=24—1 =15. We shall
construct a code in Zy[x]/(x'® — 1) that corrects all double errors by
finding an appropriate g(x). To do this we need a field of order 24 =
16.

The polynomial 1 + x + x4 is irreducible in Z; [x] (Exercise 3).
Hence K = Z,[x}/(1 + x + x*) is a field of order 16 by Theorem 5.9
(and the remarks after it). By Theorem 5.10, K contains a root « of
1 + x + x*. Using the fact that

l1+a+at=0, and hence, at=1+a*

we can compute the powers of a. For example, af=oalat=
(1 + a) = a® + o2. Similarly, we obtain

a'=a at=a®+ad all=a+o®+ad
a?=o? a’'=1l+a+a® a?=1+a+a?+a®
a®=a?® a®=1+a? a¥=1+a®+ad
at=1+a o =a+ad at=1+ad
a’=a+a® a®=1+a+a? al®*=1

These elements are distinct and nonzero by Theorem 9.7. Therefore
they are all the nonzero elements of K, and « is a generator of the
multiplicative group of K.

To construct the polynomial g(x), we first find the minimum
polynomials of a, a2, a®, a* over Z;. By the construction of K, the
minimal polynomial of ais m,(x) = 1 + x + x*. This polynomial m (x)
is also the minimal polynomial of &% and a*; for instance, by the Fresh-
man’s Dream (Lemma 9.24),

my(a®) =1+ (a?) + (a?)*
=12+ (@+(@)’=(1+a+a*)2=02=0.
Verify that the minimum polynomial of a® is my(x) =1+ x + x® +

x® + x* (Exercise 5). The polynomial g(x) is defined as the product
m;(x)mg(x), so that

gx)=(1+x+x%)(1+x+22+23+ 1%
R = 3
=1+xt+x8+x7+x8%€ Zy[x].

* Remember, 1 =—1inZ,.
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Let Cbe the ideal generated by [g(x)] in Z,[x]/(x!® — 1). Then Cis
a code by Theorem 16.12. We shall see below that Cis a (15,7) code
that corrects=all single and double errors.

Just what do the codewords of Clook like? By Corollary 5.5, each
congruence class in Z,[x]/(x'® — 1) is the class of a unique polynomial
of the form

(k)  aotaxt+ax®+ .- +a, x84 ax, witha e Z,.

So we shall denote the class by this polynomial.* When convenient,
this polynomial will be identified (as in Theorem 16.12) with the

element aga,a5 - - - a,,=(ay,ay,a5, . . . ,a;,) of B(15). The code-
words consist of the classes of polynomial multiples of g(x). For exam-
ple,
Codeword in polynomial form In B(15) form
gx)=1+x*+x6+x7+«8 100010111000000
xg(x) =x(1 + x* + 28 + 27 + x5)
=x+ x5+ 27+ 28+ ° 010001011100000

(1 +x%g(x) = (1 +28)(1 + x*+ 28 + x7 + 9)
=1+x'+27+28+x10+ 12+ 2134214 100010011010111

If g(x) is multiplied by a polynomial h(x) of degree = 7, then the
codeword h(x)g(x) has degree =15 and is not of the form (*+). For
example, if h(x) = x8, then

h(x)g(x) = x8g(x) = x3(1 + x* + x® + x7 + x9)
= x8 + xl2 + xl4 + x15 + xls'
The polynomial of the form (*+) that is in the same class as h(x)g(x) is

the remainder when h(x)g(x) is divided by x5 — 1 (see Corollary 5.5).
Verify that '

h(x)g(x) = (1 + x)(x® — 1) + (1 + x + x® + 212 + x14),

Hence [f(x)g(x)] is the codeword 1 + x + x® + x!2 + x4, or equiva-
lently, 110000001000101.

