(e) Show that the probability of a 100-word message being correctly decoded by the standard array is at least .92. [Compare with part (b).]

16.3 BCH Codes

The Hamming codes in the last section have efficient decoding algorithms that correct all single errors. The same is true of the BCH codes* presented here. But these codes are even more useful because they correct multiple errors.

The construction of a BCH code uses a finite ring whose additive group is (isomorphic to) some B(n). Each ideal in such a ring is a linear code because its additive group is (isomorphic to) a subgroup of B(n). The additional algebraic structure of the ring provides efficient error-correcting decoding algorithms for the code.

The finite rings in question are constructed as follows. Let n be a positive integer and (x^n-1) the principal ideal in $\mathbb{Z}_2[x]$ consisting of all multiples of x^n-1 . The elements of the quotient ring $\mathbb{Z}_2[x]/(x^n-1)$ are the congruence classes (cosets) modulo x^n-1 . By Corollary 5.5, the distinct congruence classes in $\mathbb{Z}_2[x]/(x^n-1)$ are in one-to-one correspondence with the polynomials of the form

(*)
$$a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$$
, with $a_i \in \mathbb{Z}_2$.

Each such polynomial has n coefficients, and there are two possibilities for each coefficient. Hence $\mathbb{Z}_2[x]/(x^n-1)$ is a ring with 2^n elements. Furthermore, the n coefficients $(a_0,a_1,a_2,\ldots,a_{n-1})$ of the polynomial (*) may be considered as an element of the group $B(n) = \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$.

THEOREM 16.12 The function $f: \mathbb{Z}_2[x]/(x^n-1) \to B(n)$ given by $f([a_0+a_1x+a_2x^2+\cdots a_{n-1}x^{n-1}])=(a_0,a_1,a_2,\ldots,a_{n-1})$ is an isomorphism of additive groups.

Proof Exercise 7. ■

Theorem 16.12 shows that every ideal of $\mathbb{Z}_2[x]/(x^n-1)$ can be considered as a linear code since it is (up to isomorphism) a subgroup of B(n). In particular, if $g(x) \in \mathbb{Z}_2[x]$, then the congruence class (coset) of g(x) generates a principal ideal I in $\mathbb{Z}_2[x]/(x^n-1)$. The ideal I consists of all congruence classes of the form [h(x)g(x)] with $h(x) \in \mathbb{Z}_2[x]$. BCH codes are of this type.

^{*} The initials BCH stand for Bose, Chaudhuri, and Hocquenghem, who invented these codes in 1959 – 60.

In order to define a BCH code that corrects t errors, choose a positive integer r such that $t < 2^{r-1}$. Let $n = 2^r - 1$. Then g(x) is determined by considering a finite field of order 2^r , as explained below.

EXAMPLE We let t = 2 and r = 4, so that $n = 2^4 - 1 = 15$. We shall construct a code in $\mathbb{Z}_2[x]/(x^{15} - 1)$ that corrects all double errors by finding an appropriate g(x). To do this we need a field of order $2^4 = 16$.

The polynomial $1 + x + x^4$ is irreducible in \mathbb{Z}_2 [x] (Exercise 3). Hence $K = \mathbb{Z}_2[x]/(1 + x + x^4)$ is a field of order 16 by Theorem 5.9 (and the remarks after it). By Theorem 5.10, K contains a root α of $1 + x + x^4$. Using the fact that

$$1 + \alpha + \alpha^4 = 0$$
, and hence, $a^4 = 1 + a^*$

we can compute the powers of α . For example, $\alpha^6 = \alpha^2 \alpha^4 = \alpha^2 (1 + \alpha) = \alpha^2 + \alpha^3$. Similarly, we obtain