The procedure in the example is readily generalized. If tis the number
of errors the code should correct, let n = 27 — 1, where r is chosen so that
t < 27! (in the example, t = 2, r = 4). By Corollary 9.26, there is a finite
field K of order 2. By Theorem 9.28, K = Z4(«), where a is a generator of

* This is analogous to what was done on pages 3334, when we began writing elements
(classes) in Z, in the form k rather than [k].
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the multiplicative group of nonzero elements of K (and so has multiplicative
order 2" — 1 =n). Let

m,(x), mg(x), ms(x), . . . , malx) € Z,[+]
be the minimal polynomials of the elements
o, 0%, ... ,0*ekK.

Let g(x) be the product in Z,[x] of the distinct polynomials on the list m,(x),
my(x), . . . , mglx).

The ideal C generated by [g(x)] inZ,[x}/(x" — 1) is called the (primitive
narrow-sense) BCH code of length n and designed distance 2¢ + 1 with
generator polynomial g(x). So the code in the last example is a BCH code of
length 15 and designed distance 5 (=2 - 2 + 1). If g(x) has degree m, then
Exercise 14 shows that the code C is an (n,k) code, where k =n —m.

THEOREM 16.13 A BCH code of length n and designed distance 2t + 1
corrects t errors.

Proof The proof requires a knowledge of determinants; see Lidl-Pilz [34;
page 230] or Mackiw [35; page 60]. B

Theorem 16.13 shows that there are BCH codes that will correct any
desired number of errors. More important, from a practical viewpoint,
there are efficient algorithms for decoding large BCH codes.* A complete
description of them would take us too far afield. But here, in simplified
form, is the underlying idea of the error-correcting procedure.

Let C be a BCH code of designed distance 2¢ + 1 and generator poly-
nomial g(x). By the definition of g(x), each minimal polynomial m,(x) divides
g(x). Hence g(a) = Oforeachi=1,2, . . . ,2t.If[ f(x)]isacodewordinC,
then f(x) = h(x)g(x) for some h(x), and therefore

fla') = h{a)g(a’) = h(a) - 0=0.

Conversely, if f(x) € Z;[x] has every o as a root, then every m,(x) divides
f(x) by Theorem 9.6. This implies that g(x) | f(x) (Exercise 8). Therefore

[f(x)] is a codeword if and only if fla’) =0 for 1 =i =< 2.

The decoder receives the word aga, - - - a; which represents the
(class of) the polynomial
r(x) = ag + a;x + agx? + - - - +apxk

* This is one reason BCH codes are widely used. For example, ti&8uropean and trans-Atlantic
communication system uses a BCH code with f=6 and r=8. It is a (255,231) code that
corrects six errors with a failure probability of only 1 in 16 million.
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The decoder computes these elements of the field K = Z,(a):
r(a), r(@?), r(a3), . . . , rla®).

If all of them are 0, then r(x) is a codeword by the remarks above. If certain
ones are nonzero, the decoder uses them (according to a specified proce-
dure) to construct a polynomial D(x) € K[x], called the error-locator polyno-
mial. Since K is finite; the nonzero roots of D(x) in K can be found by
substituting each o € K in D(x)].

If no more than ¢ errors have been made, the nonzero roots of D(x) give
the location of the transmission errors. For instance, if a7 is aroot, then a, is
incorrect in the received word r(x); similarly if «® = 1 isaroot, then an error
occurred in transmitting a,.

If D(x) has no roots in K or if certain of the r(a) are 0, so that D(x)
cannot be constructed, then more than t errors have been made. So the
decoder follows set procedures (omitted here) to choose arbitrarily a near-
est codeword to r(x).

EXAMPLE Inthe (15,7) BCH code of the previous example, suppose
this word is received:
r{x) =x+x7 + 28 =010000011000000.

Using the table on page 460 and the fact that u + u =0 for every
element u in K (Exercise 1), we have

rfe)=ata’tal=a+(l+a+a®)+(1+a?
=a?+ ad = ab.
r(a®) = a® + (&®)7 + (a®)®
=a*+aPr+aM=a*+a+a’
=a®+ (@ +ad)+(atad)=a+a’+ad=a'l
Exercise 6 shows that

o) = (0 = (o) = @,
r(a!) = r(@)?* = (a¥)* = a** = a®.

The error-locator polynomial is given by this formula (which is justi-
fied in Exercise 15):

D(x) = x% + r(a)x + (r(a’) + :f(ic:)))'

Using the table on page 460 we see that
11
D(x)=x*+abx +{al?+ 2—;) =zx2+ abx + (a!? + af)
a

=22 4+ abx + a4
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By substituting each of the nonzero elements of K in D(x), we discover
that

D(a%) = (a®)® + a®a® + alt = al® + a! + a4
=(1l+ata®)+(ata’+a®)+(1+a®)=0;

D(®) = (a®) +afa® +alt=a'®+a®+a=a®+1+a
=a*+1+(1+a’)=0.

Therefore a® and o® are the roots of D(x), so errors occurred in the
coeflicients of x5 and x°. The received word

r{x) =x + x7 + 28 = 010000011000000
is corrected as
cx)=x+2>+x"+28+ x®=010001011100000,

which is a codeword (see page 461).

Similarly, if r(x) =x%+ x%+ 2%+ x!°=001000100110000 is
received, then

r(a) =a®b, rla?) =a, ria®) =a?f, and
D(x) = x2 + r(a)x + I:r(az) + %‘g)l] =x2+adx+ (a + -g—:.)

=x2+alr+ (a+a)=x2+ ax=x(x + ab).

The only nonzero root of D(x) is a®, so a single error occurred in the
coeflicient of x8, and the correct word is

ofx) = x2 + 2% + x8 + x° + x1° = 001000101 110000.
Finally, if 1 + x + x* is received, then
f)=1+a+a*=0 and rled)=1+ac+a'?=a

So D(x) cannot be constructed, and we conclude that more than two
errors have occurred. Similarly, if 1 + x + x3 is received, then verify
that D(x) = x? + a’x + & and that D(x) has no roots in K. Once again,
more than two errors have occurred.

EXERCISES

NOTE: Unless stated otherwise, K is the field Z,|x}/(1 + x + x*) of order 16
and ais a root of 1 + x + x%, as in the example on pages 460-461.

A. 1. (a) Prove that f(x) + f(x) = O for every f(x) € Zﬂg]’__]”:;-.’l B

(b) Prove that u + u = 0 for every u in the field K.



16.3 BCH Codes

465

. Show that the only irreducible quadratic in Zgfx] is x* +x + 1.
[Hint: List all the quadratics and use Corollary 4.14.]

. Prove that 1 + x + x* is irreducible in Z,[x]. [Hint: Exercise 2 and
Corollary.4.14.]

. Prove that the minimal polynomial of a3 over Z;is 1 + x + x2. [Use
the table on page 460.]

. (a) Prove that the minimal polynomial of a® over Z, is 1 +x +
x% + x3 + x4. [Hint: Exercise 2, Corollary 4.14, and the table on
page 460.]

(b) Show that a* is also a root of 1 + x + x*.

. If f(x) € Z,[x] and « is an element in some extension field of Z,,
prove that for every k = 1, f(a®) = f(a*)?. [Hint: Lemma 9.24.]

. (a) Show that the function f:Z,[x}/(z* — 1) = B(n) given by
f(lag + ayx + agx®+ - - - +a, 1, x*7 ) =
(ag,81,82, - - - s8n—1)
is surjective.
(b) Prove that fis a homomorphism of additive groups.

(c) Prove that fis injective [Hint: Theorem 7.27 in additive nota-
tion.]

. (a) Let Fbe afield and f(x) € Flx]. If p(x) and g(x) are distinct monic
irreducibles in Flx] such that p(x) | f(x) and g(x) | f(x), prove that
p(x)q(x) | f(x). [Hint: If f(x) = q(x)h(x), then p(x)| q(x)h(x); use
part 2 of Theorem 4.8.!