$$\begin{array}{lll} \alpha^1 = \alpha & \qquad \alpha^6 = \alpha^2 + \alpha^3 & \qquad \alpha^{11} = \alpha + \alpha^2 + \alpha^3 \\ \alpha^2 = \alpha^2 & \qquad \alpha^7 = 1 + \alpha + \alpha^3 & \qquad \alpha^{12} = 1 + \alpha + \alpha^2 + \alpha^3 \\ \alpha^3 = \alpha^3 & \qquad \alpha^8 = 1 + \alpha^2 & \qquad \alpha^{13} = 1 + \alpha^2 + \alpha^3 \\ \alpha^4 = 1 + \alpha & \qquad \alpha^9 = \alpha + \alpha^3 & \qquad \alpha^{14} = 1 + \alpha^3 \\ \alpha^5 = \alpha + \alpha^2 & \qquad \alpha^{10} = 1 + \alpha + \alpha^2 & \qquad \alpha^{15} = 1 \end{array}$$

These elements are distinct and nonzero by Theorem 9.7. Therefore they are all the nonzero elements of K, and α is a generator of the multiplicative group of K.

To construct the polynomial g(x), we first find the minimum polynomials of α , α^2 , α^3 , α^4 over \mathbb{Z}_2 . By the construction of K, the minimal polynomial of α is $m_1(x) = 1 + x + x^4$. This polynomial $m_1(x)$ is also the minimal polynomial of α^2 and α^4 ; for instance, by the Freshman's Dream (Lemma 9.24),

$$m_1(\alpha^2) = 1 + (\alpha^2) + (\alpha^2)^4$$

= 1² + (\alpha)² + (\alpha^4)² = (1 + \alpha + \alpha^4)^2 = 0² = 0.

Verify that the minimum polynomial of α^3 is $m_3(x) = 1 + x + x^2 + x^3 + x^4$ (Exercise 5). The polynomial g(x) is defined as the product $m_1(x)m_3(x)$, so that

$$g(x) = (1 + x + x^{4})(1 + x + x^{2} + x^{3} + x^{4})$$
$$= 1 + x^{4} + x^{6} + x^{7} + x^{8} \in \mathbb{Z}_{2}[x].$$

^{*} Remember, 1 = -1 in \mathbb{Z}_{\bullet} .

Let C be the ideal generated by [g(x)] in $\mathbb{Z}_2[x]/(x^{15}-1)$. Then C is a code by Theorem 16.12. We shall see below that C is a (15,7) code that corrects all single and double errors.

Just what do the codewords of Clook like? By Corollary 5.5, each congruence class in $\mathbb{Z}_2[x]/(x^{15}-1)$ is the class of a unique polynomial of the form

(**)
$$a_0 + a_1 x + a_2 x^2 + \cdots + a_{13} x^{13} + a_{14} x^{14}$$
, with $a_i \in \mathbb{Z}_2$.

So we shall denote the class by this polynomial.* When convenient, this polynomial will be identified (as in Theorem 16.12) with the element $a_0a_1a_2 \cdots a_{14} = (a_0, a_1, a_2, \ldots, a_{14})$ of B(15). The codewords consist of the classes of polynomial multiples of g(x). For example,

Codeword in polynomial form
$$g(x) = 1 + x^4 + x^6 + x^7 + x^8$$

$$xg(x) = x(1 + x^4 + x^6 + x^7 + x^8)$$

$$= x + x^5 + x^7 + x^8 + x^9$$

$$(1 + x^6)g(x) = (1 + x^6)(1 + x^4 + x^6 + x^7 + x^8)$$

$$= 1 + x^4 + x^7 + x^8 + x^{10} + x^{12} + x^{13} + x^{14}$$

$$100010011010111$$

If g(x) is multiplied by a polynomial h(x) of degree ≥ 7 , then the codeword h(x)g(x) has degree ≥ 15 and is not of the form (**). For example, if $h(x) = x^8$, then

$$h(x)g(x) = x^8g(x) = x^8(1 + x^4 + x^6 + x^7 + x^8)$$

= $x^8 + x^{12} + x^{14} + x^{15} + x^{16}$

The polynomial of the form (**) that is in the same class as h(x)g(x) is the remainder when h(x)g(x) is divided by $x^{15} - 1$ (see Corollary 5.5). Verify that

$$h(x)q(x) = (1+x)(x^{15}-1) + (1+x+x^8+x^{12}+x^{14}).$$

Hence [f(x)g(x)] is the codeword $1 + x + x^8 + x^{12} + x^{14}$, or equivalently, 110000001000101.