(b) If m,(x), my(x), . . . , my(x) are distinct monic irreducibles in
Flx] such that each m(x) divides f(x), prove that g(x)=
m,(x)mg(x) - - my(x) divides f(x).

. Let Cbe the (15,7) BCH code of the examples in the text. Use the
error-correction technique presented there to correct these re-
ceived words or to determine that three or more errors have been

made.

(a) 1+ x=110000000000000.

(b) 1+ x3+ x*+ x5=100111000000000.

(¢) 1+ x%+x*+2x7=101010010000000.

(d) 1+x8+x"+x8+2%= 100000111100000.



466

16 Algebraic Coding Theory

10.

11.

12.

13.

C. 14.

15.

Show that the generator polynomial for the BCH code with ¢ = 3,
r=4,n=15is gx) =1 +x + 2%+ 24 + x5+ x8 + x!°, [Exercises
3 -5 may be helpful.]

Let K=1Z,(x) be a finite field of order 27, whose multiplicative
group is generated by a.. For each i, let m,(x) be the minimal polyno-
mial of af over Z;. If n=2"— 1, prove that each m(x) divides
x" — 1. [Hint: a" = 1 (why?); use Theorem 9.6.]

If g(x) is the generator polynomial of a BCH code in Z,[x]/(x" — 1),
prove that g(x) divides x* — 1. [Hint: Exercises 11 and 8(b).]

Let g(x) € Z,[x] be a divisor of x® — 1 and let C be the principal ideal
generated by [g(x)] in Zg[x]/(x" — 1). Then C is a code. Prove that
C is cyclic, meaning that C (with codewords written as elements
of B(n)) has this property: If (cy,c;, . . . ,ca—y) €C, then
(Ca=1:C0+C1> - - - sCa-g) €C. [Hint: cuey +cox+ + - +Cpgx™ 1=
x(coteyx+ » - - Fepu1x™ ) —cpoy(x®— 1).]

Let C be the code in Exercise 13. Assume g(x) has degree m and let
k=n—m. Let J be the set of all polynomials in Z,[x] of the form
72 + alx + azxz + D + ak_lxk—l.

(a) Prove that every element in C is of the form [s(x)g(x)]
with s(x) € J. [Hint: Let [h(x)g(x)] € C. By the Division
Algorithm, h(x)g(x) = e(x)(x" — 1) + r(x), with deg r(x) < n and
[h(x)g(x)] = [r(x)]. Show that r(x)=s(x)g(x), where s(x)=
h(x) — e(x)f(x) and g(x)f(x) = =" — 1. Use Theorem 4.1 to show
s(x) €].]

(b) Prove that Chas order 2*and hence Cis an (n,k) code. [Hint: Use
Corollary 5.5 to show that if s(x) # t(x) in J, then [s(x)g(x)] #
[t(x)g(x)] in C. How many elements are in J?]

Let C be the (15,7) BCH code of the examples in the text, with
codewords written as polynomials of degree =14. Suppose the
codeword c(x) is transmitted with errors in the coefficients of x* and
x/ and r(x) is received. Then D(x) = (x + &)(x + o) € K[x], whose
roots are o and o, is the error-locator polynomial. Express the
coefficients of D(x) in terms of r(a), r(a2), r(a®) as follows.

(a) Show that r(x) — c(x) = x* + /.

(b) Show that r(a*) = a* + a¥ for k = 12, 3. [See the boldface
statement on page 462.]

(c) Show that D(x) = x2 + (o' + o/)x + a** = x2 + r(a)x + o**.
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3
(d) Show that a''/=r(a?) + I':(%T). [Hint: Show that r(a)®=
(o + &) = a¥ + a¥ + oM (a! + o) = r(a®) + r(a)a't
and soleefor-a'¥; note that r{a)? = r(a?).]
16. Show that a BCH code with t = 1 is actually a Hamming code (see
page 457).