The procedure in the example is readily generalized. If t is the number of errors the code should correct, let $n = 2^r - 1$, where r is chosen so that $t < 2^{r-1}$ (in the example, t = 2, r = 4). By Corollary 9.26, there is a finite field K of order 2^r . By Theorem 9.28, $K = \mathbb{Z}_2(\alpha)$, where α is a generator of

22.4

^{*} This is analogous to what was done on pages 33-34, when we began writing elements (classes) in \mathbb{Z}_n in the form k rather than [k].

the multiplicative group of nonzero elements of K (and so has multiplicative order $2^r - 1 = n$). Let

$$m_1(x), m_2(x), m_3(x), \ldots, m_{2t}(x) \in \mathbb{Z}_2[x]$$

be the minimal polynomials of the elements

$$\alpha, \alpha^2, \alpha^3, \ldots, \alpha^{2t} \in K$$
.

Let g(x) be the product in $\mathbb{Z}_2[x]$ of the distinct polynomials on the list $m_1(x)$, $m_2(x)$, . . . , $m_{2t}(x)$.

The ideal C generated by [g(x)] in $\mathbb{Z}_2[x]/(x^n-1)$ is called the (primitive narrow-sense) BCH code of length n and designed distance 2t+1 with generator polynomial g(x). So the code in the last example is a BCH code of length 15 and designed distance $5 (= 2 \cdot 2 + 1)$. If g(x) has degree m, then Exercise 14 shows that the code C is an (n,k) code, where k=n-m.

THEOREM 16.13 A BCH code of length n and designed distance 2t + 1 corrects t errors.

Proof The proof requires a knowledge of determinants; see Lidl-Pilz [34; page 230] or Mackiw [35; page 60]. ■

Theorem 16.13 shows that there are BCH codes that will correct any desired number of errors. More important, from a practical viewpoint, there are efficient algorithms for decoding large BCH codes.* A complete description of them would take us too far afield. But here, in simplified form, is the underlying idea of the error-correcting procedure.

Let C be a BCH code of designed distance 2t + 1 and generator polynomial g(x). By the definition of g(x), each minimal polynomial $m_i(x)$ divides g(x). Hence $g(\alpha^i) = 0$ for each $i = 1, 2, \ldots, 2t$. If [f(x)] is a codeword in C, then f(x) = h(x)g(x) for some h(x), and therefore

$$f(\alpha^i) = h(\alpha^i)g(\alpha^i) = h(\alpha^i) \cdot 0 = 0.$$

Conversely, if $f(x) \in \mathbb{Z}_2[x]$ has every α^i as a root, then every $m_i(x)$ divides f(x) by Theorem 9.6. This implies that g(x) | f(x) (Exercise 8). Therefore

$$[f(x)]$$
 is a codeword if and only if $f(\alpha^i) = 0$ for $1 \le i \le 2t$.

The decoder receives the word $a_0a_1\cdots a_k$ which represents the (class of) the polynomial

$$r(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_k x^k$$
.

^{*} This is one reason BCH codes are widely used. For example, the European and trans-Atlantic communication system uses a BCH code with t=6 and r=8. It is a (255,231) code that corrects six errors with a failure probability of only 1 in 16 million.

The decoder computes these elements of the field $K = \mathbb{Z}_2(\alpha)$:

$$r(\alpha), r(\alpha^2), r(\alpha^3), \ldots, r(\alpha^{2t}).$$

If all of them are 0, then r(x) is a codeword by the remarks above. If certain ones are nonzero, the decoder uses them (according to a specified procedure) to construct a polynomial $D(x) \in K[x]$, called the error-locator polynomial. Since K is finite, the nonzero roots of D(x) in K can be found by substituting each $\alpha^i \in K$ in D(x).

If no more than t errors have been made, the nonzero roots of D(x) give the location of the transmission errors. For instance, if α^7 is a root, then a_7 is incorrect in the received word r(x); similarly if $\alpha^0 = 1$ is a root, then an error occurred in transmitting a_0 .

If D(x) has no roots in K or if certain of the $r(\alpha^t)$ are 0, so that D(x) cannot be constructed, then more than t errors have been made. So the decoder follows set procedures (omitted here) to choose arbitrarily a nearest codeword to r(x).

EXAMPLE In the (15,7) BCH code of the previous example, suppose this word is received:

$$r(x) = x + x^7 + x^8 = 0100000110000000.$$

Using the table on page 460 and the fact that u + u = 0 for every element u in K (Exercise 1), we have

$$r(\alpha) = \alpha + \alpha^{7} + \alpha^{8} = \alpha + (1 + \alpha + \alpha^{3}) + (1 + \alpha^{2})$$

$$= \alpha^{2} + \alpha^{3} = \alpha^{6}.$$

$$r(\alpha^{3}) = \alpha^{3} + (\alpha^{3})^{7} + (\alpha^{3})^{8}$$

$$= \alpha^{3} + \alpha^{21} + \alpha^{24} = \alpha^{3} + \alpha^{6} + \alpha^{9}$$

$$= \alpha^{3} + (\alpha^{2} + \alpha^{3}) + (\alpha + \alpha^{3}) = \alpha + \alpha^{2} + \alpha^{3} = \alpha^{11}.$$

Exercise 6 shows that

$$r(\alpha^2) = r(\alpha)^2 = (\alpha^6)^2 = \alpha^{12};$$

 $r(\alpha^4) = r(\alpha)^4 = (\alpha^6)^4 = \alpha^{24} = \alpha^9.$

The error-locator polynomial is given by this formula (which is justified in Exercise 15):

$$D(x) = x^2 + r(\alpha)x + \left(r(\alpha^2) + \frac{r(\alpha^3)}{r(\alpha)}\right).$$

Using the table on page 460 we see that

$$D(x) = x^{2} + \alpha^{6}x + \left(\alpha^{12} + \frac{\alpha^{11}}{\alpha^{6}}\right) = x^{2} + \alpha^{6}x + (\alpha^{12} + \alpha^{5})$$
$$= x^{2} + \alpha^{6}x + \alpha^{14}.$$

By substituting each of the nonzero elements of K in D(x), we discover that

$$\begin{split} D(\alpha^5) &= (\alpha^5)^2 + \alpha^6 \alpha^5 + \alpha^{14} = \alpha^{10} + \alpha^{11} + \alpha^{14} \\ &= (1 + \alpha + \alpha^2) + (\alpha + \alpha^2 + \alpha^3) + (1 + \alpha^3) = 0; \\ D(\alpha^9) &= (\alpha^9)^2 + \alpha^6 \alpha^9 + \alpha^{14} = \alpha^{18} + \alpha^{15} + \alpha^{14} = \alpha^3 + 1 + \alpha^{14} \\ &= \alpha^3 + 1 + (1 + \alpha^3) = 0. \end{split}$$

Therefore α^5 and α^9 are the roots of D(x), so errors occurred in the coefficients of x^5 and x^9 . The received word

$$r(x) = x + x^7 + x^8 = 01000\underline{0}011\underline{0}00000$$

is corrected as

$$c(x) = x + x^5 + x^7 + x^8 + x^9 = 01000\underline{1}011\underline{1}00000,$$

which is a codeword (see page 461).

Similarly, if $r(x) = x^2 + x^6 + x^9 + x^{10} = 001000100110000$ is received, then

$$r(\alpha) = \alpha^8, \quad r(\alpha^2) = \alpha, \quad r(\alpha^3) = \alpha^9, \quad \text{and}$$

$$D(x) = x^2 + r(\alpha)x + \left[r(\alpha^2) + \frac{r(\alpha^3)}{r(\alpha)}\right] = x^2 + \alpha^8x + \left(\alpha + \frac{\alpha^9}{\alpha^8}\right)$$

$$= x^2 + \alpha^8x + (\alpha + \alpha) = x^2 + \alpha^8x = x(x + \alpha^8).$$

The only nonzero root of D(x) is α^8 , so a single error occurred in the coefficient of x^8 , and the correct word is

$$c(x) = x^2 + x^6 + x^8 + x^9 + x^{10} = 001000101110000.$$

Finally, if $1 + x + x^4$ is received, then

$$r(\alpha) = 1 + \alpha + \alpha^4 = 0$$
 and $r(\alpha^3) = 1 + \alpha^3 + \alpha^{12} = \alpha^5$.

So D(x) cannot be constructed, and we conclude that more than two errors have occurred. Similarly, if $1 + x + x^3$ is received, then verify that $D(x) = x^2 + \alpha^7 x + \alpha^5$ and that D(x) has no roots in K. Once again, more than two errors have occurred.

EXERCISES

NOTE: Unless stated otherwise, K is the field $\mathbb{Z}_2[x]/(1+x+x^4)$ of order 16 and α is a root of $1+x+x^4$, as in the example on pages 460-461.

- A. 1. (a) Prove that f(x) + f(x) = 0 for every $f(x) \in \mathbb{Z}_{\underline{a}}[x]$.
 - (b) Prove that u + u = 0 for every u in the field K.

- 2. Show that the only irreducible quadratic in $\mathbb{Z}_2[x]$ is $x^2 + x + 1$. [Hint: List all the quadratics and use Corollary 4.14.]
- 3. Prove that $1 + x + x^4$ is irreducible in $\mathbb{Z}_2[x]$. [Hint: Exercise 2 and Corollary 4.14.]
- 4. Prove that the minimal polynomial of α^5 over \mathbb{Z}_2 is $1 + x + x^2$. [Use the table on page 460.]
- 5. (a) Prove that the minimal polynomial of α^3 over \mathbb{Z}_2 is $1+x+x^2+x^3+x^4$. [Hint: Exercise 2, Corollary 4.14, and the table on page 460.]
 - (b) Show that α^4 is also a root of $1 + x + x^4$.
- B. 6. If $f(x) \in \mathbb{Z}_2[x]$ and α is an element in some extension field of \mathbb{Z}_2 , prove that for every $k \ge 1$, $f(\alpha^{2k}) = f(\alpha^k)^2$. [Hint: Lemma 9.24.]
 - 7. (a) Show that the function $f: \mathbb{Z}_2[x]/(x^n 1) \to B(n)$ given by $f([a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1}]) = (a_0, a_1, a_2, \dots, a_{n-1})$ is surjective.
 - (b) Prove that f is a homomorphism of additive groups.
 - (c) Prove that f is injective [Hint: Theorem 7.27 in additive notation.]
 - 8. (a) Let F be a field and $f(x) \in F[x]$. If p(x) and q(x) are distinct monic irreducibles in F[x] such that $p(x) \mid f(x)$ and $q(x) \mid f(x)$, prove that $p(x)q(x) \mid f(x)$. [Hint: If f(x) = q(x)h(x), then $p(x) \mid q(x)h(x)$; use part 2 of Theorem 4.8.]
 - (b) If $m_1(x)$, $m_2(x)$, ..., $m_k(x)$ are distinct monic irreducibles in F[x] such that each $m_i(x)$ divides f(x), prove that $g(x) = m_1(x)m_2(x) \cdot \cdot \cdot m_k(x)$ divides f(x).
 - 9. Let C be the (15,7) BCH code of the examples in the text. Use the error-correction technique presented there to correct these received words or to determine that three or more errors have been made.
 - (a) 1 + x = 1100000000000000.
 - (b) $1 + x^3 + x^4 + x^5 = 1001110000000000$.
 - (c) $1 + x^2 + x^4 + x^7 = 101010010000000$.
 - (d) $1 + x^6 + x^7 + x^8 + x^9 = 100000111100000$.

- 10. Show that the generator polynomial for the BCH code with t=3, r=4, n=15 is $g(x)=1+x+x^2+x^4+x^5+x^8+x^{10}$. [Exercises 3-5 may be helpful.]
- 11. Let $K = \mathbb{Z}_2(\alpha)$ be a finite field of order 2^r , whose multiplicative group is generated by α . For each i, let $m_i(x)$ be the minimal polynomial of α^i over \mathbb{Z}_2 . If $n = 2^r 1$, prove that each $m_i(x)$ divides $x^n 1$. [Hint: $\alpha^n = 1$ (why?); use Theorem 9.6.]
- 12. If g(x) is the generator polynomial of a BCH code in $\mathbb{Z}_2[x]/(x^n-1)$, prove that g(x) divides x^n-1 . [Hint: Exercises 11 and 8(b).]
- 13. Let $g(x) \in \mathbb{Z}_2[x]$ be a divisor of $x^n 1$ and let C be the principal ideal generated by [g(x)] in $\mathbb{Z}_2[x]/(x^n 1)$. Then C is a code. Prove that C is cyclic, meaning that C (with codewords written as elements of B(n)) has this property: If $(c_0, c_1, \ldots, c_{n-1}) \in C$, then $(c_{n-1}, c_0, c_1, \ldots, c_{n-2}) \in C$. [Hint: $c_{n-1} + c_0x + \cdots + c_{n-2}x^{n-1} = x(c_0 + c_1x + \cdots + c_{n-1}x^{n-1}) c_{n-1}(x^n 1)$.]
- C. 14. Let C be the code in Exercise 13. Assume g(x) has degree m and let k = n m. Let J be the set of all polynomials in $\mathbb{Z}_2[x]$ of the form $a_0 + a_1 x + a_2 x^2 + \cdots + a_{k-1} x^{k-1}$.
 - (a) Prove that every element in C is of the form [s(x)g(x)] with $s(x) \in J$. [Hint: Let $[h(x)g(x)] \in C$. By the Division Algorithm, $h(x)g(x) = e(x)(x^n 1) + r(x)$, with deg r(x) < n and [h(x)g(x)] = [r(x)]. Show that r(x) = s(x)g(x), where s(x) = h(x) e(x)f(x) and $g(x)f(x) = x^n 1$. Use Theorem 4.1 to show $s(x) \in J$.]
 - (b) Prove that C has order 2^k and hence C is an (n,k) code. [Hint: Use Corollary 5.5 to show that if $s(x) \neq t(x)$ in J, then $[s(x)g(x)] \neq [t(x)g(x)]$ in C. How many elements are in J?]
 - 15. Let C be the (15,7) BCH code of the examples in the text, with codewords written as polynomials of degree ≤ 14 . Suppose the codeword c(x) is transmitted with errors in the coefficients of x^i and x^j and r(x) is received. Then $D(x) = (x + \alpha^i)(x + \alpha^j) \in K[x]$, whose roots are α^i and α^j , is the error-locator polynomial. Express the coefficients of D(x) in terms of $r(\alpha)$, $r(\alpha^2)$, $r(\alpha^3)$ as follows.
 - (a) Show that $r(x) c(x) = x^i + x^j$.
 - (b) Show that $r(\alpha^k) = \alpha^{kl} + \alpha^{kl}$ for k = 1, 2, 3. [See the boldface statement on page 462.]
 - (c) Show that $D(x) = x^2 + (\alpha^i + \alpha^j)x + \alpha^{i+j} = x^2 + r(\alpha)x + \alpha^{i+j}$.

- (d) Show that $\alpha^{i+j} = r(\alpha^2) + \frac{r(\alpha^3)}{r(\alpha)}$. [Hint: Show that $r(\alpha)^3 = (\alpha^i + \alpha^j)^3 = \alpha^{3i} + \alpha^{3j} + \alpha^{i+j}(\alpha^i + \alpha^j) = r(\alpha^3) + r(\alpha)\alpha^{i+j}$ and solve for α^{i+j} ; note that $r(\alpha)^2 = r(\alpha^2)$.]
- 16. Show that a BCH code with t = 1 is actually a Hamming code (see page 457).